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Inverse Radiation TransportInverse Radiation Transport

∙Objective: infer properties of unknown radiation source 
from measured detector responses

∙Radiation source properties:
∙Isotopic composition

∙Fissile mass

∙Shielding

∙Geometric configuration

∙Radiation measurements:
∙Gamma spectrometry

∙Neutron multiplicity counting



Radiation Detectors and MeasurementsRadiation Detectors and Measurements

Gamma Spectrometers

Neutron Multiplicity Counters



Technical ApproachTechnical Approach

∙Use iterative optimization of forward transport models to identify 
source properties consistent with measured detector responses

∙Solution steps:

∙ Hypothesize model of source

∙ Compute detector responses

∙ Compare to measured responses

∙ Iteratively refine model parameters to minimize error in calculated 
responses

∙Components of framework:

∙ Source term synthesis

∙ Radiation transport solver

∙ Detector response model

∙ Nonlinear optimization procedure



Iterative Optimization ApproachIterative Optimization Approach



Source Term SynthesisSource Term Synthesis

∙Electrons from beta decay

∙ Endpoint energies and yields 
from ENSDF

∙ Fermi beta spectrum model

∙Neutrons from

∙ Spontaneous fission: Watt fission 
spectrum

∙ (,n) reactions: -transport in 
homogeneous materials and 
across material interfaces

∙ Implementation uses Los Alamos 
code SOURCES-4C

∙Account for radiation source terms that significantly 
contribute to detector responses

∙Photons from

∙ Nuclear decay: gamma energies 
and yields from ENSDF

∙ Spontaneous & induced fission: 
Maienschein model of prompt & 
delayed fission gamma spectrum

∙ (,*) reactions: (,*) reaction 
product levels from GNASH & 
ENSDF, population rates & branch 
ratios from experiment

∙ (n,) reactions: cross-sections 
from ENDF-VI and ACTI libraries

∙ Electron-bremsstrahlung: cross-
sections from ITS



Radiation Source TermsRadiation Source Terms
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Radiation TransportRadiation Transport

∙Neutron solver: PARTISN

∙ Neutron flux used to compute 
(n,) source terms

∙ Neutron leakage used to compute 
detector neutron response

∙Electron solver: ONELD

∙ Electron flux used to compute 
electron-bremsstrahlung source 
terms

∙Solve Boltzmann transport equation for particle flux and 
leakage current

∙Implementation uses combination of SN deterministic 
transport and photon ray-tracing

∙Photon solver: ONELD

∙ Photon flux used to compute 
fluorescence x-ray production

∙ Photon leakage used to compute 
gamma spectrum continuum

∙Photon ray-tracer

∙ Computes uncollided discrete-
energy photon leakage

∙ Used to compute gamma 
spectrum photopeaks to arbitrary 
resolution



Radiation Transport SolutionRadiation Transport Solution

Photon FluxNeutron Flux
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Detector Response ModelDetector Response Model

∙Model detector characteristics that produce significant features in 
measured response

∙Gamma spectrometers

∙ Detector material: photoelectric, Compton scatter, and pair-production 
cross-sections

∙ Neutron sensitivity: (n,) and (n,n′) cross-sections and gamma yields

∙ Detector size, shape, and orientation relative to source

∙ Energy calibration and resolution

∙ Shielding and collimation

∙ Near- and far-field photon scatter

∙Neutron multiplicity counters

∙ Neutron efficiency vs. energy: detector material, moderation, reflection, 
and neutron absorption

∙ Neutron slowing-down time in detector moderator



Gamma Detector Response CalibrationGamma Detector Response Calibration

 U232 

 Energy (keV) 
 500  1000  1500  2000  2500  3000 

C
o

un
ts

/k
e
V

10-1

100

101

102

103

10
4

Calibration
Model

 Co60 

 Energy (keV) 

 500  1000  1500  2000  2500  3000 

C
o
u

n
ts

/
k
eV

10-1

100

101

102

103

10
4

Calibration
Model

 Ba133 

 Energy (keV) 
 500  1000  1500  2000  2500  3000 

C
o

u
n
ts

/
k
eV

100

101

102

103

104

10
5

Calibration
Model



Nonlinear OptimizationNonlinear Optimization

∙Minimize error between computed and measured detector 
responses

∙ Implementation uses 2 error metric: variance-weighted sum of 
squared errors; emphasizes response features with least uncertainty

∙Empirical weighting scheme used to mix responses of different 
detectors in computation of 2

∙Each iteration estimates gradient in 2 from small perturbations in 
each variable model parameter

∙Levenberg-Marquardt algorithm used to seek model parameters 
that minimize 2



Example Problem and SolutionExample Problem and Solution

∙Fit measured gamma spectrum and neutron count rate

∙ Initial guess:

∙ Surface area & external shielding consistent with photopeak intensities

∙ Mass consistent with neutron count rate (requires internal void)

∙Shell dimensions treated as model variables

∙ Iterative optimization converges in about six steps

∙ Each transport calculation executes in a few seconds

∙ Each iteration requires about ten seconds

∙ Solution obtained in about one minute

∙Actual source was 2.4 kg plutonium metal sphere with conical 
section removed



Solution to Example ProblemSolution to Example Problem



SummarySummary

∙Possible to infer properties of unknown radiation source 
from measured detector responses using inverse 
transport approach

∙Approach employs model-based iterative approach to 
determine source characteristics consistent with 
measured detector responses

∙Enables detection, identification, and characterization of 
special nuclear materials for nonproliferation and 
international security


