
Large Scale Visualization with ParaView

Supercomputing 08 Tutorial

November 17, 2008

Kenneth Moreland John Greenfield W. Alan Scott

Sandia National Laboratories

Utkarsh Ayachit Berk Geveci David DeMarle

Kitware Inc.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

SAND2008-6160P

Outline

•Introduction

•Basic Usage

•Visualizing Large Models

To Follow Along…

•Install ParaView 3.4.
–http://www.paraview.org  Download

•Get example material.

– http://www.paraview.org/Wiki/SC07_ParaView_Tutorial

–Also available on tutorial CD.

http://www.paraview.org/Wiki/SC07_ParaView_Tutorial
http://www.paraview.org

Introduction

What is ParaView?

•An open-source, scalable, multi-
platform visualization application.

•Support for distributed computation
models to process large data sets.

•An open, flexible, and intuitive user
interface.

•An extensible, modular architecture
based on open standards.

•Commercial maintenance and support.

Current ParaView Usage

•Used by academic, government, and
commercial institutions worldwide.

–Downloaded ~3K times/month.

•Used for all ranges of data size.

•Current landmarks of SNL usage:

–6 billion structured cells.

–Billions of AMR cells.

–250 million unstructured cells.

ParaView Application Architecture

MPIOpenGL IceT Etc.

VTK

ParaView Server

ParaView Client pvpython Custom App

UI (Qt Widgets, Python Wrappings)

ParaView Development

•Started in 2000 as collaborative effort
between Los Alamos National Laboratories
and Kitware Inc. (lead by James Ahrens).

–ParaView 0.6 released October 2002.

•September 2005: collaborative effort between
Sandia National Laboratories, Kitware Inc.
and CSimSoft to rewrite user interface to be
more user friendly and develop quantitative
analysis framework.

–ParaView 3.0 released in May 2007.

Current Funding

• Army SBIR

• ERDC Contract

• US NSF SBIR

• Other contributors

– Swiss National
Supercomputing Centre

• Support Contracts

– Electricity de France

– Mirarco

– Oil Industry

Basics of Visualization

Data Types

Uniform Rectilinear
(Image Data)

Non-Uniform Rectilinear
(Rectilinear Data)

Curvilinear
(Structured Data)

Polygonal
(Poly Data)

Unstructured Grid

Multi-block
Hierarchical Adaptive

Mesh Refinement
(AMR)

Hierarchical Uniform
AMR

Octree

More Information

•Online Help

•The ParaView Guide

•The ParaView web page

–www.paraview.org

•ParaView mailing list

–paraview@paraview.org

mailto:paraview@paraview.org
http://www.paraview.org/

Basic Usage

User Interface

Menu Bar

Toolbars

Pipeline Browser

Object Inspector

3D View

Getting Back GUI Components

Creating a Cylinder Source

1. Go to the Source menu and select
Cylinder.

2. Click the Apply button to accept the
default parameters.

Simple Camera Manipulation

•Drag left, middle, right buttons for
rotate, pan, zoom.

–Also use Shift, Ctrl, Alt modifiers.

Creating a Cylinder Source

1. Go to the Source menu and select
Cylinder.

2. Click the Apply button to accept the
default parameters.

3. Increase the Resolution parameter.

4. Click the Apply button again.

Pipeline Object Controls

Undo Redo

RedoUndo

Camera
Redo

Camera
Undo

Render View Options

Display Tab

Creating a Cylinder Source

1. Go to the Source menu and select
Cylinder.

2. Click the Apply button to accept the
default parameters.

3. Increase the Resolution parameter.

4. Click the Apply button again.

5. Delete the Cylinder.

Supported Data Types
• ParaView Data (.pvd)
• VTK (.vtp, .vtu, .vti, .vts, .vtr)
• VTK Multi Block (.vtm, .vtmb,

.vtmg, .vthd, .vthb)
• Partitioned VTK (.pvtu, .pvti,

.pvts, .pvtr)
• VTK Legacy (.vtk)
• Exodus
• XDMF (.xmf, .xdmf)
• LS-DYNA
• SpyPlot CTH
• EnSight (.case, .sos)
• BYU (.g)
• Protein Data Bank (.pdb)
• XMol Molecule

• PLOT3D
• Digital Elevation Map (.dem)
• VRML (.wrl)
• PLY Polygonal File Format
• Stereo Lithography (.stl)
• Gaussian Cube File (.cube)
• POP Ocean Files
• AVS UCD (.inp)
• Meta Image (.mhd, .mha)
• Facet Polygonal Data
• Phasta Files (.pht)
• PNG Image Files
• Raw Image Files
• Comma Separated Values

(.csv)

Load disk_out_ref.ex2

1. Open the file disk_out_ref.ex2.

2. Load all data variables.

3. Click

Data Representation
Toggle Color

Legend
Mapped
Variable

Representation
Vector

Component

Edit Colors

Reset Scalar
Range

Calculator

Contour

Clip

Slice

Threshold

Extract Subset

Common Filters

Glyph

Stream Tracer

Warp (vector)

Group Datasets

Extract Group

Filters Menu

Apply a Filter

1. Make sure that disk_out_ref.ex2 is
selected in the pipeline browser.

2. Select the contour filter.

Apply a Filter

3. Change parameters to create an
isosurface at Temp = 400K.

Change to Temp

Change to 400

Apply a Filter

1. Make sure that disk_out_ref.ex2 is
selected in the pipeline browser.

2. Select the contour filter.

3. Change parameters to create an
isosurface at Temp = 400K.

4.

Create a Cutaway Surface

1. Select disk_out_ref.ex2 in the
pipeline browser.

2. From the menu bar, select Filters →
Alphabetical → Extract Surface.

3.

Create a Cutaway Surface

1. Select disk_out_ref.ex2 in the
pipeline browser.

2. From the menu bar, select Filters →
Alphabetical → Extract Surface.

3.

4. Create a clip filter.

5. Uncheck Show Plane.

6.

Pipeline Browser Structure

Disk_out_ref.ex2

Contour1DataSetSurfaceFilter1

Clip1

Multiview

Multiview

1. Split the view horizontally.

2. Make disk_out_ref.ex2 visible.

3. Color surface by Temp.

Multiview

1. Split the view horizontally.

2. Make disk_out_ref.ex2 visible.

3. Color surface by Temp.

4. Add clip filter.

5. Uncheck Show Plane.

6.

Multiview

1. Split the view horizontally.

2. Make disk_out_ref.ex2 visible.

3. Color surface by Temp.

4. Add clip filter.

5. Uncheck Show Plane.

6.

7. Right-click view, Link Camera…

8. Click other view.

Multiview

1. Split the view horizontally.

2. Make disk_out_ref.ex2 visible.

3. Color surface by Temp.

4. Add clip filter.

5. Uncheck Show Plane.

6.

7. Right-click view, Link Camera…

8. Click other view.

9. Click

Modifying Views

Modifying Views

Streamlines

1. Split view vertically, maximize

2. Make disk_out_ref.ex2 visible

3. Select disk_out_ref.ex2.

4. Add stream tracer.

5.

Streamlines

1. Split view vertically, maximize

2. Make disk_out_ref.ex2 visible

3. Select disk_out_ref.ex2.

4. Add stream tracer.

5.

6. Select Filters → Alphabetical → Tube

7.

Getting Fancy

1. Select StreamTracer1.

2. Add glyph filter.

3. Change Vectors to V.

4. Change Glyph Type to Cone.

5.

Getting Answers

•Where is the air moving the fastest?
Near the disk or away from it? At the
center of the disk or near its edges?

•Which way is the plate spinning?

•At the surface of the disk, is air moving
toward the center or away from it?

Plotting

1. Select disk_out_ref.ex2

2. Filters → Data Analysis → Plot Over
Line.

3D Widgets

Plotting

1. Select disk_out_ref.ex2

2. Filters → Data Analysis → Plot Over
Line.

3. Once line satisfactorily located,

Interacting with Plots

•Left, middle, right buttons to pan, zoom.

•Reset view to plot ranges.

Plots are Views

•Move them like Views.

•Save screenshots (+ vector pdf).

Adjusting Plots

1. Place plot with view split, delete,
resize, and swap.

2. In Display tab, turn off all variables
except Temp and Pres.

3. Select Pres in the Display tab.

4. Change Chart Axis to Bottom – Right.

Histogram / Bar Chart

1. Select disk_out_ref.ex2.

2. Filters → Data Analysis → Histogram

3. Change scalars to Temp.

4.

Geometry Representations

Points Wireframe Surface Surface
with Edges

Volume

Volume Rendering

1. Select view with temp on clipped
mesh.

2. Delete visible clip filter.

3. Make sure disk_out_ref.ex2 selected.

4. Change variable viewed to Temp.

5. Change representation to Volume.

Volume Rendering +
Surface Geometry

1. Select view showing streamlines.

2. Make disk_out_ref.ex2 visible.

3. Change variable viewed to Temp.

4. Change representation to Volume.

Transfer Function Editor

Reset ParaView

Loading Data with Time

1. Open the file can.ex2.

2. Select all variables.

3.

4.

5.

Animation Toolbar

First
Frame

Previous
Frame

Play
Next

Frame
Last

Frame
Loop

Animation
Current

Time
Current

Time Step

Animation Pitfall

1. Go to first time step.

2. Turn on EQPS variable.

3. Turn on color legend.

4. Play (or skip to last time step).

Animation Pitfall

1. Go to first time step.

2. Turn on EQPS variable.

3. Turn on color legend.

4. Play (or skip to last time step).

5. Fix with Rescale to Data Range.

Selection

Surface Cell Selection

Surface Point Selection

Through Cell Selection

Through Point Selection

Block Selection

Selection Inspector

Create new selection

Active selection
properties

Selected cells ids

Selection type

Selection display
Properties/Labeling

Selections

1. Open the Selection Inspector (View →
Selection Inspector).

2. Make various rubber-band selections.

3. Observe results in Selection
Inspector.

4. Play with the Invert Selection and
Show Frustum options.

Frustum vs. Id Selections

1. Make a Select Cells Through

2. Turn on Show Frustum in Selection
Inspector. Rotate 3D view.

3. Play

4. Change the Selection Type to IDs.

5. Play

Spreadsheet View

1. Split the view (or).

2. In new view, click Spreadsheet View.

Spreadsheet View

Show only
selected items

Select block
to inspect

What is
shown in
the view

Attribute shown

Spreadsheet View

1. Split the view (or).

2. In new view, click Spreadsheet View.

3. For Attribute, select Cell Data.

4. Find selected rows in spreadsheet.

5. In Display panel, turn on Show only
selected elements.

Selecting in Spreadsheet View

1. Uncheck Show only selected
elements.

2. Select a few rows in the spreadsheet.

3. Find selection in 3D view.

4. Click Cell Label tab in Selection
Inspector.

5. Check Visible.

6. Change Label Mode to EQPS.

Plot Selection Over Time

1. Filters → Data Analysis → Plot
Selection Over Time

2. Click Copy Active Selection in Object
Inspector.

3.

4. In Display panel, select different
blocks to plot.

Extracting a Selection

1. Turn off cell labels.

2. Perform a sizeable selection.

3. Filters → Data Analysis → Extract
Selection

4. Click Copy Active Selection.

5.

Cleanup

1. Close the Selection Inspector.

2. Delete the Plot and Spreadsheet
views.

3. Delete the PlotSelectionOverTime1
and ExtractSelection1.

Animation View

View → Animation View

Animation View

View → Animation View

Animation Modes: Sequence, Real Time,
and Snap To TimeSteps

Changing Animation Timing

1. Change animation mode to Real
Time.

• Default animation time is 10 sec.

2.

Changing Animation Timing

1. Change animation mode to Real
Time.

• Default animation time is 10 sec.

2.

3. Change animation time to 60 sec.

4. again.

Smoothing the Animation

1. Filters → Alphabetical → Temporal
Interpolator

2. Change mode back to Real Time.

3. Split view. Show can.ex2 in one and
TemporalInterpolator1 in the other.
Link the cameras.

4.

Adding Text Annotation

1. Sources → Text

2. Type a message in text edit box

3.

Text Position

Annotate Time

1. Sources → Annotate Time

2.

Annotate Time

1. Sources → Annotate Time

2.

3. Select can.ex2

4. Filters → Alphabetical → Annotate
Time

5.

6. Move annotation around.

Reset ParaView

Make an Animation

1. Sources → Sphere,

2. Make animation view visible.

3. Change No. Frames to 50.

4. Select Sphere1, Start Theta, press

Make an Animation

1. Sources → Sphere,

2. Make animation view visible.

3. Change No. Frames to 50.

4. Select Sphere1, Start Theta, press

5. Double-click Sphere1 – Start Theta

6. Make New keyframe.

7. First keyframe→360, second keyframe→0.

8. Click OK.

Animating Two Properties

1. Open Sphere1 – Start Theta.

2. Delete the first keyframe (at time 0).

3. Click OK.

4. Create Sphere1 – End Theta.

5. Open Sphere1 – End Theta.

6. Change second key frame time to
0.5.

Scripting Options

•Tools → Python Shell

•Filters → Data Analysis →
Programmable Filter

•pvpython, pvbatch

Visualizing Large Models

Golevka Asteroid vs.
10 Megaton Explosion

•CTH shock physics, over 1 billion cells

Polar Vortex Breakdown

•SEAM Climate Modeling, 1 billion cells
(500 million cells visualized).

Objects-in-Crosswind Fire

•Coupled SIERRA/Fuego/Syrinx/Calore,
10 million unstructured hexahedra

Large Scale AMR

ParaView Architecture

•Three tier

–Data Server

–Render Server

–Client

Standalone

Client

Data
Server

Render
Server

Client-Server

Client
Data

Server
Render
Server

Client-Render Server-Data Server

Client
Data

Server
Render
Server

http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server
http://www.mesa3d.org/
http://www.cmake.org/

Requirements for
Installing ParaView Server

•C++

•CMake (www.cmake.org)

•MPI

•OpenGL (or Mesa3D www.mesa3d.org)

•Qt 4.3 (optional)

•Python (optional)
• http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server#Compiling

http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server

Connecting to a ParaView Server

http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server#Running_the_Server

Data Parallel Pipelines

•Duplicate pipelines run independently
on different partitions of data.

Data Parallel Pipelines

•Duplicate pipelines run independently
on different partitions of data.

Data Parallel Pipelines

•Some operations will work regardless.

–Example: Clipping.

Data Parallel Pipelines

•Some operations will work regardless.

–Example: Clipping.

Data Parallel Pipelines

•Some operations will work regardless.

–Example: Clipping.

Data Parallel Pipelines

•Some operations will have problems.

–Example: External Faces

Data Parallel Pipelines

•Some operations will have problems.

–Example: External Faces

Data Parallel Pipelines

•Ghost cells can solve most of these
problems.

Data Parallel Pipelines

•Ghost cells can solve most of these
problems.

Data Partitioning

•Partitions should be load balanced and
spatially coherent.

Data Partitioning

•Partitions should be load balanced and
spatially coherent.

Data Partitioning

•Partitions should be load balanced and
spatially coherent.

Load Balancing/Ghost Cells

•Automatic for Structured Meshes.

•Partitioning/ghost cells for unstructured
is “manual.”

•Use the D3 filter for unstructured

– (Filters → Alphabetical → D3)

Job Size Rules of Thumb

•Structured Data

–Try for max 20 M cell/processor.

–Shoot for 5 – 10 M cell/processor.

•Unstructured Data

–Try for max 1 M cell/processor.

–Shoot for 250 – 500 K cell/processor.

Avoiding Data Explosion

•Pipeline may cause data to be copied,
created, converted.

•This advice only for dealing with very
large amounts of data.

–Remaining available memory is low.

Topology Changing, No Reduction
• Append Datasets

• Append Geometry

• Clean

• Clean to Grid

• Connectivity

• D3

• Delaunay 2D/3D

• Extract Edges

• Linear Extrusion

• Loop Subdivision

• Reflect

• Rotational Extrusion

• Shrink

• Smooth

• Subdivide

• Tessellate

• Tetrahedralize

• Triangle Strips

• Triangulate

Topology Changing,
Moderate Reduction

•Clip

•Decimate

•Extract Cells by
Region

•Extract Selection

•Quadric Clustering

•Threshold

Similar: Extract Subset

Topology Changing,
Dimension Reduction

•Cell Centers

•Contour

•Extract CTH
Fragments

•Extract CTH Parts

•Extract Surface

•Feature Edges

•Mask Points

•Outline (curvilinear)

•Slice

•Stream Tracer

Adds Field Data
• Block Scalars

• Calculator

• Cell Data to Point Data

• Compute Derivatives

• Curvature

• Elevation

• Generate Ids

• Gen. Surface Normals

• Gradient

• Level Scalars

• Median

• Mesh Quality

• Octree Depth Limit

• Octree Depth Scalars

• Point Data to Cell Data

• Process Id Scalars

• Random Vectors

• Resample with dataset

• Surface Flow

• Surface Vectors

• Texture Map to…

• Transform

• Warp (scalar)

• Warp (vector)

Total Shallow Copy or
Output Independent of Input

• Annotate Time

• Append Attributes

• Extract Block

• Extract Datasets

• Extract Level

• Glyph

• Group Datasets

• Histogram

• Integrate Variables

• Normal Glyphs

• Outline

• Outline Corners

• Plot Global Variables
Over Time

• Plot Over Line

• Plot Selection Over
Time

• Probe Location

• Temporal Shift Scale

• Temporal Snap-to-
Time-Steps

• Temporal Statistics

Special Cases

•Temporal Filters

–Temporal Interpolator

–Particle Tracer

–Temporal Cache

•Programmable Filter

Culling Data

•Reduce dimensionality early.

–Contour and slice “see” inside volumes.

•Prefer data reduction of extraction.

–Slice instead of Clip.

–Contour instead of Threshold.

•Only extract when reducing an order of
magnitude or more.

–Can still run into troubles.

Culling Data

•Experiment with subsampled data.

–Extract Subset

•Use caution.

–Subsampled data may be lacking.

–Use full data to draw final conclusions.

Rendering Modes

•Still Render

–Full detail render.

•Interactive Render

–Sacrifices detail for speed.

–Provides quick rendering rate.

–Used when interacting with 3D view.

Level of Detail (LOD)

•Geometric decimation.

•Used only with Interactive Render

Original Data Divisions: 50x50x50 Divisions: 10x10x10

3D Rendering Parameters

Edit → Settings, Render View → General

Parallel Rendering

Parallel Rendering

Tiled Displays

Parallel Rendering Parameters

Edit → Settings, Render View → Server

Parameters for Large Data

•Use Immediate Mode Rendering on.

•Use Triangle Strips off.

•Try LOD Threshold off.

–Also try LOD Resolution 10x10x10.

•Always have remote rendering on.

•Turn on subsampling.

–Try larger subsampling rates.

•Squirt Compression on.

Python Scripting for ParaView

Motivation

•Scripting

–Makes automation possible

–Used for batch processing

–Only means to visualize on
supercomputers

•Python

–Cross-platform, easily extensible

–Object-oriented

–Supported by a huge community of avid
developers and programmers

Compiling ParaView for Python
support

•CMake Variables

–PARAVIEW_ENABLE_PYTHON: ON

•Must be ON to enable python support

–PARAVIEW_USE_MPI: ON | OFF

•Must be ON for MPI enabled
server/pvbatch

–PARAVIEW_BUILD_QT_GUI: ON | OFF

•Must be ON to build the ParaView’s Qt-
based UI

Python in ParaView

•Standard python interpreter (python)
– Set PYTHON_PATH to directory containing ParaView modules

–Import relevant ParaView modules

•ParaView’s python client (pvpython)

–Python interpreter with ParaView
initialization plus sets the path to
ParaView modules

• ParaView’s batch client (pvbatch)

–Same as pvpython without remote
server connection capabilities

–Can be run in parallel (using mpirun etc.)

ParaView Configurations
• Standalone

(pvpython)

• Batch

(pvbatch)

ParaView Configurations
• Client – Server

(pvpython + pvserver)

• Client – Render Server –
Data Server

(pvpython + pvdataserver
+ pvrenderserver)

Getting started with pvpython

•Import ParaView’s python module

>>> from paraview import servermanager

•Connect to a server

• For standalone operation (or batch
mode)

>>> servermanager.Connect()

• For additional help on Connect

>>> help(servermanager.Connect)

servermanager.Connect()
• Connect to pvserver running on amber

>>> connection = servermanager.Connect(“amber”)

• Connect to pvdataserver running on amber at port
10234 and pvrenderserver running on destiny at port
10235

>>> connection = servermanager.Connect(“amber”,10234,“destiny”,“10235”)

• Sets servermanager.ActiveConnection to the connection object

• To disconnect from the server

>>> servermanager.Disconnect()

Creating a simple visualization

•Create a cone
>>> cone = servermanager.sources.ConeSource()

•Create a view to show the cone
>>> view = servermanager.CreateRenderView()

•Show the cone in the view
>>> repCone = servermanager.CreateRepresentation(cone, view)

•Render
>>> view.ResetCamera()

>>> view.Render()

servermanager sub-modules
• servermanager module sub-modules:

– sources – collection of data sources/readers eg.
ConeSource, SphereSource, ExodusIIReader etc.

– filters – collection of data processors eg. Cut, Clip, Contour,
ShrinkFilter etc.

– rendering – collection of rendering items eg. RenderView,
PVLookupTable etc.

– animation – collection of animation components eg.
AnimationScene etc.

• List all available classes:
>>> dir(servermanager.sources)

• Documentation for each class:
>>> help(servermanager.sources.ConeSource)

help(servermanager.sources.Cone
Source)

class ConeSource(SourceProxy)

The Cone source can be used to add a polygonal cone to the 3D scene. The output of the
Cone source is polygonal data.

Data descriptors defined here:

Capping

If this property is set to 1, the base of the cone will be capped with a filled polygon.
Otherwise, the base of the cone will be open.

Center

This property specifies the center of the cone.

Height

This property specifies the height of the cone.

Radius

This property specifies the radius of the base of the cone.

Resolution

This property indicates the number of divisions around the cone. The higher this number,
the closer the polygonal approximation will come to representing a cone, and the more
polygons it will contain.

Changing Parameters

•help(obj or class) can be used to obtain the
list of available parameters

•Getting the current value
>>> param = cone.Radius

>>> center0 = cone.Center[0]

•Setting a new value
>>> cone.Radius = 10

>>> cone.Center[0] = 120.0333

>>> cone.Center = [120, 130, 121.09]

>>> repCone.Representation = “Wireframe”

•Parameter values can be specified when
instantiating
>>> cone = servermanager.sources.ConeSource(Radius=10.5,

Center=[10, 10, 10])

Using Filters

•Filters are available in servermanager.filters sub-
module

•Similar to creating sources, with
required Input

>>> shrink = servermanager.filters.ShrinkFilter(Input=cone)

>>> shrink.ShrinkFactor = 0.8

>>> repShrink = servermanager.CreateRepresentation(shrink, view)

>>> repCone.Visibility = False

>>> view.StillRender()

More about filters

•List available filters

>>> dir(servermanager.filters)

•Help about any filter

>>> help(servermanager.filters.Calculator)

Connecting to a particular output
port

•Connecting to the first output port

>>> shrink.Input = inFilter

>>> shrink.Input = servermanager.OutputPort(inFilter, 0)

•Connecting to any other output port
>>> shrink.Input = servermanager.OutputPort(inFilter, 1)

Rendering
• Views

– Pane to display data in

– servermanager.CreateRenderView() creates a render view suitable
for the active connection type

• Representations

– Maps the data from a source to a view

– Has parameters that control the appearance eg.
LookupTable, Color etc.

– servermanager.CreateRepresentation(source, view) creates representation
suitable to show the data produced by the source
in the given view

Color by an array
• To color by an array one must do the following:

– Specify the array to color with

>>> repShrink.ColorAttributeType = “POINT_DATA”

>>> repShrink.ColorArrayName = “Normals”

– Specify the scalar lookup table to map data to
colors

>>> lut = servermanager.rendering.PVLookupTable()

>>> repShrink.LookupTable = lut

• Setup data-to-color mapping
• RGBPoints is a list of 4-tuples (scalar value, red, green,

blue)

>>> lut.RGBPoints = [0.0, 0, 0, 1, 1.0, 1, 0, 0]

Script with scalar coloring
>>> from paraview import servermanager as sm

>>> sm.Connect()

>>> cone = sm.sources.ConeSource(Radius=0.9)

>>> shrink = sm.filters.ShrinkFilter(Input=cone)

>>> shrink.ShrinkFactor = 0.8

>>> view = sm.CreateRenderView()

>>> repShrink = sm.CreateRepresentation(shrink, view)

>>> repShrink.ColorAttributeType = “POINT_DATA”

>>> repShrink.ColorAttributeName = “Normals”

>>> lut = sm.rendering.PVLookupTable()

>>> lut.RGBPoints = [0, 0,0, 1, 1, 1, 0, 0]

>>> repShrink.LookupTable = lut

>>> view.ResetCamera()

>>> view.StillRender()

Clipping a dataset
Create the clip filter

>>> clipper = servermanager.filters.Clip()

Assign input

>>> clipper.Input = sphere

Create the implicit plane that is used to define the clip function

>>> plane = servermanager.implicit_functions.Plane()

>>> plane.Normal = [0.5, 0.5, 0.0]

Assign the clip function

>>> clipper.ClipFunction = plane

>>> repClip = servermanager.CreateRepresentation(clipper, view)

Reset camera and render

>>> view.ResetCamera()

>>> view.StillRender()

Data Information

•Classes in sources/filters are merely
proxies for server-side VTK objects

•Data processing is done on the server,
hence data is available on the server
alone

•DataInformation provides an API to
obtain information about the data on the
client without fetching the entire data to
the client

Fetching Data Information

•Update the source/filter
>>> shrink.UpdatePipeline()

•Need to update the source after any
changes in parameters

•Rendering (view.StillRender()) automatically
updates all sources in visible piplines

•Fetch the data information

>>> di = shrink.GetDataInformation()

Accessing Data Information
• Data-type information

>>> di.GetDataSetTypeAsString()

• Accessing point attributes

>>> pdi = di.GetPointDataInformation()

• Accessing arrays available as point attributes
(vtkPVDataSetAttributesInformation)

>>> num_arrays = pdi.GetNumberOfArrays()

• Accessing information about an array (vtkPVArrayInformation)

>>> pa = pdi.GetArrayInformation(“Normals”)

>>> pa = pdi.GetArrayInformation(0)

>>> name = pa.GetName()

>>> num_comps = pa.GetNumberOfComponents()

>>> num_tuples = pa.GetNumberOfTuples()

>>> range = pa.GetComponentRange(0) ;# -1 for vector magnitude

Readers

•Available in the servermanager.sources sub-module

•Specify the filename (or filenames) using the
FileName or FileNames parameter

•Readers may provides options to select which
attribute arrays to load

•Soon a method will be available to create
choose a reader give the filename. Currently,
user has to select what reader to create to
read the file

Reading a *.vtk file
>>> from paraview import servermanager

>>> servermanager.Connect()

>>> reader = servermanager.sources.
LegacyVTKFileReader(FileNames=“…/data.vtk”)

>>> view = servermanager.CreateRenderView()

>>> repr = servermanager.CreateRepresentation(reader, view)

>>> view.ResetCamera()

>>> view.StillRender()

Read an Exodus file

•Create reader
>>> reader = servermanager.sources.ExodusIIReader()

>>> reader.FileName = “…/can.ex2”

•Update the reader information: causes the
reader to read meta-data from the file
>>> reader.UpdatePipelineInformation()

• List available point arrays
>>> reader.PointResultArrayInfo

Property name= PointResultArrayInfo

value=[‘DISPL’, ‘0’, ‘VEL’, ‘0’, ‘ACCL’, ‘0’]

* Turn on a few arrays
>>> reader.PointResultArrayStatus = [‘DISPL’, ‘1’, ‘VEL’, ‘1’]

Datasets with Time

•Readers which provide time-support have
TimestepValues parameter

>>> reader.TimestepValues

Property name= TimestepValues value = [0.0, 0.00010007373930420727,
0.00019990510190837085, ...]

•To request a particular time

– UpdatePipeline(time) can be used to force the pipeline
to update with the given time

–View has a ViewTime parameter which is the
time the view will request from all visible
pipelines

Animating through available time
steps

>>> reader = servermanager.ExodusIIReader(…)

…

>>> tsteps = reader.TimestepValues

>>> for cur_time in tsteps:

>>> view.ViewTime = cur_time

>>> view.ResetCamera()

>>> view.StillRender()

Accessing data directly
• In client-server configurations, the python script is run on the

client while the data processing and hence the data is on the
server

• Generally use DataInformation to obtain information about the
data on the client

• servermanager.Fetch() can be used to deliver data to the client

• Modes of operation for Fetch()

• Append all of the data together and bring it to the client (only
available for polygonal and unstructured datasets). Note: Do
not do this if data is large otherwise the client will run out of
memory.

• Bring data from a given process to the client.

• Use a reduction algorithm and bring its output to the client.
For example, find the minimum value of an attribute.

servermanager.Fetch

•To fetch the appended data on the client:
>>> data = servermanager.Fetch(source)

•To fetch data from a particular processes
>>> dataP1 = servermanager.Fetch(source, 1)

•To fetch the sum of values for each attribute
arrays
>>> mm =servermanager.sources.MinMax()

>>> mm.Operation = “SUM”

>>> sumdata = servermanager.Fetch(source, mm, mm)

–sumdata is polydata with 1 point (and 1
cell) with cell/point arrays containing the
sum of all the values in that array across all
the processess.

Loading state saved from GUI
>>> from paraview import servermanager

Connect to a server

>>> servermanager.Connect()

Load the state

>>> servermanager.LoadState(“…/state.pvsm”)

Obtain the first render view (for multiple views use GetRenderViews())

>>> view = servermanager.GetRenderView()

>>> view.StillRender()

Scripting for pvbatch

•Same as pvpython except

–It can be run in parallel

–One cannot connect to remote server
(only servermanager.Connect() calls are
supported)

•The python script is run on the 0th node

Scripting from within GUI

•Things to remember

–Don’t use servermanager.Connect() or servermanager.Disconnect().
All connection related operation have to be
done using the GUI

– servermanager.ActiveConnection is automatically setup to
refer to the connection made by the GUI

–The python shell and the GUI are both
working on the same engine hence
changes in one will have effects on the
other

Scripting from within GUI
>>> sphere = servermanager.sources.SphereSource()

Make the GUI aware of this sphere

>>> servermanager.Register(sphere, “SphereFromPython”)

>>> view = servermanager.GetRenderView()

Create a new representation in a existsing view

>>> repSphere = servermanager.CreateRepresentation(sphere, view)

>>> servermanager.Register(repSphere)

Create a new view

>>> view2 = servermanager.CreateRenderView()

>>> servermanager.Register(view2)

Create a new representation for the new view

>>> rep2 = servermanager.CreateRepresentation(sphere, view2)

>>> servermanager.Register(rep2)

Register/UnRegister
• Register(object, [registrationGroup=“..”, registrationName=“…”)

– Registers an object so that the GUI becomes aware of it

– registrationName is the name with which the object appears in the
GUI

– If registrationGroup is not specified, the group is inferred from the
type of the object

– Returns a tuple (group, name) which which the object is
registered on success

• UnRegister(object, [registrationGroup=“...”,
registrationName=“…”)

– Unregisters a previously registered object

– The GUI treats the object as if it were deleted

Saving state from python
• State of all those objects that are registered can be

saved

• Objects not registered are ignored

• To be able to load saved state from GUI it is essential
that default explicit registrationGroup is not specified.

>>> servermanager.Connect()

Set up pipeline, views etc.

….

Register all objects

>>> servermanager.Register(source, ..)

>>> servermanager.Register(view, …)

Save state

>>> servermanager.SaveState(“…/state.pvsm”)

Python Programmable Filter
• Used to write custom filters

using Python

• Python is used to data
processing

• servermanager module is not
accesible either use
paraview.vtk or vtk for creating
VTK filters etc.

Python Programmable Filter
>>> from paraview import vtk
>>> #reads a poly data and modifies the geometry
>>> pdi = self.GetInputDataObject(0,0)
>>> pdo = self.GetOutputDataObject(0)
>>> newPts = vtk.vtkPoints()
>>> numPts = pdi.GetNumberOfPoints()
>>> for i in xrange(0, numPts):
>>> coord = pdi.GetPoint(i)
>>> x,y,z = coord[:3]
>>> x = x * 2
>>> y = y * 0.5
>>> z = 1
>>> newPts.InsertPoint(i, x,y,z)
>>> pdo.SetPoints(newPts)

Conclusion
• Python is the main scripting language for ParaView

• Python can be used to write pure client side code as well as for
server side data processing (using programmable filter)

• paraview.servermanager module provides components used for
client-side programming. It also has several demo*() functions
which can be used as guidelines for writing custom scripts

• paraview.vtk or simply vtk modules are provided for server side
python programming. These provide access to VTK classes
through python

• We are constantly working on improving the scripting API to
make is easier to use and more python friendly

http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server
http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server
http://www.paraview.org/Wiki/ParaView

Further Reading

•Amy Henderson Squillacote. The
ParaView Guide. Kitware, Inc., 2006.

•http://www.paraview.org/Wiki/ParaView

• http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server

Further Reading
Visualization and Customization

•Will Schroeder, Ken Martin, and Bill
Lorensen. The Visualization Toolkit.
Kitware, Inc., fourth edition, 2006.

•Kitware Inc. The VTK User’s Guide.
Kitware, Inc., 2006.

•Jasmin Blanchette and Mark
Summerfield. C++ GUI Programming
with Qt 4. Prentice Hall, 2006.

Further Reading
Parallel VTK Topics

• James Ahrens, Charles Law, Will Schroeder, Ken
Martin, and Michael Papka. “A Parallel Approach for
Efficiently Visualizing Extremely Large, Time-Varying
Datasets.” Technical Report #LAUR-00-1620, Los
Alamos National Laboratory, 2000.

• James Ahrens, Kristi Brislawn, Ken Martin, Berk
Geveci, C. Charles Law, and Michael Papka. “Large-
Scale Data Visualization Using Parallel Data
Streaming.” IEEE Computer Graphics and
Applications, 21(4): 34–41, July/August 2001.

• Andy Cedilnik, Berk Geveci, Kenneth Moreland,
James Ahrens, and Jean Farve. “Remote Large
Data Visualization in the ParaView Framework.”
Eurographics Parallel Graphics and Visualization
2006, pg. 163–170, May 2006.

Further Reading
Advanced Pipeline Execution

• James P. Ahrens, Nehal Desai, Patrick S. McCormic,
Ken Martin, and Jonathan Woodring. “A Modular,
Extensible Visualization System Architecture for
Culled, Prioritized Data Streaming.” Visualization
and Data Analysis 2007, Proceedings of SPIE-IS&T
Electronic Imaging, pg 64950I-1–12, January 2007.

• John Biddiscombe, Berk Geveci, Ken Martin,
Kenneth Moreland, and David Thompson. “Time
Dependent Processing in a Parallel Pipeline
Architecture.” IEEE Visualization 2007. October
2007.

Further Reading
Parallel Rendering

• Kenneth Moreland, Brian Wylie, and Constantine
Pavlakos. “Sort-Last Parallel Rendering for Viewing
Extremely Large Data Sets on Tile Displays.”
Proceedings of IEEE 2001 Symposium on Parallel
and Large-Data Visualization and Graphics, pg. 85–
92, October 2001.

• Kenneth Moreland and David Thompson. “From
Cluster to Wall with VTK.” Proceddings of IEEE 2003
Symposium on Parallel and Large-Data Visualization
and Graphics, pg. 25–31, October 2003.

• Kenneth Moreland, Lisa Avila, and Lee Ann Fisk.
“Parallel Unstructured Volume Rendering in
ParaView.” Visualization and Data Analysis 2007,
Proceedings of SPIE-IS&T Electronic Imaging, pg.
64950F-1–12, January 2007.

