SAND2020- 11998R

—
"~ \
\ EXASCALE
) COMPUTING
\ PROJECT
Mpage

ECP-U-2020-xxx

Demonstration and performance testing of extreme-resolution
simulations with static meshes on Summit (CPU & GPU) for a
parked-turbine configuration and an actuator-line (mid- ﬁdellty model)
wind farm configuration

WBS 2.2.2.01, Milestone ECP-Q4-FY20

Shreyas Ananthan
Alan Williams
James Overfelt
Johnathan Vo
Philip Sakievich
Timothy A. Smit
Jonathan H#
Luc B Vergiat

[)
B l\\\ '11€
RN

P72 U.S. DEPARTMENT OF Oﬂrce of N ' Sg’@.
‘ {®)ENFRQY |c......

SandlaNatlonai Laboratories is amultimission |aboratory managed and operated by National Technology & Engi neerl ng Solutions of Sandia, LLC, awholly owned wistarion
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website http://www.osti.gov/scitech/
Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

Telephone 703-605-6000 (1-800-553-6847)

TDD 703-487-4639

Fax 703-605-6900

E-mail info@ntis.gov

Website http://www.ntis.gov/help/ordermethods.aspx
Reports are available to DOE employees, DOE contractors, Energy Technology Data
Exchange representatives, and International Nuclear Information System representatives
from the following source:

Office of Scientific and Technical Information
PO Box 62

Oak Ridge, TN 37831

Telephone 865-576-8401

Fax 865-576-5728

E-mail reportsQosti.gov

‘Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor any
of their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint
project of the U.S. Department of Energy’s Office of Science and National Nuclear Security
Administration, responsible for delivering a capable exascale ecosystem, including software,
applications, and hardware technology, to support the nation’s exascale computing impera-
tive. A portion of this research was supported by the U.S. Department of Energy Wind
Energy Technologies Office.

This work was authored in part by the National Renewable Energy Laboratory, operated
by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under
Contract No. DE-AC36-08G028308.

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology & Engineering Solutions of Sandia, LL.C, a wholly owned subsidiary
of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525. This report followed the Sandia
National Laboratories formal review and approval process (SAND2020-XXXX R). As
such, the technical report is suitable for unlimited release.

A portion of the research was performed using computational resources sponsored by the
Department of Energy’s Office of Energy Efficiency and Renewable Energy and located
at the National Renewable Energy Laboratory. A portion of the research used resources
of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-000R22725.

ECP-U-2020-xxx

ECP Milestone Report

Demonstration and performance testing of extreme-resolution

simulations with static meshes on Summit (CPU & GPU) for a

parked-turbine configuration and an actuator-line (mid-fidelity
model) wind farm configuration

WBS 2.2.2.01, Milestone ECP-Q4-FY20

Office of Advanced Scientific Computing Research
Office of Science
US Department of Energy

Office of Advanced Simulation and Computing
National Nuclear Security Administration
US Department of Energy

October 30, 2020

Exascale Computing Project (ECP) iii ECP-Q4-FY20

ECP Milestone Report

Demonstration and performance testing of extreme-resolution

simulations with static meshes on Summit (CPU & GPU) for a

parked-turbine configuration and an actuator-line (mid-fidelity
model) wind farm configuration

WBS 2.2.2.01, Milestone ECP-Q4-FY20

APPROVALS

Submitted by:

/M%%V 30 October 2020

Michael A. Sprague Date
ECP-Q4-FY20

Approval:
Thomas Evans Date
ORNL

Exascale Computing Project (ECP) iv ECP-Q4-FY20

REVISION LOG

Version \ Creation Date \ Description Approval Date
1.0 | 2020-08-30 | Original

Exascale Computing Project (ECP) v ECP-Q4-FY20

EXECUTIVE SUMMARY

The goal of the ExaWind project is to enable predictive simulations of wind farms comprised of many
megawatt-scale turbines situated in complex terrain. Predictive simulations will require computational fluid
dynamics (CFD) simulations for which the mesh resolves the geometry of the turbines and captures the
rotation and large deflections of blades. Whereas such simulations for a single turbine are arguably petascale
class, multi-turbine wind farm simulations will require exascale-class resources.

The primary physics codes in the ExaWind simulation environment are Nalu-Wind, an unstructured-grid
solver for the acoustically incompressible Navier-Stokes equations, AMR-Wind, a block-structured-grid solver
with adaptive mesh refinement capabilities, and OpenFAST, a wind-turbine structural dynamics solver. The
Nalu-Wind model consists of the mass-continuity Poisson-type equation for pressure and Helmholtz-type
equations for transport of momentum and other scalars. For such modeling approaches, simulation times are
dominated by linear-system setup and solution for the continuity and momentum systems. For the ExaWind
challenge problem, the moving meshes greatly affect overall solver costs as reinitialization of matrices and
recomputation of preconditioners is required at every time step. The choice of overset-mesh methodology to
model the moving and non-moving parts of the computational domain introduces constraint equations in
the elliptic pressure-Poisson solver. The presence of constraints greatly affects the performance of algebraic
multigrid preconditioners.

In this milestone, we demonstrate the execution of two computational fluid dynamics (CFD) codes in
the ExaWind simulation environment, Nalu-Wind and AMR-Wind, on heterogeneous CPU/GPU compute
architectures. The core computational kernels in Nalu-Wind, especially those related to linear system assembly
and iterative solves, have been offloaded to accelerators. Significant efforts have been undertaken to minimize
the data transfers between host and device memory spaces. The performance of computational kernels
executing on GPUs was benchmarked on ORNL Summit system for two wind-energy problems of interest: 1.
Strong scaling performance for a blade-resolved simulation of the NREL 5-MW wind turbine in uniform inflow,
and 2. Strong and weak scaling performance for multi-turbine wind farm simulation operating in turbulent
atmospheric boundary layer (ABL) inflow, where turbines are represented as actuator source terms in the
governing equations. For the problems considered, we have verified the correctness of the simulations when
executing in hybrid mode compared to execution on CPUs alone. Comparisons of performance on a per-node
basis, indicate that the strong scaling performance on GPUs has opportunities for significant improvement.
Computational cost of pressure-Poisson solves using algebraic multigrid (AMG) preconditioners continues
to dominate the overall time to solution. In particular, the cost of preconditioner setup on GPUs shows a
dramatic increase compared to CPUs and will be the focus of future work within the ExaWind project.

In FY20, the team added a block-structured background CFD solver, AMR-Wind, that is built on top
of the AMReX library. The use of block-structured, Cartesian mesh solvers for modeling the atmospheric
boundary layer and the wake structures allows the team to realize significant computational gains through
use of geometric multigrid solvers in lieu of the AMG preconditioners used in the unstructured Nalu-Wind
solver. Performance comparisons of AMR-Wind and Nalu-Wind for the ABL precursor problems indicate
that AMR-Wind is five times faster on CPUs when compared to Nalu-Wind for the same problem executing
on the same computational resource. Strong and weak scaling studies of AMR-Wind were performed on
ORNL summit for mesh sizes of up to 9.1 x 10° degrees of freedom.

Considerable advances were made in the development, verification, and validation of the Active Model-
Split (AMS) hybrid-RANS/LES turbulence model. In addition to incorporating the recent developments in
literature to the code-base, the team also identified and fixed several issues that were causing the instabilities
observed in FY19-Q4 milestone. The model has been validated for simple test problems and is currently
being tested on wind-energy relevant problems such as the NACAQ0015 fixed wind and NREL 5-MW wind
turbine simulations.

With successful transition of computational kernels to GPUs, the adoption of a hybrid unstructured-
structured solver strategy, and advances to hybrid RANS/LES turbulence modeling capabilities, the team is
well poised to meet the ExaWind challenge problem on upcoming exascale systems.

Exascale Computing Project (ECP) vi ECP-Q4-FY20

TABLE OF CONTENTS

EXECUTIVE SUMMARY vi
LIST OF FIGURES viii
LIST OF TABLES X
1 Introduction 1
2 Milestone Description 1
2.1 Description oL e e e e 1
2.2 Execution Plano 2
2.3 Overview of milestone completion L L 2

3 ExaWind simulation environment on next-generation platforms 3
3.1 Nalu-Windo 3
3.2 Nalu-Wind hypre Assembly L 3
3.3 SOLVETS . . . o e 4
34 AMR-Wind e 7

4 Nalu-Wind blade-resolved simulations of NREL 5-MW wind turbine 7
4.1 Strong-scaling performance of Nalu-Wind using Trilinos solvers 9
4.2 Strong scaling performance of Nalu-Wind using hypre 12

5 Multi-turbine actuator line simulation in ABL 16
5.1 Atmospheric Boundary Layer (ABL) modeling in Nalu-Wind 16
5.2 Modeling wind turbines as actuator lines or disks oL 16
5.3 Scaling Studies L 18
5.3.1 Strong scaling 18

5.3.2 Weak scaling L 19

6 Hybrid RANS/LES turbulence modeling 24
6.1 Improvements to the Nalu-Wind implementation of the SST RANS model 24
6.2 Improvements to the Nalu-Wind implementation of the AMS hybrid RANS-LES model . . . 24
6.3 Periodic Hill Model Validation 27
6.4 AMS Simulations of a NACA-0015 Fixed Wing 28
6.5 AMS Simulations of a Rotating Turbine in Uniform Inflow 30

7 Advances in structured background solver 33
7.1 Strong & Weak scaling performance of AMR-Wind 33

8 Conclusions 34
Exascale Computing Project (ECP) vii ECP-Q4-FY20

LIST OF FIGURES

1 Pseudo-code of two-stage hybrid Symmetric Gauss-Seidel iteration, using Jacobi-Richardson
as the inner sweep. Trilinos sets ni = 1 and hence, performs the neighborhood communication
OICE PET SWEED. .« « « v v v e 6
2 Front and side views of the near-body mesh used to model the NREL 5-MW rotor with
Nalu-Wind. The hybrid mesh consists of structured, hyperbolically extruded mesh on the rotor
blades and a fully unstructured mesh block around the hub and the hub-blade transition region. 8
3 Comparison of the strong scaling performance of the total time per timestep when executing
Nalu-Wind with Trilinos solvers on ORNL Summit Power9 CPUs and NVIDIA V100 GPUs
compared on a per-node basis (i.e., 6 V100 GPUs are considered equivalent to 42 Power9 CPU
cores). Simulation was performed for 10 timesteps and execution times reported in the plot use
an average time over those ten timesteps. The two dominant components of the total time per
timestep, non-linear iterations and pre-timestep work, are shown in the middle and right figures. 10
4 Breakdown of the total time spent in momentum solves for the blade-resolved NREL 5-MW
rotor simulation when executing Nalu-Wind on ORNL Summit Power9 CPUs and NVIDIA
V100 GPUs using the Trilinos solver stack. Comparisons are performed on a per-node basis,
i.e., 6 V100 GPUs are considered equivalent to 42 Power9 CPU cores. The timing breakdown
are as follows: init — time spent in linear system graph creation, assemble — time spent by
Nalu-Wind computational kernels in assembling the matrix coefficients and right hand side
residual vector, precon setup — time setting up the preconditioner, solve — time spent in iterative
solves, other — time spent in other operations, e.g., computing gradients, etc. 11
5 Comparison of the strong scaling performance of the total time per timestep when executing
Nalu-Wind with hypre and Trilinos solvers on ORNL Summit Power9 CPUs and NVIDIA
V100 GPUs compared on a per-node basis (i.e., 6 V100 GPUs are considered equivalent to 42
Power9 CPU cores). Simulation was performed for 10 timesteps and execution times reported
in the plot use an average time over those ten timesteps. The two dominant components of the
total time per timestep, non-linear iterations and pre-timestep work, are shown in the middle
and right figures. Case 1: Hypre Continuity/Trilinos Other, Case 2: Hypre Continuity/Trilinos
Other, Reuse Linear System, Case 3: Hypre for Continuity and Segregated Momentum /Trilinos
Other, Reuse Linear System, Case 4: Hypre for all equations including segregated momentum,
Reuse Linear System. e 13
6 Breakdown of the total time spent in segregated momentum and Continuity solves for the
blade-resolved NREL 5-MW rotor simulation when executing Nalu-Wind on ORNL Summit
Power9 CPUs and NVIDIA V100 GPU using hypre library (Case 3). The scalar transport
equations are solved using the Trilinos solver stack. Comparisons are performed on a per-node
basis, i.e., 6 V100 GPUs are considered equivalent to 42 Power9 CPU cores. The timing
breakdown are as follows: init — time spent in linear system graph creation, assemble — time
spent by Nalu-Wind computational kernels in assembling the matrix coefficients and right
hand side residual vector, precon setup — time setting up the preconditioner, solve — time spent
in iterative solves, other — time spent in other operations, e.g., computing gradients, etc. . . . 15
7 A actuator line model in uniform inflow conditions. Threshholding is applied to half the
domain to show the extent the actuator source term propagates into the domain through the
Gaussian spreading kernel (elements colored by velocity magnitude). An iso-surface of the
actuator source term (magnitude=>5) is also provided (colored by the pressure term). 17
8 Breakdown of the strong scaling performance of momentum and continuity solves for a single
NREL 5MW turbine operating in ABL inflow using the Trilinos solver stack. The turbine
blades are modeled using actuator lines. Comparisons are performed on a per-node basis, i.e., 6
V100 GPUs are considered equivalent to 42 Power9 CPU cores. The timing breakdown are as
follows: init — time spent in linear system graph creation, assemble — time spent by Nalu-Wind
computational kernels in assembling the matrix coeflicients and right hand side residual vector,
precon setup — time setting up the preconditioner, solve — time spent in iterative solves, other —
time spent in other operations, e.g., computing gradients, etc. 20
9 Strong Scaling: Actuator line execution time per time step. 21

Exascale Computing Project (ECP) viii ECP-Q4-FY20

10

11
12
13

14

15
16
17

18

19
20

21

Breakdown of the weak scaling performance of momentum and continuity solves for NREL
5MW turbines operating in ABL inflow using the Trilinos solver stack. The turbine blades
are modeled using actuator lines. Comparisons are performed on a per-node basis, i.e., 6
V100 GPUs are considered equivalent to 42 Power9 CPU cores. The timing breakdown are as
follows: init — time spent in linear system graph creation, assemble — time spent by Nalu-Wind
computational kernels in assembling the matrix coefficients and right hand side residual vector,
precon setup — time setting up the preconditioner, solve — time spent in iterative solves, other —

time spent in other operations, e.g., computing gradients, etc. 22
Weak Scaling: NRELSMW actuator line total time per time step. 23
Weak Scaling: Actuator line execution time per time step. 23

Turbulent kinetic energy for the periodic hill (close-up view on the top of the hill) under
different clipping mechanisms: left: clipping to a prescribed minimum value, right: clipping
using molecular viscosity relation.o oL oL 25
Turbulent kinetic energy for the McAlister fixed wing (close-up view on the trailing edge of
the wing) under different clipping mechanisms: left: clipping to a prescribed minimum value,

right: clipping using molecular viscosity relation. 000 25
Bulk inlet quantities as a function of time. 28
Average u, profiles for the periodic hill. oL 29

NACA-0015 fixed wing contours of velocity magnitude and a slice of vorticity on the plane
through the tip of the wing in the AMS simulation. Reasonable turbulent fluctuations can be
observed. L e 30
NACA-0015 fixed wing evolution of tip vortices downstream of the fixed wing. Right: SST
simulation, Center and Left: Instantaneous snapshots from the AMS simulation. Influences of
resolved turbulence can be seen in the AMS snapshots, with the structure breaking down and
evolving over time. L e 30
Chordwise variation of the pressure coefficient, ¢,, at different locations along the wing span. 31
Isocontours of Q-criterion and slices of z-vorticity in snapshots after the AMS turbulence model
is turned on. Top Left: After a 45° rotation, Top Right: After a 90° rotation, Bottom Left:
After a 180° rotation and Bottom Right: After a 1080° rotation,. 32
Strong- and weak-scaling performance for AMR-Wind on the ABL problem on ORNL Sum-
mit. Left: Strong-scaling performance on two problem sizes (3.7 x 107 and 4.7 x 10° DOFs)
performed on GPUs and CPUs. Right: Weak-scaling efficiency for two different workloads
2x 10% and 8.3 x 106 DOFs/GPU. 33

Exascale Computing Project (ECP) ix ECP-Q4-FY20

LIST OF TABLES

1 Publicly hosted Git repository URLs and commit identifiers (SHA1) for the codebases used to

perform the scaling studies using the Trilinos linear solver stack documented in Sec. 4. 8
2 Publicly hosted Git repository URLs and commit identifiers (SHA1) for the codebases used to
perform the scaling studies using the hypre linear solver stack documented in Sec. 4. 12

Exascale Computing Project (ECP) X ECP-Q4-FY20

1. INTRODUCTION

The ultimate goal of the ExaWind project is to enable scientific discovery through predictive simulations of
wind farms comprised of many megawatt-scale turbines situated in complex terrain. Predictive simulations
will require computational fluid dynamics (CFD) simulations for which the mesh resolves the geometry
of the turbines (blade-resolved) and captures the rotation and large deflections of blades. Whereas such
simulations for a single turbine are arguably petascale class, multi-turbine wind farm simulations will require
exascale-class resources [15].

The expectation is that by developing the computational capability to conduct blade-resolved simulations
of a wind farm, more accurate predictions of wake dynamics and their interaction with other turbines will be
achieved. Preparing the ExaWind simulation environment to utilize next-generation resources to allow for
these massive simulations has been the main focus of the majority of previous milestones. Even with the use
of exascale computational resources, the accuracy of simulations will still be limited by the quality of the
underlying physical modeling.

The primary physics codes in the ExaWind simulation environment are Nalu-Wind, an unstructured-grid
solver for the acoustically incompressible Navier-Stokes equations, AMR-Wind, a block-structured-grid solver
with adaptive mesh refinement capabilities, and OpenFAST, a wind-turbine structural dynamics solver. The
Nalu-Wind model consists of the mass-continuity Poisson-type equation for pressure and Helmholtz-type
equations for transport of momentum and other scalars. For such modeling approaches, simulation times are
dominated by linear-system setup and solution for the continuity and momentum systems.

In this milestone, we present the results of our efforts in transitioning the core computational kernels
within Nalu-Wind to execute on GPUs. The new codebase heavily leverages the Kokkos abstraction library
as well as the considerable advances in the Trilinos solver libraries (e.g., MueLu, Kokkos-kernels, etc.) as
well as the newly developed STK NGP library that provides in-memory, unstructured mesh data structures
that operate on GPUs. Strong and weak scaling studies are performed on relevant problems to baseline
the performance of computational algorithms when executing on GPUs. The baseline performance will be
used as the basis to evaluate algorithmic improvements that will be implemented as part of the project. We
also document the significant advances made in the development and validation of the hybrid RANS/LES
model. The new model, AMS (Active Model-Split), addresses the several limitations in the state-of-the-art
hybrid-RANS/LES models used in wind energy research that can seamlessly handle the transition between
the ABL and the blade boundary layer spatial and temporal scales.

2. MILESTONE DESCRIPTION

In this section, we provide the approved milestone description and execution plan followed by a brief description
of how the milestone was completed. Details regarding completion are included in the following sections.

2.1 DESCRIPTION
This milestone will perform at-scale simulations for two different cases:

e Blade-resolved, static-mesh, hybrid RANS/LES simulation of a single, parked wind turbine in uniform
inflow where the blade and the near-wake regions are resolved adequately to capture the thrust and
power for the rotor. The objective of this simulation is to perform as much of the linear system
assembly and solve, field updates, etc. on the device (GPUs) and develop best practices for simulating
blade-resolved turbine calculations on heterogeneous architectures.

e ABL LES simulation of a multi-turbine configuration where the turbines are resolved as actuator
lines or actuator disks. The simulation will address the following objectives: investigate the coupling
to OpenFAST (the wind-turbine structural model) when Nalu-Wind is executing on a CPU-GPU
configuration; demonstrate the increase in resolution possible with mid-fidelity simulations when
running on GPU architectures and/or the speed-ups possible with GPUs for the resolutions used in the
state-of-the-art simulations.

Performing the aforementioned demonstration simulations will require several developments that are
described briefly below:

Exascale Computing Project (ECP) 1 ECP-Q4-FY20

e GPU assembly and execution of linear systems — Nalu-Wind’s discretization operators, linear system
assembly logic, and the linear solvers themselves must be fully executable on GPUs.

e Optimization of MPI4+GPU execution on multiple MPI ranks — Performance benchmarking to understand
the optimal settings of MPI ranks vs GPUs, trade-offs of dedicated MPI rank per GPU on a node vs.
sharing a single GPU with multiple MPI ranks, use of NVIDIA MPS etc.

e Advances in linear solvers — The simulations will exercise the latest solver advances established as part
of FY20 Q2 milestone. A particular focus will be investigating the performance of AMG preconditioners
(setup, smoothers, etc.) and understand the performance bottlenecks that will arise when used with
moving mesh simulations (reinitialization of linear system overhead).

2.2 EXECUTION PLAN

1. Converting Nalu-Wind discretization operators and field updates to NGP — To achieve the demonstration
simulations targeted within this milestone, Nalu-Wind’s codebase must be fully migrated to use STK
NGP Mesh API. This will allow the unstructured mesh, and corresponding field data, to reside on
device memory and minimize data movement between the host and device. Additional developments
will be necessary in the STK NGP mesh library to allow synchronization of field data across multiple
MPI ranks for shared entities.

2. Advances in TAMS hybrid-turbulence model — The suitability of TAMS model with k-omega SST
turbulence model as the underlying RANS model will be investigated using validation problems (e.g.,
McAlister wing experiments), and alternate RANS models will be explored to determine the optimal
configuration for use with blade-resolved wind turbine simulations operating in turbulent atmospheric
boundary layer inflow.

3. Performance benchmarking of structured off-body solvers — The milestone will also explore the perfor-
mance benefits of using structured off-body (background) solver to boost the performance of moving
mesh simulations. The target simulation will be a neutral atmospheric boundary layer precursor simula-
tion that can be compared with existing capability within Nalu-Wind to determine if the structured
background solver is a viable pathway for the ExaWind challenge problem.

Completion Criteria: Technical report describing the milestone accomplishment and a highlight slide summa-
rizing those accomplishments.

2.3 OVERVIEW OF MILESTONE COMPLETION

The following is a concise description of how each of the items in §2.2 was satisfied for milestone completion.

1. Computational kernels involving linear system assembly, field updates, and linear solvers were tran-
sitioned to execute on GPUs. The algorithmic updates are described in §3. The updated codebase
was tested on two wind-energy relevant problems: 1. Blade-resolved simulation of NREL 5-MW wind
turbine in uniform inflow using an overset mesh methodology (see §4), and 2. Simulation of a wind farm
operating in turbine ABL inflow where the turbines are modeled as actuator sources in the governing
equations (see §5).

2. The team successfully addressed several outstanding issues in the hybrid-RANS/LES model that was
documented in the FY19-Q4 reports. The algorithmic improvements and the bug fixes to the underlying
k —w SST RANS turbulence model are documented in §6.1. Validation of the new AMS model on
problems documented in literature (§6.3) as well as application to wind-energy relevant problems such
as the NACAO0015 fixed-wind simuation (§6.4) and the NREL 5-MW wind turbine (§6.5) simulations
are also documented in §6.

3. Details of the new AMReX-based, block-structured, incompressible background solver are described in
§3.4. The strong and weak scaling performance of AMR-Wind executing on ORNL Summit system for
the ABL precursor simulations are described in §7.1.

Exascale Computing Project (ECP) 2 ECP-Q4-FY20

3. EXAWIND SIMULATION ENVIRONMENT ON NEXT-GENERATION
PLATFORMS

Porting a significant portion of the compute intensive regions of code onto GPUs and demonstrating execution
on heterogeneous CPU/GPU architectures was the primary focus of the development efforts in FY20. In
addition to Nalu-Wind, the development team also adopted a new block-structured background mesh solver
(AMR-Wind) based on AMReX library. This section details the improvements to the Nalu-Wind codebase,
as well as supporting enhancements to the Trilinos and hypre libraries. This is followed by a description of
the AMR-~-Wind background solver development efforts, its current status, and future work.

3.1 NALU-WIND

The Nalu-Wind application utilizes the Sierra Toolkit (STK) libraries [3], which are distributed with the
Trilinos project [7]. The STK Mesh module is used to store the computational mesh and fields, and also
provides data access and traversal on GPU platforms. The Trilinos/Kokkos library is used heavily, both
within STK Mesh and directly in Nalu-Wind, to provide execution constructs (looping mechanisms as well as
data structures) that allow performance portability across traditional CPUs as well as GPU platforms.

A significant portion of the NGP work in Nalu-Wind has been to ensure that the process of assembling
linear systems is done on the GPU as much as possible. The initialization of the graph for the linear system
must be done on the host CPU. The computation of coefficients for the linear system, including traversing
the mesh and master-element calculations, is performed on the GPU. This aspect has been successful and
assembly appears to be performing well.

It has been a challenge to ensure that fields (values associated with mesh nodes, edges, etc.) are correctly
synchronized between the CPU and GPU. It is necessary to ensure that, when accessing a field on the GPU,
it has not been updated more recently on the CPU, and vice versa. The STK Mesh Fields have API calls for
marking a field as modified on one memory space or the other, and for sync’ing a field from one memory
space to the other. Unfortunately this allows programming errors where the modify or sync call is omitted
in one memory space, leading to the situation where a field is out of date when it is later accessed in the
other memory space. The STK team has been working to develop a robust capability to detect this kind of
programming error.

For blade-resolved simulations of wind turbine flows, there are additional time per time-step costs arising
due to mesh motion — update coordinates, compute mesh velocities and geometric conservation terms, update
overset connectivity, and, for coupled overset simulations, updating the linear system graphs. With the recent
adoption of the decoupled overset-solve approach, demonstrated in FY20-Q3 milestone, the linear system
graphs need to be computed only once during initialization and can be reused throughout the simulation.
However, the other updates remain a bottleneck and will be addressed in the coming year.

3.2 NALU-WIND HYPRE ASSEMBLY

In the FY20 Q2 milestone report, we reported on a prototype implementation for executing hypre linear
system assembly on GPUs in Nalu-Wind. That prototype implementation was written in CUDA thus it only
supported NVIDIA hardware-the original CPU implementation had to be preserved in order to execute on
standard hardware.

Since then, significant improvements to the Nalu-Wind assembly process have been made that address
portability and performance. With regards to portability, the algorithm has been completely rewritten using
the Kokkos API. Native CUDA and CPU kernels have been removed in favor of this more portable approach.
This allows us to have a single implementation across CPUs and GPUs. We have implemented a number
of performance improvements that have made substantial improvements to different parts of the assembly
algorithm. This includes, but is not limited to, memory-usage optimizations, up-front graph computation, as
well as fast constrained binary search algorithms for rapid matrix element memory location determination.
Many of these optimizations are in the current master branch of Nalu-Wind.

All that being said, significant speed improvements can and will be achieved with continued development.
This motivates a brief discussion of the linear-system assembly implementation Currently, the algorithm is
structured into 3 stages.

Exascale Computing Project (ECP) 3 ECP-Q4-FY20

Stage 1: Graph Computation Stage

Stage 2: Device Coefficient Application: Assemble Compressed Sparse Row (CSR) matrix and RHS
Vectors

Stage 3: Assemble hypre Linear System

The graph-computation stage computes the sparsity pattern of Linear System. It provides the exact
amount of storage necessary for the matrix values. The majority of this computation runs on the CPU though
at the very end, key data structures are either moved or computed on the GPU for use in the next stage.
This algorithm is sequential though it could be made more GPU friendly with a significant refactorization.
Thus acceleration of this stage is challenging though feasible.

In the Device Coefficient Application stage, the matrix values are computed. This stage runs entirely
through a Kokkos implementation. Atomics are used accumulate the matrix and right-hand-side elements. It
runs on CPU or GPU depending on the backend compilation target. This stage runs with good performance,
especially on GPUs, thus significant additional optimization work is not necessary, though we have targeted a
few potential improvements.

In the final stage, the assembled CSR matrix is then used to build the Nalu-Wind hypre linear system.
We use the hypre API methods

HYPRE_IJMatrixSetValues
HYPRE IJMatrixAddToValues
HYPRE_IJVectorSetValues
HYPRE_IJVectorAddToValues

to build the matrix/RHS in 2 steps. First we apply HYPRE_IJMatrixSetValues, HYPRE IJVectorSetValues
to set the matrix/RHS of the owned rows on the calling MPI rank. In order to set the off-rank matrix/RHS
elements, we then call HYPRE IJMatrixAddToValues, HYPRE IJVectorAddToValues using the shared ma-
trix/RHS elements as input. The beauty of this implementation is that it completes the assembly in 4 hypre
API calls. It then leverages the internal-messaging structure of hypre to properly build the full matrix/RHS.

3.3 SOLVERS

To solve a linear system Ax = b, hypre and Trilinos employ the generalized minimum residual (GMRES)
iteration with a Gauss-Seidel preconditioner for momentum and algebraic multigrid (AMG) preconditioner
for continuity using either Chebyshev or Gauss-Seidel smoothers. The Gauss-Seidel (GS) iteration is based
on the matrix splitting A = L + D + U, where L and U are the strictly lower and upper triangular parts of
the matrix A, respectively. Then, the traditional GS iteration updates the solution based on the following
recurrence,

Xpy1 =X+ M Iy, E=0,1,2,... (1)

where ry, = b — Axy, and M = (L + D) or M = (U + D) for the forward or backward sweeps, respectively.
When the spectral radius of the iteration matrix, p(I — M ~1A), is less than one, the iteration is guaranteed
to converge. When the matrix A is symmetric, a symmetric variant of GS (SGS) performs the forward sweep
followed by the backward sweep to maintain the symmetry of the matrix operation.

To avoid explicitly forming the matrix inverse M ~1 in the iteration (1), a sparse-triangular solve is used
to apply M ! to the current residual vector r,. Unfortunately, it is a challenge to implement a scalable
parallel sparse triangular solve on a distributed-memory computer, where both Trilinos and hypre distribute
the matrix and the vectors in a 1-D block row fashion among the MPI processes (the local matrix on the
p-th MPI process is rectangular, consisting of the square diagonal block A®) for the rows owned by the MPI
process and the off-diagonal block E®) for the off-process columns. In particular, on each MPI rank, hypre
stores the local diagonal block A®) separately from the off-diagonal block E(p)). The standard approach
based on level-set scheduling will compute the independent set of the solution elements x; in parallel at each
level of the scheduling. However, the sparsity structure of the triangular matrix often limits the parallelism
that the solver can exploit (e.g., the sparsity structure may lead to a long chain of dependency with a small

Exascale Computing Project (ECP) 4 ECP-Q4-FY20

number of solution elements that can be computed at each level). In addition, at the start of each level,
neighboring processes need to exchange the elements of the solution vector x; on a processor boundary for
updating their local right-hand-side vectors.

To improve the solver scalability, both Trilinos and hypre implement a hybrid variant of Gauss-Seidel where
the neighboring processes first exchange the elements of the solution vector x5 on the boundary to compute
the local part of the residual vector r, but then each process independently applies the local triangular solve.
Hence, M is a block diagonal matrix with each diagonal block corresponding to the triangular part of the
local diagonal block A®) on each process (as in block Jacobi).

Furthermore, in hypre, each process may apply the multiple local GS sweeps for each round of the
neighborhood communication. With this approach, each local iteration updates only the local part of the
vector Xp4+1 (during the local iteration, the non-local solution elements on the boundary are not kept consistent
among the neighboring processes). Hence, the local GS iteration, on the p-th MPI rank, solves the linear
system AP x®) = b)) — @) y®) where y® is the non-local part of the solution vector exchanged before
the start of the local GS iteration. In contrast, Trilinos currently computes the global residual vector for each
local iteration through neighborhood communication. The only exception is the symmetric GS iteration that
applies both the forward and backward iterations after a single round of the neighborhood communication.

In this hybrid GS, each process can apply the local sparse-triangular solve or relaxation algorithms
independently, improving the parallel scalability compared to the global sparse triangular solve. This hybrid
algorithm is shown to be effective, and scalable, on many problems (e.g., the GMRES iteration counts remain
roughly constant with an increasing process count). However, to implement the local iteration, each process
must still perform a local sparse-triangular solve. In the present report, we consider two-stage Gauss-Seidel
that uses a fixed number of “inner” stationary iterations for approximately solving the triangular system
with M, .

X1 = X5 + M, (b — A%y), k=0,1,2,... (2)

where]\//.7,; ! represents the approximate triangular solution, i.e., M N VL M1,
In this study, we used Jacobi-Richardson (or Jacobi) iteration for the inner iteration. In particular, if g,(cj)
denotes the approximate solution from the j-th inner iteration at the k-th outer iteration, then we let our

initial solution to be the diagonally-scaled residual vector, i.e.,
0 _
g = D 'ry, 3)
and the (j 4+ 1)st JR iteration computes the approximate solution by the recurrence

g](CjJrl) = g](cj) +D_1(rk . (L—i-D)g;(f)) (4)
= D '(r,— LgY)). (5)

Fig 1 displays the pseudo-code of the resulting two-stage algorithm.

Each inner sweep of the two-stage GS performs about the same number of floating-point operations
(flops) as the triangular solve, but it is based on the sparse matrix vector multiply (SpMV) which is much
easier to parallelize than the triangular solve used for the traditional GS (1). When a small number of inner
iterations is needed, the two-stage Gauss-Seidel can outperform the traditional GS, especially on a many-core
architecture.

Implementation in hypre

The two stage Gauss Seidel smoother has been implemented in a branch of hypre that is current with hypre
master, though this code has not been merged into the master branch. The hypre code version is listed in
Table 2. At the time of writing this report, a Pull-Request has been submitted to merge this development
branch into the hypre master branch. We expect this to be completed in November of 2020.

The hypre programming model for leveraging Nvidia GPUs relies on Unified Virtual Memory (UVM),
combined with CUDA libraries, such as CUSPARSE, CUBLAS, and Thrust, as well as custom kernels.
Currently, hypre CUDA capabilities only support 32-bit integer values for the row and column indices. It
was necessary to support this in Nalu-Wind during the assembly algorithm. The two-stage Gauss Seidel has
been implemented as a custom CUDA kernel which can be accessed as a smoother algorithm in the Boomer

Exascale Computing Project (ECP) 5 ECP-Q4-FY20

for t=1,2,...,n; do
1. // exzchange interface elements of current solution
for k=1,2,...,n; do

1. // compute new restidual vector for forward sweep
rlg:p) = b(p) — A(p)Xk-
2. // perform local inner Jacobi iteration

g1 = (DP)~1r,
for j=1,2,...,n; do

g®) = (DW) 1 (2l — [Wg®)
end for

3. // update solution vector

W= 4 g,

4. // compute new restdual vector for backward sweep
r](f)) = b(p) — A(p)Xk
5. // perform local inner Jacobi iteration

g = (D®P)~1p,,
for j=1,2,...,n; do
gl = (D®) =1zl — y®)glry

end for
6. // update solution wvector
xfszl = X](cp) + gﬁf;)ﬂ
end for
end for

Figure 1: Pseudo-code of two-stage hybrid Symmetric Gauss-Seidel iteration,
using Jacobi-Richardson as the inner sweep. Trilinos sets ny = 1 and hence,
performs the neighborhood communication once per sweep.

Exascale Computing Project (ECP) 6 ECP-Q4-FY20

AMG implementation. A reference CPU implementation has also been developed. In any given row in a
hypre sparse matrix, the diagonal is always stored the first element. This enables fast access to the diagonal
value, which is useful for a variety of algorithms including two stage Gauss Seidel. However, the remaining
columns/values often have a random ordering. The two stage Gauss Seidel uses the lower triangular matrix
in a SpMV like operation. This can be efficiently implemented in CUDA using csr-SpMV implementation
that ignores the upper triangular component. No additional storage is required.

3.4 AMR-WIND

For blade-resolved simulations of multi-turbine wind farms, a significant majority of the computational cells
are used to resolve the background atmospheric boundary layer (ABL) flow and the wake structures behind
the turbine rotors, and only a small portion of the computational domain is occupied by the turbine structures
themselves. The flexibility offered by unstructured meshes is most useful in resolving the surfaces of the
turbine structures. In most practical simulations, the background flow is best modeled using structured
grids. However, despite having topologically structured grids, Nalu-Wind linear solvers do not exploit the
simpler mesh data structures, which can result in sub-optimal strong and weak scaling performance. Since
the ExaWind simulation framework has adopted overset mesh methodology to account for arbitrary turbine
motion, it can readily support a hybrid solver strategy, i.e., use an unstructured mesh solver (Nalu-Wind)
to model the region close to the turbine structures (blades, nacelles, etc.) that is coupled to a background
structured solver (AMR-Wind) that solves the atmospheric boundary layer flow. The advantage of this
hybrid solver strategy is that the structured block solver can use geometric multigrid algorithms to offer
better performance when solving the pressure Poisson problem. Key to the success of the hybrid solver
strategy is the decoupling of linear systems, which was the topic of the FY20 Q3 milestone. In this approch,
AMR-~Wind and Nalu-Wind use their preferred linear-solver strategy and field values are shared through an
outer iteration.

In FY20, the AMR-Wind development efforts were focused on establishing a baseline atmospheric
boundary layer (ABL) solver on top of the AMReX library. AMR-Wind solves the incompressible Navier-
Stokes equations using a split-operator approach. The code is a wind-focused fork of incflo, an AMReX
solver that was written from scratch to target GPUs. Turbulence models and LES shear-stress wall boundary
conditions have been added to the codebase through funding from DOE WETO high-fidelity modeling (HFM)
project. The code has been verified for canonical ABL problems documented in literature.

AMR-Wind has been coupled to Nalu-Wind using an overset approach, through the TIOGA library. The
initial setup has been verified for simple problems such as convecting Taylor vortex and laminar flow past a
sphere.

4. NALU-WIND BLADE-RESOLVED SIMULATIONS OF NREL 5-MW
WIND TURBINE

One of the primary objectives of this milestone was to evaluate the strong scaling performance of Nalu-Wind
codebase where a significant portion of code execution, especially linear-solver assembly and solve, was
performed on GPUs. Reynolds-averaged Navier-Stokes (RANS) simulations, using the k¥ — w SST turbulence
model, were performed at a uniform inflow of U = 8 m/s. A fixed timestep size was used, such that the blade
rotates 0.25° at each timestep. The NREL 5-MW turbine [9] is a 126 m diameter reference turbine, designed
for use in research of offshore wind. While no such turbine exists, it is widely used in the wind research
community and thus is a good baseline turbine geometry to study the capabilities of the code and perform
code-to-code comparisons with other simulations published in the literature. For the purposes of this study
the turbine geometry was simplified by ignoring the tower and nacelle structures; only the three blades and
the hub were modeled.

The simulations performed for this milestone use the same computational meshes that have been extensively
verified and reported in FY19-Q2 report. The turbine geometry is resolved using body-conforming meshes
that are embedded inside a wake-resolving background mesh. In order to transition smoothly to the hub
structure, the structured mesh on the blade surface was constructed outboard of the 20% span — see Fig. 2.
The sections inboard used unstructured mesh to transition smoothly to the hub mesh. The near-body mesh
was embedded in a wake-capturing mesh that extended half a rotor diameter upstream and about 5 rotor

Exascale Computing Project (ECP) 7 ECP-Q4-FY20

S e

Table 1: Publicly hosted Git repository URLs and commit identifiers (SHA1)
for the codebases used to perform the scaling studies using the Trilinos linear
solver stack documented in Sec. 4.

Code Location SHA1
Nalu-Wind | https://github.com/exawind/nalu-wind/ | ££c049e
Trilinos https://github.com/trilinos/Trilinos/ | 6adf2c3

diameters downstream. The wake-capturing mesh was enclosed within a fully unstructured mesh that formed
the outer domain. The overall computational domain extended 5 rotor diameters upstream, 10 diameters
downstream, and 10 diameters in the lateral directions. The mesh contained a total of 38 million elements
(23 million nodes), and the near-body mesh contained 7 million elements for all three blades.

(a) Front view of the NREL 5-MW near-body mesh (b) Side view of the NREL 5-MW near-body mesh

Figure 2: Front and side views of the near-body mesh used to model the
NREL 5-MW rotor with Nalu-Wind. The hybrid mesh consists of structured,
hyperbolically extruded mesh on the rotor blades and a fully unstructured mesh
block around the hub and the hub-blade transition region.

While the milestone description describes a parked turbine, simulations were performed for a rotating
turbine to evaluate the performance of mesh motion and geometry update executing on GPUs. Simulations of
a rotating turbine is closer to the final ExaWind challenge problem and, therefore, exceeds the expectations
set for the FY20-Q4 milestone. It must, however, be noted that while the mesh motion portions of the code
were executing on GPUs, the overset connectivity (performed by TIOGA library) was still executing on the
host. The overhead of performing connectivity updates on host as well as the data exchange at every timestep
between host and device memory is benchmarked in the current study and will be a focus of future work.

All simulations in this section used the decoupled, alternating Schwarz approach that was described in
FY20-Q3 report. Four outer Picard iterations were used in all cases. Using decoupled overset simulations
offers two advantages when executing on GPUs: 1. It removes the constraint rows from linear systems, which
was shown to improve the convergence of Poisson systems, and 2. It eliminates the need for STK ghosting of
donor elements to the receptor MPI ranks.

In this section, we present results from the strong scaling studies performed using the Trilinos and hypre
solver stacks for the wind-turbine simulations. All experiments were run on the Summit supercomputer! at
Oak Ridge National Laboratory. Summit has 4608 compute nodes, each with two IBM Power9 CPUs and
six NVIDIA Volta V100 GPUs. Each Power9 CPU has 22 cores, and there are 512 GB of DDR4 memory
available to the CPUs.

Thttps://docs.olcf.ornl.gov/systems/summit_user_guide.html#system-overview

Exascale Computing Project (ECP) 8 ECP-Q4-FY20

https://github.com/exawind/nalu-wind/
https://github.com/trilinos/Trilinos/
https://docs.olcf.ornl.gov/systems/summit_user_guide.html#system-overview

4.1 STRONG-SCALING PERFORMANCE OF NALU-WIND USING TRILINOS SOLVERS

For the experiments in this section, unless otherwise specified, the MueLu AMG solvers used for the continuity
solve employ a degree-2 Chebyshev smoothing and a serial direct solver. The linear solvers for other physics
are GMRES preconditioned by standard Gauss-Seidel, multi-threaded Gauss-Seidel, or two-stage Gauss-Seidel.
A single Summit node has 42 total CPU cores (two 21-core CPUs) and 6 GPUs. When doing performance
comparisons, the Trilinos experiments compare performance of all a node’s GPU devices to all of the node’s
CPU cores. When this isn’t feasible, e.g., a problem is not large enough to occupy all GPUs or cores, we
fall back to using the comparison ratio of a single GPU to approximately 7 CPU cores. Table 1 shows the
URLSs of the publicly hosted Git repositories and the commit identifiers that were used to perform the scaling
studies.

Figure 3 shows the strong scaling performance of Nalu-Wind for the NREL 5-MW blade resolved simulations
using the Trilinos solver stack for solving the momentum, continuity, and the scalar transport equations
(turbulent kinetic energy (TKE) and specific dissipation rate (SDR)). The simulations were performed for
a total of ten timesteps and the timings reported are an average over those ten timesteps. The total time
per timestep is dominated by two activities. The first, indicated by non-linear iterations is the time per
timestep spent in assembling the linear systems and solving those systems for all Picard iterations. In the
current simulation, four Picard iterations were performed within each timestep. The second, indicated by
pre-timestep work, is the time spent in updating the mesh to account for turbine rotation, recomputing
the overset mesh connectivity, and reinitializing the linear system data structures at the beginning of each
timestep. The results indicate that execution GPUs are faster than on equivalent number of CPU cores (7x)
up to eight Summit nodes, beyond which the execution time on CPUs is faster than GPUs. Scaling of the
non-linear iterations (i.e., linear system assembly, preconditioner setup, and solve) is quite poor on GPUs.
While scaling on CPUs are better than what is observed for GPUs, it is far from ideal scaling (shown as
black line in the plots).

It is also observed that the time spent in pre-timestep activities is considerably higher when executing
on GPUs. This is because currently the overset connectivity updates are performed exclusively on CPUs
and suffer from additional overhead of data transfer of mesh data from GPU to CPU memory at the
beginning of each timestep and the transfer of field from and back to GPU memory after each Picard iteration.
Transitioning the overset search algorithms to execute on GPUs is currently underway and will be the main
focus of FY21 activities, and is expected to address this bottleneck.

Figure 4 shows the breakdown of the time per timestep for momentum and continuity solves into various
components: Initialization of Tpetra matrix and vector data structures, assembling the matrix coefficients
and right hand side by Nalu-Wind computational kernels, preconditioner setup (especially multigrid setup),
and the time spent in iterative solution of the linear systems. On both CPUs and GPUs, the time spent
in continuity solves dominate the overall execution time. For the momentum solves, the linear system
reinitialization costs are a significant portion of the overall time as it is assembling a 3x block diagonal
system. While there is an overall decrease in the time spent on momentum solves when executing on GPUs,
the strong-scaling behavior of all components need improvement.

On the other hand, the time spent in solving the continuity system shows a marked decrease when moving
to GPUs. However, the gains in solver time are more than offset by the increase in preconditioner setup time
on GPUs. In general, the strong scaling behavior of both solve and preconditioner setup is poor and will be
the focus of future work within the ExaWind project.

Exascale Computing Project (ECP) 9 ECP-Q4-FY20

100 100
—— GPU —e— GPU
80 1 —— CPU 801 —— CPU
60
60
= = 401
‘e 401 ‘o
o 2 30+
3 3
£ 307 £
g 204 g
(= =
10
10+
4 6 8 10 12 6 20 24 3 a 6 8 10 12 6 20 24
Num. Summit nodes Num. Summit nodes
(a) Total time per timestep (b) Non-linear iterations
100
80 - —— GPU
—— CPU
60 -
404
301
201
10 1
3 4 6 8 10 12 16 20 24
Num. Summit nodes
(c) Pre-timestep work
Figure 3: Comparison of the strong scaling performance of the total time per
timestep when executing Nalu-Wind with Trilinos solvers on ORNL Summit
Power9 CPUs and NVIDIA V100 GPUs compared on a per-node basis (i.e., 6
V100 GPUs are considered equivalent to 42 Power9 CPU cores). Simulation
was performed for 10 timesteps and execution times reported in the plot use an
average time over those ten timesteps. The two dominant components of the
total time per timestep, non-linear iterations and pre-timestep work, are shown
in the middle and right figures.
Exascale Computing Project (ECP) 10 ECP-Q4-FY20

2 NREL 5MW Time Breakdown for MomentumEQS i |n Trilinos CPU . NREL 5MW Time Breakdown for MomentumEQS |n Trilinos GPU
= Precon Setup - Precon Setup
mam Solve mm Solve
. nit . nit
BN Assemble BN Assemble
W Other W= Other

20 20

o Py
¥ H
¢ g
£ I Es
I} I}
g g
o o
E E
s s
o =4
g g
£ £
£ 10 £ 10
g H
£ £
s s
= =

5 5

0 I I l 0 I I

16 20 24 3 4 6 8 10 12 16 20 24

Summlt Number of Power9/V100 Nodes Summit: Number of Power9/V100 Nodes

(a) Breakdown of the various linear solver stages during the momentum solve. Left: CPU, right: GPU.

. NREL 5MW Time Breakdown for ContinuityEQS i |n Trilinos CPU . NREL 5MW Time Breakdown for ContinuityEQS i |n Trilinos GPU
- Precon Setup - Precon Setup
s Solve W Solve
. nit - Init
W Assemble Assemble
30 mmm Other 30 Other
25 25
a a
L g
]]
E E
220 220
o o
E E
b b
o o
515 515
o o
10 10
| I I l |
0 o

Summlt Number of Power9N100 Nodes Summlt Number of Power9N100 Nodes

(b) Breakdown of the various linear solver stages during the continuity solve. Left: CPU, right: GPU.

Figure 4: Breakdown of the total time spent in momentum solves for the blade-
resolved NREL 5-MW rotor simulation when executing Nalu-Wind on ORNL
Summit Power9 CPUs and NVIDIA V100 GPUs using the Trilinos solver stack.
Comparisons are performed on a per-node basis, i.e., 6 V100 GPUs are considered
equivalent to 42 Power9 CPU cores. The timing breakdown are as follows: init —
time spent in linear system graph creation, assemble — time spent by Nalu-Wind
computational kernels in assembling the matrix coefficients and right hand side
residual vector, precon setup — time setting up the preconditioner, solve — time
spent in iterative solves, other — time spent in other operations, e.g., computing
gradients, etc.

Exascale Computing Project (ECP) 11 ECP-Q4-FY20

Table 2: Publicly hosted Git repository URLs and commit identifiers (SHA1)
for the codebases used to perform the scaling studies using the hypre linear solver
stack documented in Sec. 4.

Code Location SHA1
Nalu-Wind Master | https://github.com/exawin/nalu-wind/ 7765b5b
Nalu-Wind Fork https://github.com/PaulMullowney/nalu-wind/ | 7765b5b
Hypre Master https://github.com/hypre-space/hypre/ 636706a
Hypre Fork https://github.com/PaulMullowney/hypre/ 2acced4
Trilinos https://github.com/trilinos/Trilinos/ 19b4e9b

4.2 STRONG SCALING PERFORMANCE OF NALU-WIND USING HYPRE

In the previous section we reported on the scaling performance of the Trilinos solver stack to solve all the
equations in the blade-resolved simulations. In this section, we report several sets of results.

Case 1: We use hypre for the Continuity Solve, Trilinos for the other equations. In this case, we use a
monolithic momentum solve in Trilinos.

Case 2: We use hypre for the Continuity Solve, Trilinos for the other equations, and we reuse the
linear systems built at the beginning of the simulation for each equation system. In this case, we use a
monolithic momentum solve in Trilinos.

Case 3: We use hypre for Continuity and a segregated momentum solve and Trilinos for the other
equations including turbulent scalar transport. Also, we reuse the linear systems built at the beginning
of the simulation for each equation system.

Case 4: We use hypre for all equations including the segregated momentum equation. Also, we reuse
the linear systems built at the beginning of the simulation for each equation system.

Each of these modifications provides nontrivial performance benefits, especially in the strong scaling limit.
All results using hypre solver pathway were generated with the code versions listed in Table 2.

We use hypre ’'s GMRES Krylov solver using the Boomer AMG preconditioner. The two stage Gauss Seidel
smoother is used with a maximum of 7 AMG levels. We use 2 internal smoother sweeps, PMIS coarsening
and extended interpolation. Each of these algorithms has wide stecil widths. This solver configuration has
been tested on various linear systems arising in Nalu simulations and has the optimal preconditioner setup
and solve time. Assembly, preconditioner setup, and solve are ALL performed on the GPU.

Figure 5 shows results for 10 Time steps of the blade resolved NREL 5-MW turbine under the 4 different
simulation setups described above. The left panel panel shows the average total timer per time step, the
center panel shows the average non-linear iteration time, and the right panel shows the average pre-timestep
work. Non-linear iteration time consists of preconditioner setup and solve where as setup time consists of
graph construction and linear system assembly. Several key observations are:

e reusing the graph/linear system provides performance benefit,
e the CPU strong scaling is near optimal all the way out to 1008 CPU cores (~22K DOFs/core),

e the GPU strong scaling is less optimal and the average cost per iteration is at most 2x slower than the
CPU, and

e and solving all systems using the hypre pathway yields significant performance benefits. In particular,
using a segregated momentum solve provides substantial performance benefits in terms of run time and
memory consumed.

The third observation, in particular the less optimal scaling, is not entirely surprising. GPUs typically require
large amounts of work in order to fully leverage their massively parallel architecture. Thus, we expect GPUs
to perform better as DOFs/GPU increases as it enables computation (SpMV and other algorithm elements)
to be a more dominant factor than communication. As DOFs/GPU decreases, messaging costs, including

Exascale Computing Project (ECP) 12 ECP-Q4-FY20

https://github.com/exawin/nalu-wind/
https://github.com/PaulMullowney/nalu-wind/
https://github.com/hypre-space/hypre/
https://github.com/PaulMullowney/hypre/
https://github.com/trilinos/Trilinos/

- Case 1CPU - Case 1CPU
— Case 1GPU —« Case 1 GPU
- Case 2 CPU - Case 2 CPU

60 —+ Case 2 GPU 60 — Case 2 GPU
x- Case 3 CPU x: Case3CPU
—« Case3GPU — Case 3GPU

% Case 4 CPU 40

—— Case 4 GPU

- Case 4 CPU
—— Case 4 GPU

N
5}

Average Seconds Per Time Step
5

Average Seconds Per Time Step
5

4 6 8 10 12 16 20 24 4 6 8 10 12 16 20 24
Summit: Number of Power9/V100 Nodes Summit: Number of Power9/V100 Nodes
(a) Total time per timestep (b) Non-linear iterations
100

-+ Case 1 CPU
80 —« Case 1GPU

=x- Case 2 CPU
60 —% Case 2 GPU

x- Case 3 CPU
—— Case 3 GPU
- Case 4 CPU
—«— Case 4 GPU

40

N
S

Average Seconds Per Time Step
=
s

6 8 10 12
Summit: Number of Power9/V100 Nodes

(c) Pre-timestep work

Figure 5: Comparison of the strong scaling performance of the total time per
timestep when executing Nalu-Wind with hypre and Trilinos solvers on ORNL
Summit Power9 CPUs and NVIDIA V100 GPUs compared on a per-node basis
(i.e., 6 V100 GPUs are considered equivalent to 42 Power9 CPU cores). Simulation
was performed for 10 timesteps and execution times reported in the plot use an
average time over those ten timesteps. The two dominant components of the
total time per timestep, non-linear iterations and pre-timestep work, are shown
in the middle and right figures. Case 1: Hypre Continuity/Trilinos Other, Case
2: Hypre Continuity/Trilinos Other, Reuse Linear System, Case 3: Hypre for
Continuity and Segregated Momentum/Trilinos Other, Reuse Linear System,
Case 4: Hypre for all equations including segregated momentum, Reuse Linear
System.

Exascale Computing Project (ECP) 13 ECP-Q4-FY20

both device and MPI, will have more of an impact. Achieving better strong scaling requires very carefully
designed compute kernels to hide these costs and overcome these hurdles.

In the regime where we expect GPUs to be more competitive, i.e. for 3 summit V100 nodes, we have have
1.27M DOFs/GPU. In this regime, non-linear iteration time is faster on the GPU however the setup costs
are slower. Overall 7 CPU cores is roughly equal to 1 GPU. This motivates a deeper dive into the solver
performance for the various equation systems. PS: I agree we don’t need the momentum solve discussion
in this section Figure 6 shows the breakdown of the time per timestep costs of the segregated momentum
and continuity solves for increasing number of Summit compute nodes in Case 3. The CPU results are given
in the left panel of each plot, the GPU results are in the right panel. The color of each bar shows different
algorithmic components—assembly and load complete are added together and referred to together as Assemble.
The y-axis of each plot is fixed at the same value in order show the relative costs associated with solving each
physics equation and their algorithmic subcomponents. From this, we can easily deduce where we need to
focus our GPU optimization efforts in the future.

Overall, we see that Continuity is the dominant cost on the GPU. Digging deeper, we see that preconditioner
setup is the most costly algorithm for the hypre solver stack (right panel of figure 6). We have relied entirely
on the hypre team to implement this portion of the algorithm on GPUs. Overall the performance of AMG
(Preconditioner) setup is good although it does not scale as well as its CPU counterpart. For simulations
where the matrix is not changing all that often, one could use the same preconditioner for all Picard iters in a
time step. This logic has already been implemented for the hypre solver stack in Nalu. For the cold start blade
resolved simulation, one has to recompute the preconditioner every time the matrix is updated—the solvers
will not converge otherwise. However, after many time steps, it may be possible to reuse the preconditioner
and get a significant performance boost.

Solve performance is good on the GPU however it is not scaling particularly well. The low baseline for
the solver performance for many DOFs/GPU is due to fast and effective nature of two stage Gauss Seidel
smoother—the main workhorse of AMG. The reasons for the poor scaling are not known. This could be a
side effect of using UVM memory or it is possible that communication is not being properly overlapped with
computation in the SpMV algorithms. We will investigate this in the coming months.

On the other hand, the performance of Assemble is excellent. It is faster than the corresponding CPU
version and it scales well. This is due in large part to significant time being spent on this part of the code in
the past two quarters.

Exascale Computing Project (ECP) 14 ECP-Q4-FY20

25 25 - -
W Precon Setup W Precon Setup

mm Solve s Solve

. nit . nit

EEm Assemble BN Assemble

W Other W Other
20 20

—
G

—
G

=

S
=
1S3

MomentumEQS time per time step
MomentumEQS time per time step

5 5 I I
0 I l L 0 I I L
16 20 24 4 6 6

3 4 6 8 10 12
Summit: Number of Power9/V100 Nodes Summit: Number of Power9/V100 Nodes

(a) Breakdown of the various linear solver stages during the segregated momentum solve in Case 3. Left: CPU, right: GPU.

25 25 - :
W Precon Setup N Precon Setup
= Solve = Solve
. nit . nit
= Assemble = Assemble
== Other mmm Other

20 20

-
G
-
&

-

)
—
o

ContinuityEQS time per time step
ContinuityEQS time per time step

w

0 I | l] |I||u|“ I I
16 20 24 16 20 2

3 4 6 8 10 12 3 4 6 8 10 12
Summit: Number of Power9/V100 Nodes Summit: Number of Power9/V100 Nodes

4

(b) Breakdown of the various linear solver stages during the continuity solve in Case 3. Left: CPU, right: GPU.

Figure 6: Breakdown of the total time spent in segregated momentum and
Continuity solves for the blade-resolved NREL 5-MW rotor simulation when
executing Nalu-Wind on ORNL Summit Power9 CPUs and NVIDIA V100 GPU
using hypre library (Case 3). The scalar transport equations are solved using
the Trilinos solver stack. Comparisons are performed on a per-node basis, i.e.,
6 V100 GPUs are considered equivalent to 42 Power9 CPU cores. The timing
breakdown are as follows: init — time spent in linear system graph creation,
assemble — time spent by Nalu-Wind computational kernels in assembling the
matrix coefficients and right hand side residual vector, precon setup — time setting
up the preconditioner, solve — time spent in iterative solves, other — time spent
in other operations, e.g., computing gradients, etc.

Exascale Computing Project (ECP) 15 ECP-Q4-FY20

5. MULTI-TURBINE ACTUATOR LINE SIMULATION IN ABL

This section is dedicated to evaluating the performance of the mid-fidelity actuator line model (ALM) in an
atmospheric boundary layer simulation (ABL) with Nalu-Wind and the Trilinos linear-system solver stack.
Actuator lines are becoming more common for modeling the complex multi-turbine interactions seen in wind
farms, and so we evaluate Nalu-Wind’s performance with a single turbine via strong scaling, and multiple
turbines through a weak scaling study that is reflective of the multi-turbine wind farm use case.

5.1 ATMOSPHERIC BOUNDARY LAYER (ABL) MODELING IN NALU-WIND

Atmospheric boundary layers are modeled in Nalu-Wind by adding the three additional source terms to the
filtered incompressible momentum equations (equation 6): the Earth’s Coriolis force (term V'), buoyancy
effects through the Boussinesq approximation (term VI), and a horizontal-forcing term to drive the mean
velocity at specific heights (term VII).

I op . om; i .
5 PUi)+ 5 — (pUit) = — 5 =0ij — mﬁ —2p € Qi+ (5 — po) gi + S + fI (6)
1 \Jﬁ/_/ _\J/—/ \/L A\ VI VII VIII
11 III v

These sources coupled with a stress boundary condition derived from the Monin-Obukhov theory have been
shown yield ABL conditions have that can be tuned to match specific wind site locations and conditions
(see [2, 1]). Further details on the theory can be found in [2].

In Nalu-Wind we typically run ABL simulations for two general configurations: precursor simulations
and inflow/outflow simulations. Precursor simulations use a domain with periodic horizontal boundaries and
detailed results for the performance of this case are provided in the FY20-Q2 milestone. The results from
this domain run are used to provide initial conditions and inflow boundary conditions for the inflow/outflow
simulations. Inflow/outflow simulations use prescribed inflow, with open boundaries and are typically what
we use to study turbines and wind farms via actuators or blade-resolved turbine models. In this report
we will run a hybrid of these two cases, a periodic box with turbines placed inside the domain. We use
this configuration since we are running scaling studies with only 10 timesteps and the cost of generating a
precursor for each mesh is not necessary to judge the how the code scales.

5.2 MODELING WIND TURBINES AS ACTUATOR LINES OR DISKS

Actuator methods are a common way to model turbines in ABL simulations. These methods discretize the
turbine components (tower, blades, nacelle) as a series of discrete points where forces can be computed based
on the local fluid properties. These forces are spread to the fluid domain using a Gaussian function as first
proposed by [14].

There are two main types of actuator models for wind turbines, the actuator line model (ALM) and the
actuator disk model (ADM), both of which are available in Nalu-Wind. The ALM discretizes the individual
turbine blades with points and then the simulation resolves the motion of these blades while the ADM uses
a disk to model the swept path of the turbine blades. In this sense the ADM is a time averaged result of
the blade motion. The advantage of the ADM is that it can be run with no additional restriction on the
timestep and still produce a reasonable approximation for the turbine effects. ALM resolves more of the wake
dynamics by better capturing the blade motions and tip vortices but requires greater resolution in time and
space. For illustrative purposes an image of an ALM in uniform inflow is provided in figure 7. The actuator
in figure 7 utilized 50 points along each blade and 20 points for the tower to generate the resulting force
displayed in the figure. For the remainder of this report the discussion will be restricted to the ALM method
since it is the more computationally taxing of the two.

Nalu-Wind couples with OpenFAST, an open source “whole-turbine” model suite, to implement it’s
actuator models. A weak coupling is employed between the two models by the following procedure. First,
Nalu-Wind computes the fluid properties and interpolates them to the exact location of the actuator points.
Next, these fluid properties are supplied to OpenFAST to compute the forces and displacements of the
actuator points. Nalu-Wind then spreads the forces computed by OpenFAST to the fluid domain and updates
the actuator point locations for the next momentum equation solve.

Exascale Computing Project (ECP) 16 ECP-Q4-FY20

‘1
!
My

-40

-6.6e+01

8.9e+00
I 85

—8

|
~
&
velocity_ Magnitude

Figure 7: A actuator line model in uniform inflow conditions. Threshholding is
applied to half the domain to show the extent the actuator source term propagates
into the domain through the Gaussian spreading kernel (elements colored by
velocity magnitude). An iso-surface of the actuator source term (magnitude=5)
is also provided (colored by the pressure term).

Exascale Computing Project (ECP) 17 ECP-Q4-FY20

OpenFAST has a wide array of capabilities and models for the turbine physics including structural and
aerodynamic loadings, control systems, and the drive train efficiency. The combined results of these models
generates the blade displacements, forces and several additional quantities of interest such as generator power,
blade bending moments and torque. Leveraging the well established and validated OpenFAST model suite
gives Nalu-Wind actuators a large array of capabilities that are providing very promising results in recent
verification and uncertainty quantification studies [1, 8].

However, there is a portability penalty to pay for the foreseeable future when using OpenFAST because
OpenFAST is principally written in Fortran. A GPU compatible version of OpenFAST would be a very large
undertaking and there are no immediate plans to begin that process. As such, all OpenFAST computations in
these simulations are restricted to the host. To minimize this penalty OpenFAST computations are distributed
across the CPU’s with their maximum level of parallelization (1 turbine per process), and with distributed
memory techniques to minimize communication and maximize parallel utilization on the Nalu-Wind portions
of the coupling procedure.

The most expensive operations for Nalu-Wind’s actuator computations are the search for actuator points
and the spreading of the actuator force. Both of these operations are performed at every timestep for the
ALM method and they are both executed on the host because the search and interpolate operations have not
been ported to the GPU yet. Flat, or one-dimensional, data structures are utilized for the actuator point
locations and forces that allow every rank/device to access the data for every turbine. For perspective the
memory foot-print of these data structures is relatively small with typically only O(100) points per turbine.
MPT all-to-all communications are done once per timestep to sync the point locations (pre-search), fluid
properties (post-interpolation) and forces (pre-spreading). Once the point locations for all the turbines are
known each rank can then do a local only search to find the points it contains. A coarse search is performed
and cached to determine the local elements that are touched by the Gaussian kernel for each actuator point.
The results of this coarse search are reused for a fine search to determine the exact location of the actuator
points for interpolation of fluid properties. After the interpolation process is complete the fluid properties
are synced across all ranks and OpenFAST can perform its computations. Then the forces are taken from
OpenFAST, synced across all ranks and the coarse search results are re-used again to spread the forces to the
fluid domain. The key item here is that using a local-only search allows for minimal communication costs
and maximum distributed utilization.

However, it should be noted that this implementation is sensitive to the domain decomposition and
distributed utilization is only available on the ranks that have elements intersecting with the Gaussian kernels.

5.3 SCALING STUDIES
5.3.1 Strong scaling

For the following strong scaling study, the ALM is used to model an ABL simulation with mesh resolution of
20 m. The ABL 20 m simulation contains 3.3 millions pressure DOFs; and the number of Summit nodes used
for each run is increased from 1 to 7. Figures 8 shows the time per time step breakdown for the momentum
and continuity equations. Both equations exhibit poor strong scaling behavior for the GPU as the number of
nodes increases, similar to the results of the blade resolved simulations that were previously reported. One
notable difference between these simulations and the blade resolved cases is that the assembly time, which
includes the ALM kernels, dominates the time per time step for the momentum equation. The assembly time
consistently drops for the CPU runs, but it remains relatively constant for the GPU runs and even increased a
bit for the runs with 5 and 6 nodes. This is likely due to the difference in the domain decomposition between
the CPU and GPU runs. On the GPU runs a 1:1 ratio is applied to the number of devices and hosts utilized
per node. Therefore a GPU run using a single node will only have 6 host ranks while a CPU run will utilize
all 42 processors on the Power 9 node. This leads to a large difference in how the domain is decomposed
between ranks and the amount of work that needs to be done on the host. Since the GPU has 7x fewer ranks
the domain per rank will be 7x larger than the CPU only runs and the local only search will take longer.
Additionally, since search and interpolate are still restricted to host the GPU runs are further handicapped.
The strong scaling should improve when Nalu-Wind’s search and interpolate functions are ported to GPU’s.
Additional improvements can also be expected by expanding the number of host ranks that can be paired to
a single GPU. The continuity equation is dominated by the solve for the pressure Poisson equation. This is a

Exascale Computing Project (ECP) 18 ECP-Q4-FY20

known scaling limitation for algebraic multigrid preconditioners, and is consistent with the results from the
hypre runs.

Figure 9 shows the strong scaling behavior of the ALM execution time per time step. While initially
showing good scaling for the GPU with fewer than 3 nodes, the execution time increases for 4 and 5 nodes,
before continuing to scale with more than 5 nodes. This could also be due to the overhead of having to
move actuator data from device to host for the broadcast to all MPI ranks before moving it back to the
device in addition to the issues with domain decomposition that were highlighted in the previous paragraph.
Unfortunately, there is not much that can be done to reduce the host-device copy requirements as long as
OpenFAST remains a host-only code.

5.3.2 Weak scaling

We now consider the weak scaling of the ALM method. Here the problem size per node is fixed as the number
of nodes for each run increases. To do this, we begin with a domain of 1 km x 1 km x 0.5 km with a single
turbine in the center of the domain. The domain is discretized into 100 x 100 x 50 elements. The domain is
then elongated in the x-direction by essentially copying the domain and appending the copy to the end of
the current domain to double the size of the problem. This leads to spatial extents of 2 km x 1 km x 0.5
km, then 4 km x 1 km x 0.5 km, and finally 8 km x 1 km x 0.5 km for the additional runs. For this weak
scaling study, the number of elements per GPU (or 7 CPUs) remains constant at 500,000 with the same mesh
size. With each elongation of the domain, the number of elements in the mesh is doubled and the number of
turbines is also doubled to be 2, 4 and 8 turbines where each turbine is centered in a 1 km square. These
meshes are run using 1, 2, 4, and 8 GPUs, respectively. This corresponds to 7, 14, 28, and 56 CPUs. This
study is a pure weak scaling study since the problem size is truly the only thing being changed.

Figure 10 shows the timing breakdown for each substep of the momentum and continuity equations,
respectively. Ideally, the timings should remain constant for perfect weak scaling because the load on each
processor is held constant. For the momentum equation, both the CPU and GPU runs have increasing
runtime with processor count. However, the GPU runs have a 2-3X speedup for the assembly and solve time,
both of which dominate the runtime for the momentum solve, compared to the corresponding CPU runs.
This performance improvement is slightly offset by the fact that the GPU also requires more time for the
initialization and other substeps. A similar case is shown for the continuity equation, however, it is the solve
that dominates the runtime. While both the CPU and GPU exhibit poor weak scaling, the GPU has a 1.5-2X
speedup in solve and assembly time.

Figure 11 shows the total time per time step for the CPU and GPU weak scaling runs. Both curves
increase with processor count, with the GPU showing slight improvements in runtime over the CPU. Figure
12 shows the weak scaling behavior for the actuator line execution time. The CPU and GPU actuator line
execution times are nearly perfect in weak scaling, but the performance improvements of the GPU for the
momentum and continuity equations are countered by the actuator line execution time. This is likely caused
by the overhead of moving actuator data between the device and host in order to perform the broadcast to
all MPT ranks.

Exascale Computing Project (ECP) 19 ECP-Q4-FY20

9 9
W Precon Setup W Precon Setup
mmm Solve mmm Solve
- it - init
8 m Assemble 8 = Assemble
== Other = Other
7 7
g6 S6
B ‘v.‘
¢ 3
E £
&s gs
o o
E £
8 <4
o4 G4
H £
2 2
£ g
g §
5 5
=3 23
2 2
1 1
0 0

3 4 5 6 3 4 5 6
Summit: Number of Power9/V100 Nodes Summit: Number of Power9/V100 Nodes

(a) Breakdown of the various linear solver stages during the momentum solve. Left: CPU, right: GPU.

9 9 T
I Precon Setup B Precon Setup
e Solve e Solve
- nit it

8 = Assemble | 81 mmm Assemble
mm Other mmm Other

w o

IS
ContinuityEQS time per timestep

ContinuityEQS time per timestep

w

~N

-

3 4 5 6
Summit: Number of Power9/V100 Nodes

3 4 5 6
Summit: Number of Power9/V100 Nodes

(b) Breakdown of the various linear solver stages during the continuity solve. Left: CPU, right: GPU.

Figure 8: Breakdown of the strong scaling performance of momentum and
continuity solves for a single NREL 5MW turbine operating in ABL inflow using
the Trilinos solver stack. The turbine blades are modeled using actuator lines.
Comparisons are performed on a per-node basis, i.e., 6 V100 GPUs are considered
equivalent to 42 Power9 CPU cores. The timing breakdown are as follows: init —
time spent in linear system graph creation, assemble — time spent by Nalu-Wind
computational kernels in assembling the matrix coefficients and right hand side
residual vector, precon setup — time setting up the preconditioner, solve — time
spent in iterative solves, other — time spent in other operations, e.g., computing
gradients, etc.

Exascale Computing Project (ECP) 20 ECP-Q4-FY20

1.6
—8— GPU actuator

—#— CPU actuator
1.4 1

o = =
=] [=] %]
| | L

Avg time (s) per timestep

o
o
|

0.4

1 2 3 4 5 6 7
Summit: Number of Powerd/V100 nodes

Figure 9: Strong Scaling: Actuator line execution time per time step.

Exascale Computing Project (ECP) 21 ECP-Q4-FY20

6 6
W Precon Setup W Precon Setup
= Solve = Solve
- it - nit
. Assemble . Assemble

s = Other s = Other

IS

IS

MomentumEQS time per timestep
w

~N

MomentumEQS time per timestep
~ w

-
-

11 Il s BR R

Summit: Number of Power9/V100 Nodes Summit: Number of Power9/V100 Nodes

(a) Breakdown of the various linear solver stages during the momentum solve. Left: CPU, right: GPU.

6 6
B Precon Setup mmm Precon Setup
W Solve s Solve
. nit . nit
W Assemble W Assemble
5 s Other 5 s Other
24 24
i i
4 9
E £
] g
a g
o o
Es Es
9 0
o o
o o
2 2z
] 5
= £
€ H
§2 82
| |] I I
0 0
10° 10°

Summit: Number of Power9/V100 Nodes Summit: Number of Power9/V100 Nodes

(b) Breakdown of the various linear solver stages during the continuity solve. Left: CPU, right: GPU.

Figure 10: Breakdown of the weak scaling performance of momentum and
continuity solves for NREL 5MW turbines operating in ABL inflow using the
Trilinos solver stack. The turbine blades are modeled using actuator lines.
Comparisons are performed on a per-node basis, i.e., 6 V100 GPUs are considered
equivalent to 42 Power9 CPU cores. The timing breakdown are as follows: init —
time spent in linear system graph creation, assemble — time spent by Nalu-Wind
computational kernels in assembling the matrix coefficients and right hand side
residual vector, precon setup — time setting up the preconditioner, solve — time
spent in iterative solves, other — time spent in other operations, e.g., computing
gradients, etc.

Exascale Computing Project (ECP) 22 ECP-Q4-FY20

—8— GPUTOTAL
—=— CPUTOTAL
g 4
(=5
Z
[
E 81
=
@
(=1
8,
[11]
E
o
=
<< 6 -
5 -

2x1071 3x10l4x107!
Summit: Number of Power9/vV100 nodes

6x10°1

T T
100

Figure 11: Weak Scaling: NREL5MW actuator line total time per time step.

221

2.0 |
oy
+ L8+
Qa
£
T 1.6
g —e— GPU actuator
by 1.4 1 —— CPU actuator
—
E
=
o 12
>
=L

1.0

0.8 -

o— — & = — 8
T T T T T T T T
2x1071 3x10l4x107! 6x 1071 10°

Summit: Number of Power2/V100 nodes

Figure 12: Weak Scaling: Actuator line execution time per time step.

Exascale Computing Project (ECP)

23

ECP-Q4-FY20

6. HYBRID RANS/LES TURBULENCE MODELING

In this section, we discuss the advances in the AMS (Active Model-Split) [6] turbulence modeling capabilities
present in Nalu-Wind, noting that this model was previously referred to as TAMS (Time-averaged Active
Model Split). In the FY19-Q4 milestone report, we successfully implemented AMS into the Nalu-Wind
codebase and performed a canonical channel flow verification of the implementation. Further validation
attempts on wind-relevant problems, such as a NACA-0015 fixed wing and a turbine in atmospheric turbulent
inflow, using the AMS model, highlighted drawbacks of the initial implementation. The main challenge
that we encountered was a stability time constraint requiring AMS simulations to be run with Courant < 1
everywhere in the domain. It was hypothesized in FY19-Q4 that this stability issue may be related to the
explicit treatment in Nalu-Wind of the mean stress in the model-split formulation. We have since updated
the implementation with an approximate implicit treatment of the mean diffusion term, as well a set of
other updates to the implementation, which have removed the stability constraints present in FY19-Q4
simulations. The AMS model is now capable of running all configurations of Nalu-Wind that are setup for
the baseline turbulence models. In the remainder of this section, we detail the updates to the implementation
and revisit the validation tests attempted in FY19-Q4, with a specific focus on test cases of relevance to the
wind challenge problems: the turbulent periodic hill, the McAlister fixed wing, and the rotating turbine.

6.1 IMPROVEMENTS TO THE NALU-WIND IMPLEMENTATION OF THE SST RANS
MODEL

RANS simulations using the SST model presented in previous milestones have consistently shown stability
issues, oscillations in residuals, and difficulty producing solutions for some geometries. While these difficulties
have not generally impacted the ability to obtain an adequate SST solution, these outstanding issues were
negatively affecting AMS simulations by introducing spurious field values in the domain. Namely, the
turbulent kinetic energy field for SST simulations was exhibiting large values in several cells right above the
wall for certain geometries. This was observed in the periodic hill case, described in Section 6.3, and the
McAlister fixed wind simulation, described in Section 6.4.

In typical RANS SST simulations, it is sometimes necessary to clip the turbulent kinetic energy and
specific dissipation rate fields if the update to these fields would lead to negative values. This clipping in
Nalu-Wind was performed by resetting the turbulent kinetic energy and specific dissipation rate values
to those obtained through relations with the molecular viscosity if either becomes negative. This led to
unphysical values of turbulent kinetic energy in several grid cells near the wall in certain complex geometries.
This clipping was replaced by a simple clipping of turbulent kinetic energy to a minimum value of 10~8 if it
becomes negative, as done in other leading RANS CFD codes. This led to more robust SST simulations by
avoiding spurious turbulent kinetic energy values in the domain. Figures 13 and 14 illustrate the removal of
spurious turbulent kinetic energy values near the wall through the use of the updated clipping methodology.
We verified, using the simulations of the wall-mounted hump, that this clipping did not affect previous
verification and validation efforts.

6.2 IMPROVEMENTS TO THE NALU-WIND IMPLEMENTATION OF THE AMS HY-
BRID RANS-LES MODEL

For completeness, we revisit the governing equations for the AMS framework. AMS solves a resolved
momentum equation with a split modeled stress term,

opu; | Opu; oP Ou; OrCRs
P opti Uy + J +

o1 SGET
-+ 1 v
ot 61‘]‘ 8.73,' (9.’13]' 8a:j 8.23j al‘j

= + Fj. (7)
Here, 7; is the component of resolved velocity in the " direction, p, a constant density, P, the resolved
pressure, u, the dynamic molecular viscosity and Fj;, an active forcing term designed to generate turbulent
fluctuations in the regions where the model determines the grid to be suitable to resolve some turbulent
content. The mean subgrid stress is represented by the TSGRS term, while TlgGET represents the fluctuating
subgrid stress.

Exascale Computing Project (ECP) 24 ECP-Q4-FY20

Figure 13: Turbulent kinetic energy for the periodic hill (close-up view on the
top of the hill) under different clipping mechanisms: left: clipping to a prescribed
minimum value, right: clipping using molecular viscosity relation.

Figure 14: Turbulent kinetic energy for the McAlister fixed wing (close-up
view on the trailing edge of the wing) under different clipping mechanisms: left:
clipping to a prescribed minimum value, right: clipping using molecular viscosity
relation.

Exascale Computing Project (ECP) 25 ECP-Q4-FY20

To update the Nalu-Wind implementation of the AMS equations to the most recent theory of the
underlying framework, described in Haering et al. [6], the following changes were made in the codebase.
Scaling of the T{?GRS term The first term in the model split equations, T{?GRS , is designed to represent
the mean subgrid stress and thus serves as the “RANS-like” part of the model. When the flow field has some
level of resolved turbulence, the modeled mean subgrid stress term should scale appropriately. In the previous
implementation, T{?GRS = CkTi}j»AN S where @ = 1 — kyes /ktotal Was the scaling used on the mean subgrid stress
determined from a typical RANS model (the Menter 2003 SST model [11] in Nalu-Wind). In Haering et
al. [6], a more accurate scaling is derived based off of eddy viscosity arguments applied to the decomposition

of the subgrid stress tensor and empirical data taken from channel flow DNS, leading to the improved form,

B =1- krcs/ktotah

o = ksgs/ktotal ~ /81.77 (8)
T{?GRS =2 - a)Ti};ANS.

Formulation of the F; term Haering et al. [6] present a few simplifications to the formulation of the
active forcing term, Fj;, in the momentum equations. The goal of the active forcing term is to actively
introduce turbulent fluctuations in regions of the grid where the AMS model determines the grid is capable of
resolving turbulent content, but none is present. In order to do this in a way that slowly introduces resolved
structures that evolve into actual turbulence without corrupting the mean, an artificial field based on the
structure of a Taylor-Green (TG) vortex is currently used. The length scale and magnitude of the artificial
field are designed to match the largest of the locally unresolved fluctuations. The determination of these
length scales and magnitudes in Nalu-Wind, as described in FY19-Q4, has been slightly simplified to match
the one presented in Haering et al. [6]. Along with the updates to the AMS implementation to match the
current theoretical developments, a couple design updates specifically for Nalu-Wind were also deployed.

Coupling of Time-Averaged quantities to Picard Iterations In the AMS framework, the mean
subgrid stress term is calculated as it would be in a RANS context, from the expected values. Since the AMS
governing equations evolve the resolved instantaneous quantities, a method for approximating the expected
values is needed. This is done through a simple causal average equation for a desired flow quantity ¢:

oNeg) _ 1

Ot Trans

¢—1(9), (9)

where (-) refers to an expected value (approximated through a causal time average) and Trans is the
timescale of the turbulence determined by the underlying RANS quantities, e.g., for the SST model used in
Nalu-Wind, Trans = 1/(8*w).

In the prior implementation, in FY19-Q4, the averaging updates were done at the beginning of each
timestep, and stayed constant throughout the outer Picard iterations that are taken in Nalu-Wind, as the
solution of the instantaneous quantities are driven towards convergence. However, this decoupling between
the averaging updates and the Picard iterations caused the second term in the model split equations, 7'5GET,
to activate after the first Picard iteration in regions where we expected only RANS-like behavior and the
term did not activate in the first Picard iteration. Since T;EGET is designed to represent the fluctuating
subgrid stress, it is not designed to be active in regions very close to a wall, where we expect the model to be
represented solely by the mean flow.

The reason for this activation was that even in our “converged” SST RANS simulations of complex flows,
when we were taking large timesteps (Courant > 1), we did not have pointwise convergence of the mean
quantities and there were small fluctuations of our velocity fields near walls throughout the Picard iterations.

In the explicit discretization of the causal averaging equation used in Nalu-Wind,

= min ,
wt TraNS

(@) = (0") + tue (8" — (¢™))
<¢n+1> = twt¢n + (]- - twt) <¢n>7

Exascale Computing Project (ECP) 26 ECP-Q4-FY20

when the timestep is larger than the local turbulent timescale, the average quantity is simply updated to the
most recent instantaneous quantity. In these near-wall regions, as the local turbulent timescale approached
its limiting behavior and dropped below the simulation timestep, these fluctuations, which were simply small
changes in the approximate mean solution state, were being captured as fluctuations, as they were being
compared to the previous iterations approximate mean state. If the averaging operation had been rerun at
the beginning of the Picard iteration, these averages would of been updated to the current approximate mean
state and the differencing between the “instantaneous” fields and the mean fields, would not generate these
spurious fluctuations.

To resolve this, in the current Nalu-Wind implementation, all approximate expected values calculated in
Nalu-Wind are updated at the beginning of each Picard iteration, using the following discretization,

t¥ ., = min <At 1>
v Thans (11)
<¢*> = t:;t(b* + (1 - tz;t) <¢n>’

where a ()* quantity represents the intermediate state at the end of the last Picard iteration and ()™ represents
the state at the end of the previous step.

Implicit Treatment of Mean Stress The mean stress term in the model-split form of the momentum
equation, using Menter’s 2003 SST as the underlying RANS model, takes the form,

2
730 = a2 = a)2uss1(S5) — Sapkdis. (12)

Since this term is a function of the mean velocity fields and the momentum equation solves for the instantaneous
velocity, this term was previously treated explicitly. It was assumed then, that since the mean quantities
evolve slowly, the explicit treatment of this term should not have inherent stability issues associated with it.
When prior attempts at running problems with large Courant numbers were conducted, however, stability
issues arose and the simulations were unable to run.

To treat this term implicitly in Nalu-Wind, the coefficient on the velocity derivatives, a(2 — a)vggr, would
be added to the left-hand side (LHS) of the linear system. In the regions of the domain where we expect
a purely RANS-like behavior, the instantaneous resolved velocities are equal to the approximate expected
values and thus this would be an appropriate term to move to the LHS. In the other limiting case, where
the instantaneous field is dominated by the fluctuating velocities, & — 0 and this term would not add any
contribution to the LHS, even if it were added. In regions where both the mean and fluctuating velocities
play a role, the eddy viscosity contribution from the mean term and from the fluctuating term would both be
contributing on the LHS and thus would represent not an exact but approximate representation of the total
effective eddy viscosity on the instantaneous velocities.

To address the stability issues in Nalu-Wind when using AMS as the turbulence model for simulations with
Courant > 1, the coefficient in the mean stress term was added to the LHS in the current implementation.
This has successfully allowed for AMS to be used as the turbulence model in all simulations that the baseline
SST turbulence can be used in. Initial validation studies, discussed in the following sections, suggest that
the approximate representation of the total effective eddy viscosity in these hybrid regions does not seem to
have a meaningful impact on the accuracy of the solution. Further validation testing will be necessary to
definitively determine if this approach to treating the mean stress term implicitly for stability considerations
is appropriate.

6.3 PERIODIC HILL MODEL VALIDATION

For initial model validation, we conducted the periodic hill turbulence test case based on the ERCOFTAC
UFR 330 test case [4]. This case was used as a model validation simulation in the FY19-Q4 report, but
there, it was run in a secondary code, CDP, using the underlying 72 — f RANS model. The Reynolds number
(based on the hill height) is 10600 and the hill height is 1 m. The fluid density is set to 1k8/m?. The fluid
bulk velocity, uy = 1m/s, which leads to a viscosity of 1/10600. The boundary conditions are periodic in the
streamwise and the spanwise directions, with the bottom and top boundary conditions as walls.

Exascale Computing Project (ECP) 27 ECP-Q4-FY20

0.10 ——— Nalu-SST
—— Nalu-SST-DES
—— Nalu-SST-AMS

0.08
/<|:T 0.06

i
= 0.04

0.02

0.00
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
t/T t/T t/T

Figure 15: Bulk inlet quantities as a function of time.

In order to drive the flow to a statistically stationary state, a fixed forcing was applied at ¥/n > 1 to
approximate a unity bulk velocity at #/» = 0. While this was sufficient to approximate the bulk velocity for
the RANS case, the hybrid cases (AMS and SST-DES) experienced a reduction in bulk velocity, as can be
seen in Fig. 15. A more appropriate forcing for the hybrid cases, would use a dynamic calculation of the
body force, to ensure a unity bulk velocity is achieved as done by other researchers [12, 5]. Nevertheless,
some useful insights can be still be drawn from the comparisons.

Steady state SST solutions were obtained by running this case to t = 3007, where 7 = #/u,, using a time
step At = 4 x 1072. Bulk inlet quantities of velocity, turbulent kinetic energy, and specific dissipation rate
were monitored to ensure a steady-state solution, see Fig. 15. The SST solution was then used as the initial
condition for both the SST-DES and AMS simulations, which used a reduced time step At =4 x 1073 and
was evolved for another 3007.

Once statistical convergence is reached, time-averaged velocity profiles are computed using the velocity
fields from 20 flow-through times, spaced every 1.2 flow-throughs, to achieve statistical convergence in the
profiles. In Fig. 16, the mean velocity profiles are compared for the SST, SST-DES, and AMS simulations.
It can be observed that the SST simulation significantly over-predicts the velocity in the upper half of the
domain and predicts a separated flow throughout the domain, predicting no reattachment, counter to what
is observed in the experimental data. This is improved in both hybrid RANS-LES simulations, SST-DES
and AMS, which predict a reattachment location around x = 5h, a little downstream of the experimental
value of © = 4h. Overall, the AMS simulation velocities are largely comparable to those from the SST-DES
simulations, where both under-predict the experimental velocities due to the improper forcing causing a loss
in bulk velocity. We note that similarity to SST-DES simulations is a promising sign here, as researchers
have shown good agreement on the periodic hill test case when using SST-DES [12, 5]. This suggests that
the correction to the applied forcing will lead to strong validation results for the use of AMS in Nalu-Wind,
based off of the SST RANS model.

6.4 AMS SIMULATIONS OF A NACA-0015 FIXED WING

With the updated AMS implementation, we revisit simulations of a NACA-0015 fixed wing. SST and SST-DES
simulations were conducted for the FY19-Q2 milestone and attempts at AMS simulations were conducted in
FY19-Q4. The prior stability constraint with AMS required us to simulate using Courant < 1, leading to
timesteps that were ~ 4 orders of magnitude smaller than the one taken in the pure SST case. That restriction
has been completely removed and for the initial tests conducted here, the maximum Courant ~ 5000 in the
most restrictive cells in the boundary layer on the wing.

Simulation Description We briefly review the simulation setup, which is based on the McAlister-Takahashi
NACA-0015 experiment [10]. We use a full-span, 1 m chord length fixed NACA-0015 wing (untwisted,
untapered, unswept) placed at a 12° angle of attack in an unbounded flow (neglecting the tunnel walls in
the experiment). The wing has aspect ratio of 3.3 chords and a square wing tip. The Reynolds number is
Re = 1.5 x 10° (inflow velocity is us, = 46 m/s, density is poo = 1.225 kg/m?, and dynamic viscosity is
p=3.756 x 107° kg/(m s)). The domain size is 10 chords upstream, 20 chords downstream, and 30 chords in
the span. Symmetry boundary conditions are used in the spanwise direction, inflow at the bottom and inlet,

Exascale Computing Project (ECP) 28 ECP-Q4-FY20

o
900000000sscescccscesses®®
200000000000cecesessssees®®
200000000eesececscncseseeet®®
o
2000000s000censcseseencers®®

-] ¢ Exp
057 — aiusst

= Nalu-SST-DES
= Nalu-SST-AMS

0

Figure 16: Average u, profiles for the periodic hill.

outflow at the top and outlet. AMS Simulations are initialized from a converged (= 40 chord flow-through
times) SST solution on the same domain. The mesh is a hexahedral-dominant mesh with &~ 9 million nodes,
wall-normal spacing along the wing is 10~5¢, ensuring y+ < 1, 5 x 10~ ¢ at the leading edge and 3 x 10~ 3¢
at the trailing edge. Wedges and pyramids far from the wing region, and an overset O-H grid (or “Butterfly”)
positioned behind the wing tip are used to capture the wing-tip vortex.

AMS Computational Cost To assess the computational cost incurred by the updated AMS turbulence
model implementation, we run the NACA-0015 fixed wing for 100 steps using both the AMS and SST
configurations on the same initial condition. The simulations were performed using an Intel compiler build
of Nalu-Wind on 576 cores on NREL’s Eagle supercomputer, which is built with Intel Skylake processors.
Overall, the AMS simulation was approximately 1% slower than the SST simulation, suggesting that no
meaningful additional computational cost is incurred through use of the AMS hybrid model.

Results The goal of any hybrid RANS/LES model is to use RANS modeling in regions where resolving
turbulence would come with great computational cost, such as in attached boundary layers, and to allow for
the simulation to resolve some turbulent fluctuations in regions of dynamic flow conditions, such as wakes,
where the mean flow solution of the RANS equations would be insufficient. To qualitatively assess if the
AMS model is generating fluctuations in the desired regions, we plot, in Fig. 17, instantaneous snapshots
of vorticity magnitude contours at two points in time. The slices are taken in the plane through z = 3.3,
which is the edge of the wing at the tip vortex and show the velocity magnitude. It is clear that there has
been a transition to some resolved turbulent structures in the wake regions of the domain. A breakdown in
the tip vortices can be observed in the tip vortex wake as well as some turbulent fluctuations present in the
trailing edge of the wing. To emphasize the breakdown in the tip vortices, we plot three x-slices in Fig. 18,
showing the evolution of the tip vortices downstream of the fixed wing for the SST simulation (left) and two
instantaneous snapshots of the AMS simulation (center and right). This is an encouraging sign, as the AMS
model is appropriately transitioning from the RANS solution into one with reasonable resolved turbulent
content.

In the vorticity contours in Fig. 17, especially in the right frame, you can observe spurious regions of
increased vorticity at the center line where the mesh was reflected to generate the full wing and in the
span just off of the wing tips, where the mesh was extruded off the end of the wing. These suggest a mesh
interaction issue present in the AMS simulations. The cause of this needs further investigation, but one
possible explanation is that while this mesh may be suitable for RANS simulations, more care will need to
be taken in constructing meshes that are used for AMS simulations. A second type of mesh effect can be
observed by looking closely at the end of the tip vortex wake in the slice of the left frame of Fig. 17. Some
spurious noise is observed at the transition from the overset refined tip vortex mesh into the background mesh.

Exascale Computing Project (ECP) 29 ECP-Q4-FY20

Figure 17: NACA-0015 fixed wing contours of velocity magnitude and a slice
of vorticity on the plane through the tip of the wing in the AMS simulation.
Reasonable turbulent fluctuations can be observed.

Figure 18: NACA-0015 fixed wing evolution of tip vortices downstream of the
fixed wing. Right: SST simulation, Center and Left: Instantaneous snapshots
from the AMS simulation. Influences of resolved turbulence can be seen in the
AMS snapshots, with the structure breaking down and evolving over time.

Again, this will require further investigation to identify the root cause, but one possibility is the interaction of
turbulence with sudden grid changes, which can cause spurious reflections at the mesh interface as discussed
in Yalla et al. [16].
To assess the AMS simulation from a quantitative standpoint, in Fig. 19, we compare the pressure
coefficient,
o= —2 (13)

Poct

where p is the pressure at several locations along the wing span, to the SST simulation, experimental data
[10] and previously published results of a fixed wing in unconstrained flow using the Spalart-Allmaras RANS
model and adaptive mesh refinement to resolve the wake [13].

As can be seen in the set of pressure coefficient plots, no observable change can be inferred between the
SST and the AMS simulations. This is to be expected as the model relies on the RANS SST solution in the
boundary layers on the wing. The fact that the AMS model does not corrupt the RANS solution on the wing
while generating turbulent fluctuations in the wake, suggests that the model is performing correctly, even
while taking large timesteps. Both the SST and AMS simulations under-predict the pressure coefficient, which
has been previously hypothesized to result from improper modeling of blockage effects due to the tunnel walls
(as the simulations conducted here use a symmetry boundary and a double inflow /outflow configuration).
Future simulations will be conducted to investigate this specific issue.

6.5 AMS SIMULATIONS OF A ROTATING TURBINE IN UNIFORM INFLOW

As a demonstration for the AMS turbulence model on wind turbines, we revisit simulations of an NREL
5-MW turbine at a uniform inflow of U = 8 m/s. The additional requirement for the rotating turbine, is
that the AMS model properly handle the mesh motion, which the other simulations did not address. The
updated AMS implementation was able to simulate the rotating turbine using the same fixed timestep as

Exascale Computing Project (ECP) 30 ECP-Q4-FY20

— AMS
51 m Ep
= =+ Sitaraman et al. (2010)
41 —— SST-RC
3.
S]
7ot
1‘ ™ - [}
0h I
~1
0.0 0.2 04 06 0.8 1.0
x/c
— AMS
5-. " B

- Sitaraman et al. (2010)

SST-RC

0.8 1.0

AMS

Exp

- Sitaraman et al. (2010)
SST-RC

0.0 0.2 0.4 06 08 1.0
x/c
— AMS
5% m Ep
. - Sitaraman et al. (2010)

SST-RC

Figure 19: Chordwise variation of the pressure coefficient, cp,, at different
locations along the wing span.

Exascale Computing Project (ECP)

31

0.8 1.0

ECP-Q4-FY20

ECP

Figure 20: Isocontours of Q-criterion and slices of z-vorticity in snapshots after
the AMS turbulence model is turned on. Top Left: After a 45° rotation, Top
Right: After a 90° rotation, Bottom Left: After a 180° rotation and Bottom
Right: After a 1080° rotation,.

discussed in Sec. 4, such that the blade rotates 0.25° for each timestep. The mesh setup is the same as for
the turbine used in Sec. 4, but for this turbulence model demonstration, the simulation was run on 1080
cores on NREL’s Eagle supercomputer and thus did not utilize any GPU pathways.

In Fig. 20, we plot isocontours of Q-criterion, with the slice showing the z-component of vorticity during
the evolution AMS takes from the initial RANS state. Starting in the top left and moving across the top
row and then across the bottom row, the snapshots are taken after 45°,90°,180° and 1080° rotations of
the blade, measured from the point the AMS turbulence model is turned on. Clearly, an elaborate set of
turbulent fluctuations is generated in the wake behind the turbine, which moves downstream and disturbs
the wake structure predicted by the RANS solution. Examining the initial frame in the top left, we can see
turbulent fluctuations moving both upstream and downstream from the blade location. It is not clear that
this is a physical behavior and could be related to the sudden change in mesh resolution that occurs when the
blade-resolved turbine mesh moves along with the blade and the mesh resolution returns to the background
in-between blades mesh. This could potentially also be addressed by the work referenced in Sec. 6.4 by Yalla
et al. [16]. However, further investigation into the dynamics driving this behavior is needed before that can
be assessed.

Overall, the AMS turbulence model is performing up to expectations, capable of handling all turbulent
simulations in Nalu-Wind using the desired configurations. A more extensive validation program is underway
to resolve the outstanding issues identified in the test cases performed for the FY20-Q4 milestone. In addition,
separate work is being carried out to add DDES (Delayed Detached Eddy Simulation) and IDDES (Improved
Delayed Detached Eddy Simulation) hybrid model capabilities to Nalu-Wind, which can be then be used
in useful A/B comparisons on these and other validation cases, to more accurately assess the performance
and potential improvement of AMS over typical hybrid approaches. At this point, the SST model is working
sufficiently well, as the underlying RANS model in Nalu-Wind and while other models, such as 7> — f, have
been used with AMS and shown some superior results, the extensive use of SST in wind-relevant problems
and the additional complications and costs associated with a more complex RANS model, such as 72 — f, do
not warrant its use in Nalu-Wind at this time.

Exascale Computing Project (ECP) 32 ECP-Q4-FY20

‘R 0= GPU 384x384x256
\ : 4 CPU 384x384x256 100
[-~ GPU 1920x1920x1280 =
N - ideal scaling e, e
s “» \ \\o\ 95 ko
& N > N N
€ R R 2 N N
E R g % N, N
3 =
(0] w \-
£ N] o
= o1 5.1 = GPU 12.5x10° DOFs per node N
{. 4% CPU 12.5x10° DOFs per node \\
1 == GPU 50.3x10° DOFs per node X\,
1= ideal e —
80 ;
0.1 10 100 1000 10 100
Compute Nodes Compute Nodes

Figure 21: Strong- and weak-scaling performance for AMR-Wind on the ABL
problem on ORNL Summit. Left: Strong-scaling performance on two problem
sizes (3.7 x 107 and 4.7 x 10° DOFs) performed on GPUs and CPUs. Right:
Weak-scaling efficiency for two different workloads 2 x 10° and 8.3 x 10° DOF-
s/GPU.

7. ADVANCES IN STRUCTURED BACKGROUND SOLVER

As mentioned in §3.4, the ExaWind project adopted an AMReX-based block-structured, incompressible CFD
solver for modeling the background atmospheric flowi: AMR-Wind. The choice of a structured background
solver was motivated by the observation that a significant portion of the computational domain in wind farm
simulations are usually modeled with structured hexahedral cells and do not require the flexibility offered by
an unstructured mesh. The adoption of an overset mesh methodology as well as the recent demonstration of
the viability decoupled overset simulation in FY20-Q3 milestone paves the way for a hybrid-solver strategy
wherein the structured background solver is coupled with Nalu-Wind, which solves the flow domain in the
vicinity of turbine aerodynamic structures.

However, adoption of a hybrid solver strategy is not without its downsides, as it adds an additional layer
of complexity in the development and maintenance of the codebase. Thus, the new pathway must offer
significant performance benefits to justify the added complexity within the simulation environment. To this
end, in FY20, the objectives were implementing a basic atmospheric boundary layer solver within AMR-Wind
and benchmarking the performance of the solver on the ABL precursor problem on both CPUs and GPUs.
The results of the strong and weak scaling studies are discussed in §7.1. This is followed by a brief update on
the current status of the hybrid Nalu-/AMR-Wind simulations using overset mesh methodology on simple
test problems.

7.1 STRONG & WEAK SCALING PERFORMANCE OF AMR-WIND

The ability to model atmospheric boundary layers was implemented in AMR-Wind and uses the same equation
sets as in Nalu-Wind (see §5.1). The codebase was used to perform both strong and weak scaling studies
of the ABL precursor simulations similar to the studies performed for Nalu-Wind in FY20-Q2 milestone.
One notable difference is that the results presented here use the Smagorinsky turbulence model and not the
l-equation k£ — sgs turbulence model used in Nalu-Wind. The 1-equation k& — sgs model has been recently
added to the AMR-Wind codebase and has since been verified for canonical problems by comparing with
results published in literature as well as Nalu-Wind results.

Figure 21 shows the strong- and weak-scaling performance of AMR-Wind, running on the ORNL Summit
system for the ABL problem. AMR-~-Wind shows very good strong- and weak-scaling trends. The CPU vs.
GPU results are compared on a Summit-compute-node basis, i.e., 7 CPU cores are considered equivalent to 1
GPU. Compared to Nalu-Wind results presented in FY20-Q2, Fig. 21 (a) shows that AMR-Wind simulations
are =~ 5x faster than on CPUs. Figure 21 (b) shows the weak-scaling efficiency of the AMR-Wind code on
two problem sizes: the first ranging from ~ 3.7 x 107 cells to ~ 2.1 x 10° cells and the second ranging from
~ 1.51 x 108 cells to ~ 9.6 x 10° cells. For the weak scaling study both cases start at three Summit nodes
(18 GPUs and 126 CPUs) and as the mesh size is doubled the nodes are doubled until 192 nodes (1152

Exascale Computing Project (ECP) 33 ECP-Q4-FY20

GPUs and 8064 CPUs) are reached. The ABL precursor simulations have also been executed successfully on
pre-exascale hardware Iris and Tulip using the Intel OneAPI DPC++ and AMD HIP compilers, respectively.

8. CONCLUSIONS

This milestone successfully demonstrated the transition of the core computational kernels in Nalu-Wind to
execute on GPUs. The new GPU-based codebase was tested on wind-relevant problems on the ORNL Summit
system. Scaling studies indicate that the solution of elliptic pressure Poisson systems using algebraic multigrid
remains the primary bottleneck that dominates the time per timestep. This milestone also documents the
significant advances made in the development of the hybrid RANS/LES turbulence model that have improved
the robustness and stability of the model implementation within Nalu-Wind.

The major observations in this milestone are summarized below:

1.

Over the last two years, the Nalu-Wind codebase underwent a significant overhaul to transition on
computationally intensive kernels to execute on GPUs. The new kernels leverage the abstractions
provided by the Kokkos library for execution on devices as well as managing memory on both host
and device. Successful transition to GPUs was greatly facilitated by parallel development efforts in the
Trilinos libraries, in particular the STK NGP library.

Nalu-Wind developers adopted a test-driven development philosophy to ensure that a seamless transition
of the core algorithms without significant disruption to the users of Nalu-Wind. However, despite careful
development and testing, performance benchmarking runs in FY20-Q2 and FY20-Q4 uncovered several
implementation bugs that required considerable efforts to fix. All bugs were related to inconsistent
updates, access, and synchronization of field data structures between host and device memory. Efforts
are underway in STK library to assist application developers in detecting such inconsistent memory
access patterns in future.

For the blade-resolved simulations with overset meshes, the hypre solver stack significantly outperforms
the Trilinos Belos/MueLu stack on the CPUs, and maintains a slight advantage over the Trilinos stack
on GPUs.

Solution of the elliptic pressure Poisson system using algebraic multigrid remains the primary bottleneck
on GPUs. Both preconditioner setup costs and solver costs scale poorly on GPUs and will be the focus
of future efforts. The poor scaling trends are observed for both hypre and the Trilinos solver stacks.
The costs remain high despite the use of decoupled overset pressure solution approach, described in
detail in FY20-Q3 report, which removes the constraint rows that have been a challenge for algebraic
multigrid preconditioners.

For moving mesh problems, a significant increase in the time spent in pre-processing steps within
each timestep is observed. The time spent is dominated by two major tasks: updating the overset
connectivity and reinitialization of the linear systems. With decoupled overset, the need for linear system
reinitialization can be eliminated. A feature has been added to Nalu-Wind codebase to allow reuse of
linear systems when using decoupled overset mesh simulation strategy for moving mesh applications.
Marked reductions in pre-processing time when reusing linear system is observed (see Fig. 5). Overset
mesh connectivity updates are still being performed on the host and the transfer of field data to and
from device during overset connectivity updates and solution exchange still contribute to a significant
overhead when executing on GPUs. Eliminating this overhead by transitioning the overset search
algorithms to execute on GPUs is currently underway and will be a major focus of upcoming milestone
activities.

Significant progress was made in improving the robustness and stability of the AMS hybrid RANS/LES
turbulence model implementation within Nalu-Wind. The model is currently being tested on the
NACAO0015 fixed-wing problem for comparison with available experimental data as well as for blade-
resolved simulations of the NREL 5-MW rotor in uniform inflow.

Exascale Computing Project (ECP) 34 ECP-Q4-FY20

7. The ExaWind project has adopted an AMReX-based, block-structured, incompressible solver, AMR-

[1]

[10]

[11]

[12]

[13]

Wind, as a structured background solver for simulating the atmospheric boundary layer in wind farm
simulations. Strong and weak scaling studies were performed on problem sizes ranging from 9.1 x 10°
degrees of freedom. Overall, AMR-Wind shows good strong and weak scaling characteristics on both
CPUs and GPUs. In production runs, AMR-Wind is also =~ 5x faster than Nalu-Wind for ABL
simulations. The team has also compiled and executed AMR-Wind on both pre-exascale systems, Iris
and Tulip, using the Intel OneAPI/DPC++ and AMD HIP compilers respectively. ExaWind developers
are working with ANL performance engineers in performance profiling of AMR-Wind to identify and
address performance bottlenecks.

REFERENCES

M. L. Brayrock, B. C. HoucHENS, D. C. MANIAcI, P. SAKIEVICH, AND R. C. KNAUS, Comparison
of field measurements and large eddy simulations of the scaled wind farm technology (swift) site, in
ASME-JSME-KSME 2019 Joint Fluids Engineering Conference, Proceedings of the ASME-JSME-KSME
2019 Joint Fluids Engineering Conference, ASME, 2019.

M. CHURCHFIELD, S. LEE, P. MORIARTY, L. MARTINEZ, S. LEONARDI, G. VIJAYAKUMAR, AND
J. BRASSEUR, A large-eddy simulation of wind-plant aerodynamics, in 50th ATAA Aerospace Sciences
Meeting including the New Horizons Forum and Aerospace Exposition, 2012, p. 537.

H. EDWARDS, A. WILLIAMS, G. SJAARDEMA, D. BAUR, AND W. COCHRAN, Sierra toolkit computational
mesh conceptual model, Tech. Rep. SAND2010-1192, Sandia National Laboratories, 2010.

ERCOFTAC, ERCOFTAC UFR 330 Test Case. http://qnet-ercoftac.cfms.org.uk/w/index.php/
UFR_3-30_Test_Case.

J. FROHLICH AND D. vON TERZI, Hybrid les/rans methods for the simulation of turbulent flows, Progress
in Aerospace Sciences, 44 (2008), pp. 349 — 377.

S. HAERING, T. OLIVER, AND R. MOSER, Active model split hybrid RANS/LES, Journal of Fluid
Mechanics, (2020). Submitted.

M. HEROUX AND ET. AL., An overview of the trilinos project, ACM Trans. Math. Softw., (2005).

A. Hsien, D. C. Man1Act, T. G. HERGES, G. GERAcCI, D. T. SEbL, M. S. ELDRED, M. L. BLAYLOCK,
AND B. C. HOUCHENS, Multilevel uncertainty quantification using cfd and openfast simulations of the
swift facility, in ATAA Scitech 2020 Forum, 2020.

J. JONKMAN, S. BUTTERFIELD, W. MUSIAL, AND G. SCOTT, Definition of a 5-MW reference wind
turbine for offshore system development, Tech. Rep. NREL/TP-500-38060, National Renewable Energy
Laboratory, 2009.

K. W. MCALISTER AND R. K. TAKAHASHI, NACA 0015 wing pressure and trailing vortexr measurements,
Tech. Rep. NASA-A-91056, National Aeronautics and Space Administration, AMES Research Center,
Moffett Field, CA, 1991.

F. R. MENTER, M. KUNTZ, AND R. LANGTRY, Ten years of industrial experience with the SST
turbulence model, in Turbulence, Heat and Mass Transfer 4, K. Hanjalic, Y. Nagano, and M. Tummers,
eds., Begell House, Inc., 2003, pp. 625-632.

SARI‘C, S., JAKIRLI'C, S., BREUER, M., JAFFREZIC, B., DENG, G., CHIKHAOUI, O., FROHLICH,
J., VON TERZI, D., MANHART, M., AND PELLER, N., Fvaluation of detached eddy simulations for
predicting the flow over periodic hills, ESAIM: Proc., 16 (2007), pp. 133-145.

J. SiTARAMAN, M. FLOROS, A. WISSINK, AND M. POTSDAM, Parallel domain connectivity algorithm

for unsteady flow computations using overlapping and adaptive grids, Journal of Computational Physics,
229 (2010), pp. 4703-4723.

Exascale Computing Project (ECP) 35 ECP-Q4-FY20

http://qnet-ercoftac.cfms.org.uk/w/index.php/UFR_3-30_Test_Case
http://qnet-ercoftac.cfms.org.uk/w/index.php/UFR_3-30_Test_Case

[14] J. N. SORENSEN AND W. Z. SHEN, Numerical modeling of wind turbine wakes, Journal of Fluids
Engineering, 124 (2002), pp. 393-399.

[15] M. SPRAGUE, S. BOLDYREV, P. FISCHER, R. GROUT, W. GUSTAFSON JR., AND R. MOSER, Turbulent
flow simulation at the Exascale: Opportunities and challenges workshop, tech. rep., U.S. Department
of Energy, Office of Science, Advanced Scientific Computing Research, 2017. Published as Tech. Rep.
NREL/TP-2C00-67648 by the National Renewable Energy Laboratory.

[16] G. YALLA, T. OLIVER, S. HAERING, B. ENGQUIST, AND R. MOSER, On the effects of resolution
inhomogeneity in LES, Physical Review Fluids, (2020). Submitted.

Exascale Computing Project (ECP) 36 ECP-Q4-FY20

	EXECUTIVE SUMMARY
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Milestone Description
	Description
	Execution Plan
	Overview of milestone completion

	ExaWind simulation environment on next-generation platforms
	Nalu-Wind
	Nalu-Wind hypre Assembly
	Solvers
	AMR-Wind

	Nalu-Wind blade-resolved simulations of NREL 5-MW wind turbine
	Strong-scaling performance of Nalu-Wind using Trilinos solvers
	Strong scaling performance of Nalu-Wind using hypre

	Multi-turbine actuator line simulation in ABL
	Atmospheric Boundary Layer (ABL) modeling in Nalu-Wind
	Modeling wind turbines as actuator lines or disks
	Scaling Studies
	Strong scaling
	Weak scaling

	Hybrid RANS/LES turbulence modeling
	Improvements to the Nalu-Wind implementation of the SST RANS model
	Improvements to the Nalu-Wind implementation of the AMS hybrid RANS-LES model
	Periodic Hill Model Validation
	AMS Simulations of a NACA-0015 Fixed Wing
	AMS Simulations of a Rotating Turbine in Uniform Inflow

	Advances in structured background solver
	Strong & Weak scaling performance of AMR-Wind

	Conclusions

