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1. GOAL

One challenge of using compartmental SEIR models for public health planning is the difficulty in
manually tuning parameters to capture behavior reflected in the real-world data.

This team conducted initial, exploratory analysis of a novel technique to use physics-informed
machine learning tools to rapidly develop data-driven models for physical systems. This machine
learning approach may be used to perform data assimilation of compartment models which account
for unknown interactions between geospatial domains (i.e. diffusion processes coupling across
neighborhoods/counties/states/etc.).

Results presented here are early, proof-of-concept ideas that demonstrate initial success in using a
physically informed neural network (PINN) model to assimilate data in a compartmental
epidemiology model. The results demonstrate initial success and warrant further research and

development.

2. INITIAL RESULTS

ODE models representing COVID-19 epidemiological infection dynamics for New Mexico and
Arizona were prepared and parameters were fit using actual data.

We pick 10 points in time, equally spaced, and determine the model’s loss by comparing the
prediction vs the actual at those 10 points. We use those 10 points to compute the derivatives for
the ODE calculations (recognizing that 10 points is not a lot to support a numerical integration of
an ODE system of any complexity). At first, we assume the parameter values are constant
throughout the simulation, which is unlikely; the beta parameter that controls viral infectivity could
change drastically over time as people adopt or abandon mitigation strategies such as social
distancing and mask wearing.

We then fit the model over several 100-day windows to see which windows produce the best fit.
This results in a few simulations with decent fits, but due to the dependence of the parameters to the

chosen window, they offer poor predictive value.
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Some of the windows produce fits that are potentially acceptable. Here is an example of a window
that results in a good fit, but the fits cannot necessarily be extrapolated to future time points, nor do
the parameter values found here represent dynamics that occur outside the window.
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We then refit the model based on sliding 60-day windows to see how the NM and AZ values of Beta
(viral infectivity) and Tau (inverse of the expected infection time) vary over time.

Estimates of SEIR model parameters
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The results suggest high infectivity earlier on, though if anything this suggests that a model with
static parameters is not sufficient to capture real-world infection dynamics.

We then modified the model to increase the number of calculated points from 10 to 100. This has
the dual benefit of allowing the model to be more sensitive in its loss function and be more accurate
when calculating derivatives for numerical integration.




Estimates of SEIR model parameters (100 collocation points)
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The parameter values now fall more clearly into two ‘phases’, possibly before and after social
distancing, though these models are all fit to 60-day windows still assuming static parameter values.

Finally, we extended the model to support time-dependent values for the parameters. Allowing Beta
(viral infectivity) to vary over time significantly improved fits when applied to the full dataset:
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The Beta parameter values over time in this simulation are:
NM: [0.0527, 0.0653, 0.0735, 0.0768, 0.0754, 0.0706, 0.0642, 0.0584, 0.0550, 0.0550]
AZ: [0.0455, 0.0598, 0.0689, 0.0727, 0.0718, 0.0679, 0.0636, 0.0612, 0.0626, 0.0689]

The results show an increase in infectivity early followed by a return to lower levels by the end of

the simulation.




Our effort shows that extending the ODE model and using a PINN to fit the data to parameters
that are allowed to vary over time, result in significantly improved model fits. Significantly more
work is required to extend this machine learning approach and offer improved epidemiological
modeling advancements.




