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1. GOAL
One challenge of using compartmental SEIR models for public health planning is the difficulty in 
manually tuning parameters to capture behavior reflected in the real-world data.

This team conducted initial, exploratory analysis of a novel technique to use physics-informed 
machine learning tools to rapidly develop data-driven models for physical systems. This machine 
learning approach may be used to perform data assimilation of compartment models which account 
for unknown interactions between geospatial domains (i.e. diffusion processes coupling across 
neighborhoods/counties/states/etc.).

Results presented here are early, proof-of-concept ideas that demonstrate initial success in using a 
physically informed neural network (PINN) model to assimilate data in a compartmental 
epidemiology model. The results demonstrate initial success and warrant further research and 
development.

2. INITIAL RESULTS
ODE models representing COVID-19 epidemiological infection dynamics for New Mexico and 
Arizona were prepared and parameters were fit using actual data.

We pick 10 points in time, equally spaced, and determine the model’s loss by comparing the 
prediction vs the actual at those 10 points. We use those 10 points to compute the derivatives for 
the ODE calculations (recognizing that 10 points is not a lot to support a numerical integration of 
an ODE system of any complexity). At first, we assume the parameter values are constant 
throughout the simulation, which is unlikely; the beta parameter that controls viral infectivity could 
change drastically over time as people adopt or abandon mitigation strategies such as social 
distancing and mask wearing.

We then fit the model over several 100-day windows to see which windows produce the best fit. 
This results in a few simulations with decent fits, but due to the dependence of the parameters to the 
chosen window, they offer poor predictive value.

Some of the windows produce fits that are potentially acceptable. Here is an example of a window 
that results in a good fit, but the fits cannot necessarily be extrapolated to future time points, nor do 
the parameter values found here represent dynamics that occur outside the window.
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We then refit the model based on sliding 60-day windows to see how the NM and AZ values of Beta 
(viral infectivity) and Tau (inverse of the expected infection time) vary over time.

The results suggest high infectivity earlier on, though if anything this suggests that a model with 
static parameters is not sufficient to capture real-world infection dynamics.

We then modified the model to increase the number of calculated points from 10 to 100. This has 
the dual benefit of allowing the model to be more sensitive in its loss function and be more accurate 
when calculating derivatives for numerical integration.
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The parameter values now fall more clearly into two ‘phases’, possibly before and after social 
distancing, though these models are all fit to 60-day windows still assuming static parameter values.

Finally, we extended the model to support time-dependent values for the parameters. Allowing Beta 
(viral infectivity) to vary over time significantly improved fits when applied to the full dataset:

The Beta parameter values over time in this simulation are:

NM: [0.0527, 0.0653, 0.0735, 0.0768, 0.0754, 0.0706, 0.0642, 0.0584, 0.0550, 0.0550]

AZ:  [0.0455, 0.0598, 0.0689, 0.0727, 0.0718, 0.0679, 0.0636, 0.0612, 0.0626, 0.0689]

The results show an increase in infectivity early followed by a return to lower levels by the end of 
the simulation.
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Our effort shows that extending the ODE model and using a PINN to fit the data to parameters 
that are allowed to vary over time, result in significantly improved model fits. Significantly more 
work is required to extend this machine learning approach and offer improved epidemiological 
modeling advancements.


