% SAND2008- 7717P

Teuchos Utility Classes for
Safer Memory Management in C++

Roscoe A. Bartlett
Department of Optimization & Uncertainty Estimation

Sandia National Laboratories

Trilinos Users Group Meeting, October 22, 2008

Sandia
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, @ National
for the United States Department of Energy under contract DE-AC04-94AL85000. Laboratories

p ‘ Current State of Memory Management in Trilinos C++ Code

» The Teuchos reference-counted pointer (RCP) class is being widely used

— Memory leaks are becoming less frequent (but are not completely gone => circular
references!)

— Fewer segfaults from uninitailized pointers and accessing deleted objects ...
* However, we still have problems ...
— Segfaults from improper usage of arrays of memory (e.g. off-by-one errors etc.)

— Improper use of other types of data structures

* The core problem? => Ubiquitous high-level use of raw C++ pointers in our
application (algorithm) code!

 What | am going to address in this presentation:

— Adding new Teuchos utility classes similar to Teuchos::RCP to encapsulate usage of

raw C++ pointers for:
 handling of single objects
 handling of contiguous arrays of objects
— New Teuchos utility classes without reference counting to eliminate all raw pointers

h

Sandia
National
Laboratories

P '
} Outline

« Background

* Overview of Teuchos Memory Management Ultility Classes

« Challenges to using Teuchos memory management utility classes

« Wrapup

Sandia
m National
Laboratories

_
}' Outline

« Background

— Problems with using raw C++ pointers at the application programming level

* Overview of Teuchos Memory Management Utility Classes
« Challenges to using Teuchos memory management utility classes

« Wrapup

Sandia
m National
Laboratories

_ '
} Problems with using Raw Pointers at the Application Level

 The C/C++ Pointer:
Type *ptr;

* Problems with C/C++ Pointers

— No default initialization to null => Leads to segfaults
int *ptr;
ptr[20] = 5; // BANG!
— Using to handle memory of single objects
int *ptr = new int;
// No good can ever come of:
ptr++, ptr--, ++ptr, --ptr, ptr+i, ptr-i, ptrli]
— Using to handle arrays of memory:
int *ptr = new int[n];
// These are totally unchecked:
*(ptr++), *(ptr--), ptrli]
— Creates memory leaks when exceptions are thrown:
int *ptr = new int;
functionThatThrows (ptr) ;
delete ptr; // Will never be called if above function throws!
* How do we fix this?
— Memory leaks? => Reference-counted smart pointers (not a 100% guarantee)
— Segfaults? => Memory checkers like Valgrind and Purify? (far from a 100% guarantee) ..

%‘ Ineffectiveness of Memory Checking Utilities

« Memory checkers like Valgrind and Purify only know about stack and heap
memory requested from the system!

=> Memory managed by the library or the user program is totally unchecked
« Examples:
 Library managed memory (e.g. GNU STL allocator)

valgrind M library management regions Writing into “management’ Yalgrind ”
“red zone” W memory given to application red zone

B untouched memory
N— I

—
Allocated from the heap by library using new[]

regions is not caught by valgrind!

* Program managed memory

Sub-arra;/(given to Read/writing outside of slice will
subrountine for processing never be caught by valgrind!
N— -
—

One big array allocated from the heap by user program using new(]

Sandia
u u L] ' .
Memory checkers can never sufficiently verify your program! M) fetona

%‘ What is the Proper Role of Raw C++ Pointers?

AVOID USING RAW POINTERS AT THE APPLICATION PROGRAMMING LEVEL!

If we can’t use raw pointers at the application level, then how can we use them?
— Basic mechanism for communicating with the compiler
— Extremely well-encapsulated, low-level, high-performance algorithms

— Compatibility with other software (again, at a very low, well-encapsulated level)

For everything else, let’'s use (existing and new) classes to more safely encapsulate
our usage of memory!

Sandia
m National
Laboratories

_ '
% Outline

« Background

* QOverview of Teuchos Memory Management Utility Classes

Introduction

Management of single objects

Management for arrays of objects

Handling of circular references

Runtime checking of dangling references

Usage of Teuchos utility classes as data objects and as function arguments

« Challenges to using Teuchos memory management utility classes

« Wrapup

Sandia
m National
Laboratories

%‘ Basic Strategy for Safer “Pointer Free” Memory Usage

» Encapsulate raw pointers in specialized utility classes

— In a debug build (--enable-teuchos-debug), all access to memory is checked at
runtime ... Maximize runtime checking and safety!

— In an optimized build (default), no checks are performed giving raw pointer
performance ... Minimize/eliminate overhead!

» Define a different utility class for each major type of use case:
— Single objects (persisting and non-persisting associations)
— Views of arrays (persisting and non-persisting associations)
— Containers (arrays, maps, lists, etc.)
— efc ...
* Allocate all objects in a safe way (i.e. don’t call new directly at the application
levell)

— Use non-member constructor functions that return safe wrapped objects (See
SAND2007-4078)

« Pass around encapsulated pointer(s) to memory using safe (checked)
conversions between safe utility class objects

Definitions:

« Non-persisting association: Association that only exists within a single function call

» Persisting association: Association that exists beyond a single function call and where
some “memory” of the object persists Sandia
m National
Laboratories

_ '
% Outline

« Background

* QOverview of Teuchos Memory Management Utility Classes

Introduction

Management of single objects

Management for arrays of objects

Handling of circular references

Runtime checking of dangling references

Usage of Teuchos utility classes as data objects and as function arguments

« Challenges to using Teuchos memory management utility classes

« Wrapup

Sandia
m National
Laboratories

%‘ Utility Classes for Memory Management of Single Classes

» Teuchos::RCP (Long existing class, first developed in 1997!)
RCPLT> p;
— Smart pointer class (e.g. usage looks and feels like a raw pointer)
— Uses reference counting to decide when to delete object
— Used for persisting associations with single objects
— Allows for 100% flexibility for how object gets allocated and deallocated
— [New] General approach for dealing with circular references
— In a debug build, throws on dereferences of null and dangling references
— Counterpart to boost::shared_ptr and std::tr1::shared_ptr

» Teuchos::Ptr (New class)
void foo(const Ptr<T> &p);
— Smart pointer class (e.g. operator->() and operator*())
— Light-weight replacement for raw pointer T* to a single object
— Default constructs to null
— No reference counting! Used only for non-persisting association function arguments
— In a debug build, throws on dereferences of null and dangling references
— Integrated with other memory utility classes
— No counterpart to boost or C++0x

Sandia
m National
Laboratories

Teuchos::RCP Technical Report

SAND REPORT
SAND2004-3263

e SAND2007-4078

Teuchos::RCP Beginner’s Guide

An Introduction to the Trilinos Smart

Reference-Counted Pointer Class for

(Almost) Automatic Dynamic Memory
Management in C++

Roscoe A Bartiett
Optimization and Uncertainty Estimation

Sregared by
Saraa Nalloral Lasoraones
ADuquerque. New Mexco 57135 and Livermore, Calfomia 24550

S0 1% 3 MIEFOgram [Saratry SperiED by Sanda Corperalicn,
2 Losensed Marin Company, 1 fie Uates Staes Depariment of Snemy's
National Nusiear Securily Adminetraton Under Conlracl DE-ACTH-S4-AL 25000

Approved for publc retease; fUrtneT dssemination Lnimisd

) Sandia National Laboratories

http://trilinos.sandia.gov/documentation.html h Ef‘f’f%'mes

&i Conversions Between Single-Object Memory Management Types

<Derived> to <Base> ! ! I

1

1 v | 1

1 * 1

<T> to <const T> i RCP<T> _____ ._QE?E?_a_f:Q]_C _____ N T& i

T /' 1

: o T :

: ptr() _ﬁa)f, -7 1

-~ 1

R : O@e ’/’, :

<Derived> to <Base> | ; ; //’ !

<T> to <const T> :___ P I_)i__'f_(_]i?‘f?_t_r_)____ * !
Ptr<T> [« T [«

Legend

<<implicit conversion>>

Sandia
m National
Laboratories

_ '
}. Outline

« Background

* QOverview of Teuchos Memory Management Utility Classes

Introduction

Management of single objects

Management for arrays of objects

Handling of circular references

Runtime checking of dangling references

Usage of Teuchos utility classes as data objects and as function arguments

« Challenges to using Teuchos memory management utility classes

« Wrapup

Sandia
m National
Laboratories

%‘ Utility Classes for Memory Management of Arrays of Objects

» Teuchos::ArrayView (New class) => No equivenent in boost or C++0x
void foo (const ArrayView<T> &v);
— Used to replace raw pointers as function arguments to pass arrays
— Used for non-persisting associations only (i.e. only function arguments)
— Allows for 100% flexibility for how memory gets allocated and sliced up
— Minimal overhead in an optimized build, just a raw pointer and an integer

» Teuchos::ArrayRCP (Failry new class) => Counterpart to boost::array ptr
ArrayRCPLT> v;
— Used for persisting associations with fixed size arrays
— Allows for 100% flexibility for how memory gets allocated and sliced up
— Uses same reference-counting machinery as Teuchos::RCP
— Gives up (sub)views as Teuchos::ArrayView and Teuchos::ArrayRCP objects

» Teuchos::Array (Existing class but majorly reworked)
Array<T> v;
— A general purpose container class like std::vector (actually uses std::vector within)
— All usage is runtime checked in a debug build
— Gives up (sub)views as Teuchos::ArrayView objects

» Teuchos::Tuple (New class) => Counterpart to boost::array
Tuple<T,N> t;
— Statically sized array class (replacement for built-in T[N])
— Gives up (sub)views as Teuchos::ArrayView objects

Sandia
m National
Laboratories

2L

Conversions Between Array Memory Management Types

RCP<std::vector<T> >

\

arcp (..) \\ _______
¥ v | <T> to
< <[>>F---------+ I <const T>
RCP<Array<T 507 ArrayRCP<T> |-
/
’ T ~
+-getRawper (o Workspace<T>
/ ~ ,,
4 ﬁ\\ * . S~ R4
Ir _____ I /// et?\a:ﬂ?fl”, T ‘N\gffljfvzptr y \\\ K
! v » -7 R " y
——————————————————————— =)
1 Array<T> |] ArrayView<T> [+ _. ..
1
k\ \\ o o 7 //ﬂ A i ! <const T>
\\ \\ ®® '(/\,b ,/ ’ : _______
\\ \ <‘® >(,O ,/ it 1
\ \\ AN @) ,/ I
\ N ®O A%, 1
\\ e ‘(/® ,, / !
\ \\O‘(k @@ , /, :
\\\ \\f@/ O'(//// ’
. X X Tuple<T,N>

1 std::vector<T>

<<implicit view conversion>>

Sandia
National
Laboratories

_ '
% Outline

« Background

* QOverview of Teuchos Memory Management Utility Classes

Introduction

Management of single objects

Management for arrays of objects

Handling of circular references

Runtime checking of dangling references

Usage of Teuchos utility classes as data objects and as function arguments

« Challenges to using Teuchos memory management utility classes

« Wrapup

Sandia
m National
Laboratories

* kK

* kK

* kK

* kK

* kK

* kK

RCPNode address
RCPNode address

Handling of Circular References

v « Without special handling, this will create
memory leak of ‘A’ and ‘B’ objects

« Debugging circular references:

— Teuchos::setTracingActiveRCPNodes(true);

Client of A Client of B

Warning! The following Teuchos::RCPNode objects were created but have

not been destroyed yet. This may be an indication that these objects may
be involved in a circular dependency! A memory checking tool may complain
that these objects are not destroyed correctly.

'0x890bb0', information
'0x890bel0', information

{T="C',Concrete T="C',p=0x890ee8,has ownership=1}, call number
{T="A',Concrete T=‘A',p=0x890b90,has ownership=1}, call number

See: Trilinos/packages/teuchos/test/MemoryManagement/RCP_test.cpp

Sandia
m National
Laboratories

Handling of Circular References

Strong

* New Feature: Strong/Weak RCPs

* Individual objects just store RCPs to shared
objects

Weak

>
vy

» Higher-level objects (i.e. factories) assign
Strong Strong “strength”

— — Example: We know that ‘B’ will not access ‘A
after ‘A’ gets deleted!

Client of A Client of B

See:
Source: teuchos/test/MemoryManagement/RCP_UnitTests.cpp
Run:

Build: teuchos/test/MemoryManagement/MemoryManagement_UnitTests.exe

Sandia
m National
Laboratories

F

Circular References with Weak/Strong RCPs

rcpA1 : RCP

(op
o

rcpB1 : RCP

WEAK

Fl

STRONG

—

nodeA: RCPNode

strongCount=1
weakCount=1

—

nodeB: RCPNode

strongCount=2
weakCount=0

’_¢

rcpA2 : RCP

STRONG

rcpB2 : RCP

STRONG

’

clientA

|

clientB

Sandia
National
Laboratories

F

Client A deleted first then Client B: #1

a:A 3: <<delete>> b:B
2: <<delete>> rcpA1 : RCP rcpB1 : RCP
WEAK STRONG

!

nodeA: RCPNode

strongCount=1— 0
weakCount=1

4: deincrStrongCount

1: deincrStrongCount, deleteObject

v

nodeB: RCPNode

strongCount=2 — 1
weakCount=0

’—¢

rcpB2 : RCP

STRONG

1

clientB

Sandia
National
Laboratories

'},'

Client A deleted first then Client B: #2

a:A 3: <<delete>> b:B
rcpA1 : RCP rcpB1 : RCP
WEAK STRONG

v

4: deincWeakCount, <<delete>>

nodeA: RCPNode

strongCount=0

weakCount=1 - 0

N

Vi

nodeB: RCPNode

strongCount=1 —» 0
weakCount=0

2: <<delete>>

1: deincrStrongCount, <<delete>>

rcpA2 : RCP rcpB2 : RCP
STRONG STRONG
clientA clientB

Sandia
m National
Laboratories

F

Client B deleted first then Client A: #1

rcpA1l : RCP

(op
o

rcpB1 : RCP

WEAK

ﬂ

STRONG

L

nodeA: RCPNode

nodeB: RCPNode

strongCount=1
weakCount=1

strongCount=2 — 1
weakCount=0

%

rcpA2 : RCP

STRONG

:

clientA

Sandia
National
Laboratories

'},'

Client B deleted first then Client A: #2

a:A

2: <<delete>>

3: <<delete>>

rcpAl : RCP

6: <<delete>>

rcpB1 : RCP

5: <<delete>>

WEAK

\H 7: deincrWeakCount, <<delete>>

STRONG

nodeA: RCPNode

strongCount=1 —» 0
weakCount=1 — 0

4: deincStrongCount, <<delete>>

nodeB: RCPNode

strongCount=1 —» 0
weakCount=0

4\—‘ 1: deincrStrongCount, deleteObject | i)
rcpA2 : RCP rcpB2 : RCP
STRONG STRONG
A A
clientA clientB

Sandia
National
Laboratories

_ '
}. Outline

« Background

* QOverview of Teuchos Memory Management Utility Classes

Introduction

Management of single objects

Management for arrays of objects

Handling of circular references

Runtime checking of dangling references

Usage of Teuchos utility classes as data objects and as function arguments

« Challenges to using Teuchos memory management utility classes

« Wrapup

Sandia
m National
Laboratories

%i Runtime Checking of Dangling References: Unit Test Code

TEUCHOS_UNIT TEST TEMPLATE 1 DECL(ArrayRCP,
{

ArrayView<T> av;
{
ArrayRCP<T> arcpl = arcp<T>(n);
av = arcpl();
}
#ifdef TEUCHOS DEBUG

#fendif
}

danglingArrayView,

TEST THROW(av[0], DanglingReferenceError);

T

)

See: Trilinos/packages/teuchos/test/MemoryManagement/ArrayRCP_UnitTests.cpp

h

Sandia
National
Laboratories

i Runtime Checking of Dangling References: Error Output

Test that code {av[0];} throws Teuchos::DanglingReferenceError: passed
Exception message for expected exception:

/cygdrive/c/ mystuff/PROJECTS/Trilinos.base/Trilinos/packages/teuchos/src/Teuchos RCPNode.hpp:340:
Throw number = 4

Throw test that evaluated to true: true

Error, an attempt has been made to dereference the underlying object

from a weak smart pointer object where the underly object has already

been deleted since the strong count has already gone to zero.

Context inforamtion:

RCP type: Teuchos: :ArrayView<double>

RCP address: 0x22cbac

RCPNode type: Teuchos: :RCPNodeTmpl<double, Teuchos::DeallocArrayDelete<double> >
RCPNode address O0xc33afs8

RCP ptr address: 0xc33aal

Concrete ptr address: 0xc33aal

Hint: Open your debugger and set conditional breakpoints in the various
routines involved where this node object is first created with this
concrete object and in all of the RCP objects of the type given above

use this node object. Debugging an error like this may take a little work
setting up your debugging session but at least you don't have to try to
track down a segfault that would occur otherwise!

Sandia
m National
Laboratories

P '
} Outline

« Background

* QOverview of Teuchos Memory Management Utility Classes

Introduction

Management of single objects

Management for arrays of objects

Handling of circular references

Runtime checking of dangling references

Usage of Teuchos utility classes as data objects and as function arguments

« Challenges to using Teuchos memory management utility classes

« Wrapup

Sandia
m National
Laboratories

%‘ Class Data Member Conventions for Arrays

* Uniquely owned array, expandable (and contractible)
Array<T> a ;

« Shared array, expandable (and contractible)
RCP<Array<T> > a ;

« Shared array, fixed size
ArrayRCP<T> a ;

— Advantages:
* Your class object can allocate the array as arcp (size)
 Or, you class object can accept a pre-allocated array from client
=> Allows for efficient views of larger arrays

» The original array will be deleted when all references are removed!

Warning! Never use Teuchos: :ArrayView<T> as a class data member!
- ArrayView is never to be used for a persisting relationship!

— Also, avoid using ArrayView for stack-based variables

Sandia
National
Laboratories

- '
% unction Argument Conventions : Single Objects, Value or Reference

« Non-changeable, non-persisting association, required
const T &a

* Non-changeable, non-persisting association, optional
const Ptr<const T> &a

« Non-changeable, persisting association, required or optional
const RCPLT> &a

» Changeable, non-persisting association, optional
const Ptr<T> &a

« Changeable, non-persisting association, required

const Ptr<T> &a

or
T &a

« Changeable, persisting association, required or optional
const RCP<const T> &a

Even if you don’t want to use these conventions you still have to
document these assumptions in some way!

National

Increases the vocabulary of you program! => Self Documenting Code! mh Santia
Laboratories

#unction Argument Conventions : Arrays of Value Objects

« Non-changeable elements, non-persisting association
const ArrayView<const T> &a

* Non-changeable elements, persisting association
const ArrayRCP<const T> &a

» Changeable elements, non-persisting association
const ArrayView<T> &a

« Changeable elements, persisting association
const ArrayRCPLT> &a

« Changeable elements and container, non-persisting association
const Ptr<Array<T> > &a

or
Array<T> &a

» Changeable elements and container, persisting association
const RCP<Array<T> > &a

Warning!
Never use const Array<T>& => use ArrayView<const T>&

Never use RCP<const Array<T> >& => uUsSe ArrayRCP<const T>&
URY isGoraiores

- '
} unction Argument Conventions : Arrays of Reference Objects

* Non-changeable objects, non-persisting association
const ArrayView<const Ptr<const A> > &a

* Non-changeable objects, persisting association
const ArrayView<const RCP<const A> > &a

* Non-changeable objects, changeable pointers, persisting association
const ArrayView<RCP<const A> > &a

« Changeable objects, non-persisting association
const ArrayView<const Ptr<A> > ¢&a

« Changeable objects, persisting association
const ArrayView<const RCP<A> > ¢&a

« Changeable objects and container, non-persisting association
Array<Ptr<A> > &a or const Ptr<Array<Ptr<A> > > &a

« Changeable objects and container, non-persisting container, persisting objects

Array<RCP<A> > ¢&a or const Ptr<Array<RCP<A> > > &a

« Changeable objects and container, persisting assoc. container and objects
const RCP<Array<RCP<A> > > &a

 And there are other use cases!

h

Sandia
National
Laboratories

P '
} Outline

« Background

* High-level philosophy for memory management

« Existing STL classes

* Overview of Teuchos Memory Management Ultility Classes

« Challenges to using Teuchos memory management utility classes

« Wrapup

Sandia
m National
Laboratories

- '
% Challenges for Incorporating Teuchos Utility Classes

* More classes to remember

— However, this increases the vocabulary of your programming environment!

=> More self documenting code!

» Implicit conversions not supported as well as for raw C++ pointers

— Avoid overloaded functions involving these classes!

« Refactoring existing code?

First, we maintain backward compatibility!
Internal Trilinos code? => Not so hard but we need to be careful

External Trilinos (user) code? => Harder to upgrade “published” interfaces but
manageable [Folwer, 1999]

Sandia
National
Laboratories

_ '
% Outline

« Background

* High-level philosophy for memory management

« Existing STL classes

* Overview of Teuchos Memory Management Ultility Classes

« Challenges to using Teuchos memory management utility classes

« Wrapup

Sandia
m National
Laboratories

}j Teuchos classes verses boost/C++0x classes

« Teuchos provides complete system of low-level types to replace all raw C++
pointers in high-level C++ code
=> Avoids all raw pointers at application level => safer code
=> Boost and C++0x do not
« Teuchos classes throw exceptions in debug mode
=> Makes unit tests easier to write
=> Boost classes can be made to? Not sure about compatibility issues?
=> Not sure of g++ checked STL can?
« Teuchos reference-counting classes have optional debug tracking mode to catch
and diagnose circular references

=> Helps to diagnose tricking circular reference problem (e.g. NOX, Tpetra,
AztecOO/Thyra adapters)
=> Nothing like this in boost (yet). => Might use sp_scalar_constructor_hook(...)?
« Teuchos reference-counted classes are two-way compatible with Boost/C++0x
reference-counted classes
— e.g. see teuchos/test/MemoryManagement/RCP _test.cpp
— You don’t have to pick on implementation of for all code!
« We control Teuchos, we can’t control/change boost
=> Modifying our own version of boost classes would be incompatible with other code
=> Can’t assume other code has not also used the “hooks”

* You can’t mix and match Teuchos view classes and boost/C++0x classes and

have strong debug runtime checking => Internal details must be shared! (g Eaé‘.gr%.

o '
}. Next Steps

* Do detailed performance study on different platforms/compilers

« Write a detailed technical report describing these memory management classes

« Encourage the assimilation of these classes into more Trilinos and user software
(much like was done for Teuchos::RCP)

— Prioritize what to refactor based on risk and other factors

Make memory leaks and segfaults a rare occurrence!

Sandia
m National
Laboratories

=X 4
& Conclusions

« Using raw pointers at too high of a level is the source of nearly all memory
management and usage issues in C++ (e.g. memory leaks and segfaults)

* Memory checking tools like Valgrind and Purify will never be able to sufficiently
verify our C++ programs

« Boost and C++0x libraries do not provide a sufficient integrated solution

« Teuchos: :RCP has been effective at reducing memory leaks of all kinds but we
still have segfaults (e.g. array handling, off-by-one errors, etc.)

 New Teuchos classes Array, ArrayRCP, ArrayView, and Tuple, allow for
safe (debug runtime checked) use of contiguous arrays of memory but very high
performance in an optimized build

* Much Trilinos software will be updated to use these new classes

» Deprecated features will be maintained along with a process for supporting
smooth and safe user upgrades

» Adetailed technical report will be written to explain all of this

Sandia
m National
Laboratories

The End

THE END

[Martin, 2003] Robert C. Martin, Agile Software Development: Principles, Patterns,
and Practices, Prentice Hall, 2003

[Meyers, 2005] Scott Meyers, Effective C++: Third Edition, Addison-Wesley, 2005
[Sutter & Alexandrescu, 2005], C++ Coding Standards, Addison-Wesley, 2005
[Fowler, 199] Martin Fowler, Refactoring, Addison-Wesley, 1999

References:

Sandia
m National
Laboratories

