
Page 1

APP + Trilinos Integration

Status, Opportunities, and Challenges

Roscoe A. Bartlett

http://www.cs.sandia.gov/~rabartl/

Department of Optimization & Uncertainty Estimation

Sandia National Laboratories

Trilinos User Group Meeting, October 23, 2008

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

SAND2008-7716P

Page 2

Current Status of APP + Trilinos Integration

• Charon + Trilinos Integration:

– ASC FY07 Vertical Integration Milestone

– Automated daily integration testing done against Trilinos 7.0, 8.0, and Dev

– Charon could not upgrade to Trilinos 8.0 last year because Xyce did not upgrade

– Charon will release against Trilinos 7.0 later this quarter!

– John Shadid is building and running Charon against recent snapshots of Trilinos
Dev

– Charon was not tested against Trilinos 9.0 and there is no interest from the semi-
conductor side

– What about Xyce + Charon + Trilinos integration?

– Conclusion: Current Trilinos release process has little impact on Charon

• Xyce + Trilinos Integration:

– Ad-hoc manual integrations with Xyce + Trilinos Dev was done prior to branch of
Trilinos Release

– Testing of Xyce + Trilinos 9.0 brach was *not* done => Xyce can not build against
Trilinos 9.0 and it has consumed several weeks worth of effort!

Page 3

Current Status of APP + Trilinos Integration

• Alegra + Trilinos Integration:

– Automated testing of Alegra + Trilinos Dev was conducted before Trilinos 9.0
branch ... Several problems were resolved before Trilinos 9.0 was branched!

– Alegra switched over to Trilinos 9.0 after branch (but stopped testing against
Trilinos Dev)

– New Xyce TPL depends on Trilinos with versioning issues

– Alegra was ready to switch to Trilinos 9.0 by 10/15 but could not because Xyce
does not build against Trilinos 9.0!

– Alegra would like to do a Alegra + Xyce + Trilinos Dev daily integration to support
their work!

• Aleph + Trilinos Integration:

– They take snapshot of Trilinos Dev from time to time and build against that

– Automated testing of Aleph against Trilinos Dev Shapshot

– Aleph would be very interested to use the STK IO capabilitily that might be moved
into Trilinos?

– In this case, they would be very interested in doing daily integration with Trilinos
Dev ...

Page 4

Current Status of APP + Trilinos Integration

• Titan/VTK + Trilinos Integration:

– They currently do informal builds against snapshots of Trilinos Dev

– They have already experienced a regression between updated snapshots

– They want to move to automated daily integration testing with Trilinos Dev

• SIERRA + Trilinos Integration:

– Driven by Algorithm Integration Project

• Embedded algorithms in SIERRA

– SIERRA does *not* use the Trilinos build system, they build Trilinos with BJAM

– Developer environment built constructed with Python scripts (STANA scripts)

– Daily integration testing for all of SIERRA + Trilinos Release and Dev

– Continuous Integration testing done every two hours for Aria + Trilinos Release
and Dev

– Extensive testing and porting before the branch of Trilinos 9.0

– Upgrade to Trilinos 9.0 went very smoothly

• Transition to Trilinos 9.0 was done in less than one week (could have been done in one
day)

Page 5

SIERRA + Trilinos Integration: STANA Website

http://sierra-trac.sandia.gov/trac/sierra/wiki/Modules/Aria/SubProjects/STANA

http://sierra-trac.sandia.gov/trac/sierra/wiki/Modules/Aria/SubProjects/STANA

Page 6

Lean/Agile Software Engineering Principles

• High quality software is developed in small increments and with sufficient
testing in between sets of changes.

• High quality defect-free software is most effectively developed by not
putting defects into the software in the first place (i.e. code reviews, pair
programming etc.).

• High quality software is developed in short fixed-time iterations.

• Software should be delivered to real (or as real as we can make them)
customers is short intervals.

• Ruthlessly remove duplication in all areas.

• Avoid points of synchronization. Allow people to work as independently as
possible and have the system set up to automatically support this.

• Most mistakes that people make are due to a faulty process/system (W.
Edwards Deming).

• Automation is needed to avoid mistakes and improve software quality.

References: http://www.cs.sandia.gov/~rabartl/readingList.html

http://www.cs.sandia.gov/~rabartl/readingList.html

Page 7

Regression!

Lean/Agile Methods: Development Stability

Code instability
or

#defects

Time

Release X Branch for
Release X+1

Release X+1

Common Approach
NOT AGILE!

Problems

• Cost of fixing defects increases the longer they exist in the code

• Difficult to sustain development productivity

• Broken code begets broken code (i.e. broken window phenomenon)

• Long time between branch and release

– Difficult to merge changes back into main development branch

– Temptation to add “features” to the release branch before a release

• High risk of creating a regression

Page 8

Lean/Agile Methods: Development Stability

Code instability
or

#defects

Time

Release X Branch for
Release X+1

Release X+1

The Agile way!

Advantages

• Defects are kept out of the code in the first place

• Code is kept in a near releasable state at all times

• Shorten time needed to put out a release

• Allow for more frequent releases

• Reduce risk of creating regressions

• Decrease overall development cost

Page 9

APP Only Upgrades After Each Major Release of Trilinos

Trilinos Head

APP Head

APP Y+1 & Trilinos X+1
release

Testing: APP VOTD + Trilinos X APP VOTD
transition
to Trilinos
X+1

Testing:
APP VOTD + Trilinos X+1

• Transition from Trilinos X to Trilinos X+1 can be difficult and open ended

• Large batches of changes between integrations

• Greater risk of experiencing real regressions

• Upgrades may need to be completely abandoned in extreme cases

Trilinos X+1 release

Page 10

APP Builds Against both Trilinos Release and Trilinos Dev

APP (SIERRA)
VOTD

Trilinos
Release

Trilinos
Dev

N
e

w

APP (SIERRA)
Developers

APP + Trilinos
Dev Developers

Trilinos Dev
Developers

• APP (SIERRA) VOTD Developers only build/test against Trilinos Release

• Changes between Trilinos Release and Trilinos Dev handed through:

– Refactoring

– Minimal ifdefs (NO BRANCHES)!

• Trilinos Dev Developers work independent from APP

• Use of staggered releases of Trilinos and APP

• APP + Trilinos Dev Developers drive new capabilities

Page 11

APP Builds Against both Trilinos Release and Trilinos Dev

Trilinos Head

APP Head

APP Y+1 & Trilinos X+1
release

Testing: APP VOTD + Trilinos X
Testing: APP VOTD + Trilinos Dev

Testing:
APP +
Tri Dev
Tri X
Tril X+1

• All changes are tested in small batches

• Low probability of experiencing a regression

• Extra computing resources to test against 2 (3) versions of Trilinos

• Some difficulty flagging regressions of APP + Trilinos Dev

• APP developers often break APP + Trilinos Dev

• Difficult for APP to have rely on Trilinos too much

• Hard to verify Trilinos for APP before APP release

Trilinos X+1 release

Testing: APP VOTD + Trilinos X+1
Testing: APP VOTD + Trilinos Dev

SIERRA + Trilinos Integration!

Page 12

Challenges of APP + Trilinos Release and Dev Integration

APP (SIERRA)
VOTD

Trilinos
Release

Trilinos
Dev

N
e

w

APP (SIERRA)
Developers

APP + Trilinos
Dev Developers

Trilinos Dev
Developers

Problems

• APP developers sometimes break APP
+ Trilinos Dev New

• APP + Trilinos Dev inherits instability of
APP and Trilinos development lines

Improvements

• Make Trilinos Dev backward compatible
with Trilinos Release

=> Minimize need to refactor and ifdef

• Improve stability of Trilinos Dev

• Improve stability of APP VOTD

Page 13

SIERRA + Trilinos Integration: Opportunities and Challenges

• SIERRA Framework Developers would like to consider tighter integration
with Trilinos:

– Move new SIERRA toolkits packages into Trilinos

• STK_Mesh

• STK_IO?

=> Make these available for rapid production and other projects

– Develop the FEI through Trilinos instead of a SIERRA TPL

=> Allow FEI to be updated more frequently

– Replace SIERRA code with Trilinos code:

• Teuchos::ParameterList

• Intrepid

• Phalanx

=> Reduce duplication and increase Trilinos impact

• Challenge: Tighter integration of APP and Trilinos does not fit well
into current APP + Trilinos Release and Dev model!

Page 14

APP + Trilinos Integration: Problems with Tighter Integration

SIERRA
VOTD

Trilinos
Release

Trilinos
Dev

N
e

w

STK
Mesh

Problems

• Development of STK Mesh requires
new features in Trilinos packages (i.e.
Teuchos)

• STK Mesh built against Trilinos Release
will not have some features!

Approach?

• Check out STK Mesh from Trilinos
separately to build with SIERRA?

• Ifdef STK Mesh to build against both
Trilinos Release and Trilinos Dev?

Page 15

APP + Trilinos Integration: Problems with Tighter Integration

Trilinos Head

SIERRA Head

SIERRA Y+1 & Trilinos X+1
release

Trilinos X+1 release

Activity: Develop new features of STK Mesh
(new) with new Trilinos Dev features

Test: SIERRA + STK Mesh + Trilinos Release
Test: SIERRA + STK Mesh (new) + Trilinos Dev

Any new development
of STK Mesh (new)
against Trilinos Dev
will not impact release
SIERRA Y+1!

Activity: Develop new
features of STK Mesh
(new) with new
Trilinos Dev features

Conclusion: This will be complex and may involve risk!

Is there another way?

Page 16

APP + Trilinos Integration: Different Collaboration Models

• APP only upgrades after each major release of Trilinos

– Little to no testing of APP + Trilinos Dev in between versions

• APP builds against both Trilinos Release and Trilinos Dev

– APP developers work against Trilinos Release

– APP + Trilinos team(s) build against Trilinos Dev

– Nightly and continuous integration testing done for both APP + Trilinos Release
and Dev

– Must handled staggered releases of Trilinos and APP

• APP developed only against Trilinos Dev

– APP developers work directly against Trilinos Dev checked out every day

– Releases best handled as combined releases of APP and Trilinos

Page 17

APP developed only against Trilinos Dev

Trilinos Head

APP Head

APP Y+1 & Trilinos APP Y+1 release

Testing: APP VOTD + Trilinos Dev

Supported with continuous integration testing!

Trilinos APP Y+1 release

Future of SIERRA + Trilinos Integration?

• All changes are tested in small batches

• Low probability of experiencing a regression

• Less computing resources for testing

• Regressions and flagged immediately by APP developers

• Can support tighter integration efforts

• Supports rapid development of new capability from top to bottom

• Requires Trilinos to be more stable

• Other issues arise as well

Page 18

Challenges with APP-Specific Trilinos Releases

Xyce J+1
(released against

Trilinos X)

VTK M+1
(released against

Trilinos X+1)

Multiple releases of Trilinos presents a possible problem with complex applications

Solution:

=> Provide perfect backward compatiblity of Trilinos X through Trilinos SIERRA Y+1

SIERRA Y+1
(released against

Trilinos SIERRA Y+1)

Trilinos
SIERRA

Y+1?

Page 19

APP + Trilinos Continuous Integration: Solutions

• Proposed appraoch:

– Develop APP VOTD directly against Trilinos Dev (not against Trilinos Release)

– Create special releases of Trilinos just for these APPs

– APP-specific releases only needed for these special APPs where tighter
integration is needed

– Protect development work with continuous integration server and feedback

• Improvements to Trilinos needed to support this:

– Improve the stability “Stable” code in Trilinos Dev (see later presentation)

– Preserve perfect backward compatibility for Trilinos for some period of time

=> Allows some flexibility of what version of Trilinos gets used

– Improve other related software engineering practices

See the talk:

“Maintaining stability of Trilinos Dev - Stable vs Experimental Code”

