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Motivation for Current Work

• Hypersonic Aerodynamics/Aerothermodynamics

– Aerodynamic forces and moments

– Heat transfer 

• Ablative thermal protection systems

– Surface material removal to reduce overall heat load

– Shape change is usually significant

• Ablation depends on:

– Initial vehicle shape -- aerodynamics

– Material for thermal protection system -- aerothermodynamics

– Flight environment -- trajectory

In general, the above effects are not separable and are 
usually tightly coupled



Background

• Historically, ablation prediction and coupling 
mechanisms have taken many forms

– Engineering methods -- “simple” geometries
• “Cold wall” inviscid/boundary layer techniques

• 1-D or 2-D material thermal response hot wall corrections 

– High fidelity methods -- “complex” geometries
• “Hot wall” flow field predictions (VSL, PNS, Full NS)

• Coupled, multi-dimensional material thermal response with 
energy and mass transfer (with and without shape change)

• Ablation is frequently computed independent of the trajectory

– The trajectory in many cases is determined a priori

– Shape change and ablation chemistry effects are not 
accounted for in the aerodynamics or  trajectory analysis



SACCARA / COYOTE / TAOS
-- Iterative Aero/Thermal Coupling
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SACCARA / COYOTE / TAOS
-- Iterative Aero/Thermal Coupling

• User chooses initial trajectory point and time intervals

• Extrapolation initially used to estimate surface properties and 
aerodynamic coefficients at Trajectory Point n+1

• COYOTE and TAOS integrated in time from Trajectory Point n 
to n+1, assuming linearly varying properties from SACCARA

– heat transfer, pressure, recovery enthalpy for COYOTE

– aerodynamic coefficients for TAOS

• Updated properties from COYOTE and TAOS at Trajectory 
Point n+1 used as boundary conditions for SACCARA

– surface shape, temperature, mass flux, and mass fractions 
from COYOTE

– altitude and freestream velocity from TAOS

• Iteration continued until surface properties and aerodynamic 
coefficients converge to less than 1% difference



IRV-2 Vehicle and Numerical Meshes

x (m)

y
(m

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

x (m)
y

(m
)

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22 Flowfield Mesh, 6 x (64 x 64 ) Cells

Carbon-Carbon Mesh

Carbon Fiber Flake Mesh

Aluminum Mesh

4840 elements}



SACCARA / COYOTE
-- Stagnation Point Results



SACCARA / COYOTE
-- Stagnation Point Results



SACCARA / COYOTE
-- Shape Comparison



SACCARA / COYOTE / TAOS
-- Heating and Temperature Profiles
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SACCARA / COYOTE / TAOS
-- Flow field and Solid Temperatures
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Coupled Aero/Thermal Reentry 
-- Nosetip Ablation Demonstration
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3-D Ablation 
-- Initial Nosetip Mesh and Mach Contours
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3-D Ablation 
-- Surface Heat Flux and Temperature

Time = 9 sec, Altitude = 43.9 km, AoA = 10 deg 
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3-D Ablation 
-- Surface Mass Flux and Recession
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Ablation development plan

• SNL is developing a high Mach number 
computational aero capability under ASC in 
SIERRA

• This module (Aria) will be combined with the 
thermal analysis module to enable simulation of 
aerothermal reentry applications

• Current status:  

– Euler equations 

– Finite rate chemistry

– Laminar Navier-Stokes

– 2nd order spatial discretization

– 1st and 2nd order time discretization



Ablation development plan

• Short-term development list (FY09)

– Implement general chemical kinetics for air

– Implement finite rate chemistry for Navier-Stokes

– Surface energy balance: assume heat and mass 
transfer coefficients are equal

– Conjugate heat transfer: pass surface flux to 
thermal and receive wall temperature back to 
fluids module

– Blowing wall boundary condition with surface 
chemistry – ablation products will react with flow 
species

– Turbulence model implementation



Ablation development plan

• Longer-term development list (FY10)

– More sophisticated surface energy balance

– Moving surface mesh via ALE

• smoothing algorithm in solid to prevent tangling


