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Purposes of the peridynamic model

- To treat material with cracks using the same equations as without cracks.
- To treat discrete particles using the same equations as continua.

- Why do this?
- The standard theory is not a good tool for modeling cracks.

- PDEs do not apply on discontinuities or to discrete particles.

- This leads to the need for special techniques when cracks are present.
- No natural way to couple atoms to continua.
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Strategy

Replace the standard PDEs with integral equations.

- The integral equations involve interaction between points
separated by finite distances (nonlocality).

- The integral equations are not derivable from the PDEs.
- But they converge to the PDEs in the limit of small length scales.
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Bond-based peridynamic model

The original (2000) peridynamic model...
pu(x,t) = / flu(x',t) —u(x,t),x — x) dVy + b(x, 1),
H

u=displacement, b=body force density

f=pairwise force function (force/volume?)

d=horizon
Sums up the forces that all the x’ exert on x.
x' +u(x',t) |f N
k\
Deformed bond Bond
breakage

X + u(x,t) 5
\ / >
m‘){ / Bond strain

X
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A

EMU numerical method and material model
incorporate damage at the bond level

- Integral is replaced by a finite sum: resulting method is meshless and

Lagrangian.
- Parameters come from measurable elastic-plastic and fracture data for
materials.
pu; = Zf(”Z —u;,x, —x, )AV, +b(x,,1) All material-specific
keH

behavior is contained in
the function £

® T Bond force
o
Bond failure
o :
Compressio |f s Tension
¢ n 5 Bond stretch
[ g
Iy,
[
® Yielding
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Peridynamic theory:
Energy required to advance a crack

- Adding up the work needed to break all bonds across a line yields the energy release
rate:

G = 2hf [wydvds
0OR

A

Crack\v

w, = work to break one bond

There is also a version of the J-integral that applies in this theory.
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Transition to unstable crack growth

Defect

Crack turning in a 3D feature
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Impact and fragmentation @ Sandia
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Peeling
Balloon pop
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Bond based PD:
Dynamic fracture

Crack growth direction —»

Calculated damage contours

Crack instability in PMMA
(Fineberg & Marder, 1999)

Dynamic fracture in steel
(Kalthoff & Winkler, 1988)
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Bond based PD:
Damage in composites (Boeing)

- How does the fraction of fibers in each direction affect the direction of crack growth?
- What damage occurs when a composite panel is struck by hail?

Delamination caused by impact
Crack growth in a notched panel
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Magnified deformed shapes of splice of reinforcing bars in concrete at
three stages
(fine discretization - grid spacing is 0.03 m)
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Multiscale high-rate material modeling

- Grain-scale model includes all relevant physics.
. Statistical treatment leads to macroscale material model.

Combined compression and shear loading at boundaries
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Nonlocality and length scales

- Many physical problems have some natural length scale.

- Sometimes the length scale is obvious, e.qg.,
- Interatomic forces
- Molecular dynamics cannot be done without nonlocality.
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Nonlocality and length scales

- Sometimes the length scale is a little less obvious, e.q.
- van der Waals forces that lead to longer-range surface forces.
- Force between a pair of atoms as they are separated:
- Net force between halfspace and a sphere made of many of these
atoms* occurs over a much larger length scale:

Fsphere ~ 1/D

Sandia
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Nonlocality and length scales

- Macroscale: sometimes a length scale is determined by heterogeneity,
e.g., concrete aggregate size
Ia

- Yet damage can occur in a much larger process zone

See Bazant, .... @ —
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Nonlocality and length scales

- Homogenization, neglecting the natural length scales of a
system, often doesn’t give good answers.

Stress

Homogenized, local

Indentor
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Bond-based peridynamic model:
Observations

- Good things:

- Now have a mathematically consistent way to treat material with
cracks.

- No additional equations are needed to tell cracks what to do.
- Bad things:
- Independent bonds imply Poisson ratio = 1/4.

- Can have permanent deformation in bonds, but can’t enforce
plastic incompressibility.
- Can’t use material models from the standard theory.

Can overcome these limitations by allowing bonds to interact with each other.
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‘ Peridynamic states: Mathematical tool for
dealing with collections of bonds

A vector state A is a mapping from H to R?.

A scalar state a is a mapping from H to R.

=x' —xisabond. A(£)is avector. a(&) is a scalar.

A vector state is like a 2" order tensor, except:
- A vector state can be nonlinear.
- A vector state can be discontinuous.
— set of all bonds connected to x . @

Tensor maps a sphere
onto an ellipsoid.
(boring !)

Vector state maps a
sphere onto anything.
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Dot product of two vector states

Suppose A and B are two vector states. Define the dot product of

A and B by
/A §) dVe.

The set of all vector states V is an inner product space (even though
each A € V is a nonlinear mapping.)
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Functions of states
and Frechet derivatives

Suppose W(-) is a scalar-valued function of a vector state A. For
any differential dA let

10 = V(A + dA) — U(A).
If there is a vector state VW such that

d¥V = VV e dA
for any dA then VWV is the Frechet derivative of W at A.
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Deformation states

The deformation state Y |x, ] maps any bond connected to x into
its deformed image.

@&

X[Xv ﬂ <X/ - X> = S’(le t) - S’(Xa t)
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Deformation states contain
a lot of kinematical complexity

Y (£) is the deformed image of any bond &.

Y(¢)
&V o —
()
Z7/IN \\
//1\\ \\
Undeformed bonds connected to x Deformed bonds connected to x
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Elastic materials

Strain energy density at x depends only on the deformation state
there:

N

Wix,t) = W(Y|x, 1)) (1)

Is this really so different from the standard theory?

Standard: Peridynamic:
. (Oy )
W = WY
(2 /<>
Energy depends on a Energy depends on a
linear transformation nonlinear transformation
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Equation of motion from Hamilton’s principle

Hamiltonian:

H = //W—puu—b}dth

Euler-Lagrange equation (equation of motion):

plx it 1) = [ {The. 10 =) =TI (x -

x') }de, +b(x, 1)

where T is the force state:

T(Y) = VIWV(Y)

1.€.,

AW = / Y (&) dVe
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Can now treat pressure-volume response
as decoupled from distortional response

Volume

1
— Isotropic force state I

\

Force state T

: : . . d
Deformation state Dlstocrltlon ___» Distortional force state ']
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PD material from a conventional model

Define an approximate deformation gradient tensor by

F(Y) = m /H Y(€) © € dVe VY

Now take any hyperelastic strain energy density function from the
standard theory ()(F) and set

W(Y) = QF(Y)) VY

Find that the force state is related to the PK stress by

08)
T(E) = ot o= (P

PD world Y T

AN o

. N -
Standard (boring) world F — o
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- EMU simulation with state-based peridynamic implementation
of large-deformation, strain-hardening, rate-dependent
material model.

- Material model implementation by J. Foster, SNL 5431.

0% strain 100% strain
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Contours of axial velocity @ Sandia
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PD states can model
interesting collective behavior

Consider a material that responds to angle changes between bonds
at +180°.

W(Y) = [ (0(6) — 7)" dVe oy

After evaluating the Frechet derivative, find that
the force state resists these angle changes.

1) |
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Discrete particles and PD states

N —body potential:

U(Yl? Yo, ... ayN)v

V1i,...,yn = deformed positions, Xi,...,xy = reference positions.

Define a PD body by

~

W(Y,x) = dg(x—x0)U (Y (x1—X0), Y {Xo—Xq), ..., Y{Xn—X0)),

/'
Dirac delta p(x) - Z 5d<X N Xi)Mi\ .
i Particle mass

where X is an arbitrary point. Can show the PD equation of motion

implies
Ma(x;, t) ou =1 N o}i /oX3
WX, U) = — y t=1...
i F = F3
Have represented discrete particles as a continuum XQ'/F2
O
X0
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Convergence of peridynamics to
the standard theory

- Suppose we change the horizon while holding the bulk properties (e.g., bulk
modulus) fixed.
- If the deformation is continuous, the kinematical approximation

y(x+§) - y(x) = F(x)§ + o(|§[)

becomes more and more accurate. Sequence of horizons

- Therefore R

also becomes more accurate.
- The peridynamic force density is closely approximated by

oW

L ~ . —_
(x) = V-0, o=
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Conclusions

- The peridynamic approach offers a consistent mathematical framework for
discontinuous problems.

- Basic equations can be applied directly on cracks.
- Nonlocality is inherent in the method, length scale is variable.
- Discrete particles are treated with the same equations as a continuum.
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