

The Peridynamic Model and Nonlocality

Stewart Silling, Richard Lehoucq
Sandia National Laboratories
Albuquerque, New Mexico, USA

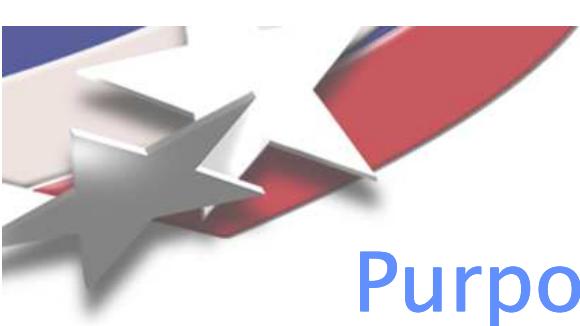
Olaf Weckner
The Boeing Company
Bellevue, Washington, USA

Symposium on Nonlocal Methods and Length Scale Effects

2008 ASME International Mechanical Engineering Congress and Exposition
Boston, MA

November 5, 2008

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.



Purposes of the peridynamic model

- To treat material with cracks using the same equations as without cracks.
- To treat discrete particles using the same equations as continua.

- Why do this?
 - The standard theory is not a good tool for modeling cracks.
 - PDEs do not apply on discontinuities or to discrete particles.
 - This leads to the need for special techniques when cracks are present.
 - No natural way to couple atoms to continua.

Strategy

Replace the standard PDEs with integral equations.

- The integral equations involve interaction between points separated by finite distances (nonlocality).
- The integral equations are not derivable from the PDEs.
 - But they converge to the PDEs in the limit of small length scales.

Bond-based peridynamic model

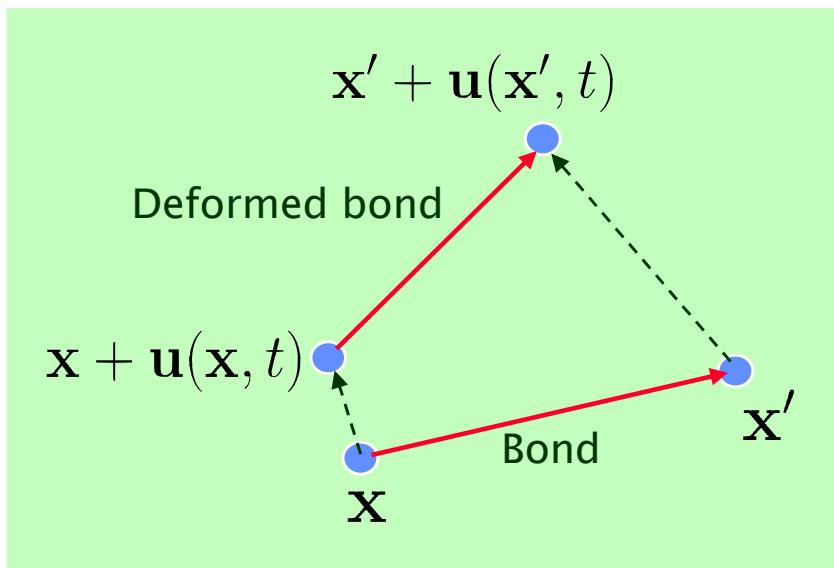
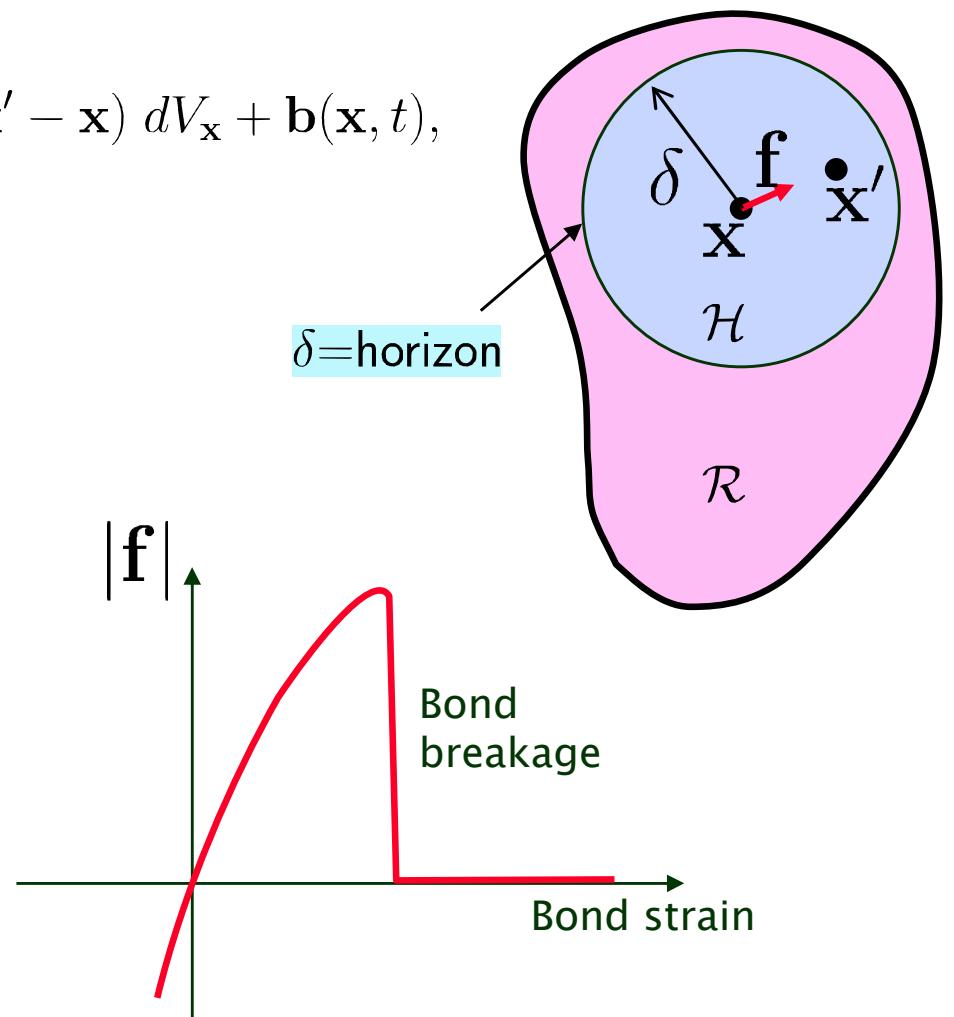
The original (2000) peridynamic model...

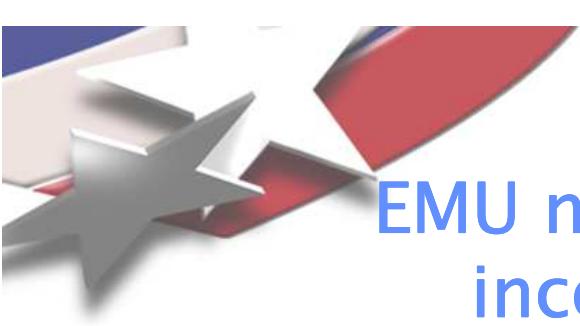
$$\rho \ddot{\mathbf{u}}(\mathbf{x}, t) = \int_{\mathcal{H}} \mathbf{f}(\mathbf{u}(\mathbf{x}', t) - \mathbf{u}(\mathbf{x}, t), \mathbf{x}' - \mathbf{x}) dV_{\mathbf{x}} + \mathbf{b}(\mathbf{x}, t),$$

\mathbf{u} =displacement, \mathbf{b} =body force density

\mathbf{f} =pairwise force function (force/volume²)

Sums up the forces that all the \mathbf{x}' exert on \mathbf{x} .

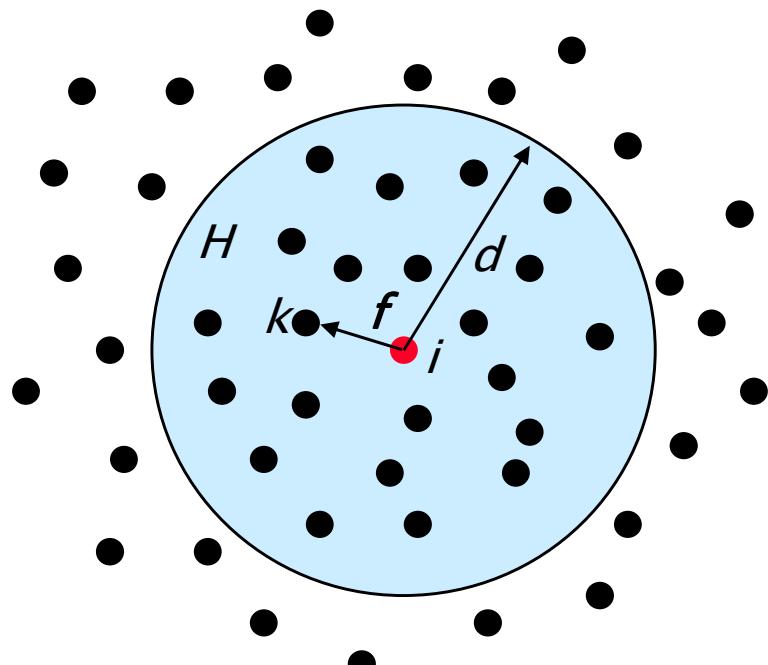




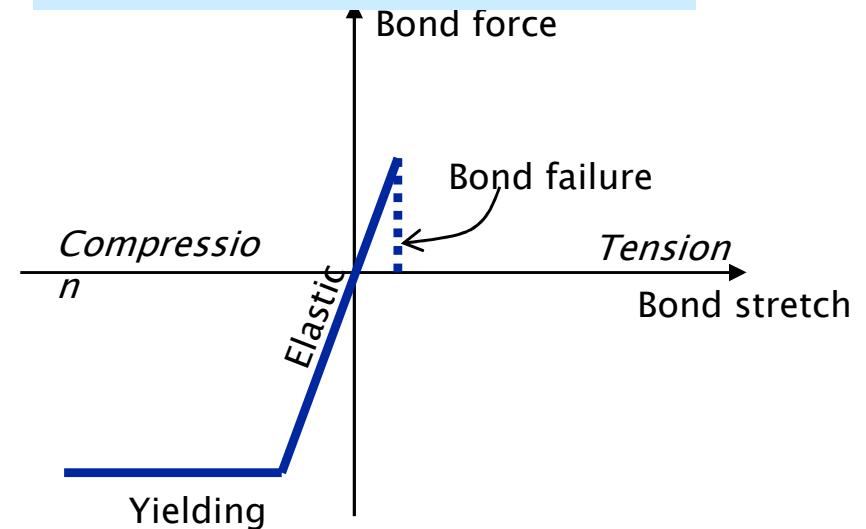
EMU numerical method and material model incorporate damage at the bond level

- Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.
- Parameters come from measurable elastic–plastic and fracture data for materials.

$$\rho \ddot{\mathbf{u}}_i^n = \sum_{k \in H} f(\mathbf{u}_k^n - \mathbf{u}_i^n, \mathbf{x}_k - \mathbf{x}_i) \Delta V_i + \mathbf{b}(\mathbf{x}_i, t)$$



All material-specific behavior is contained in the function f .

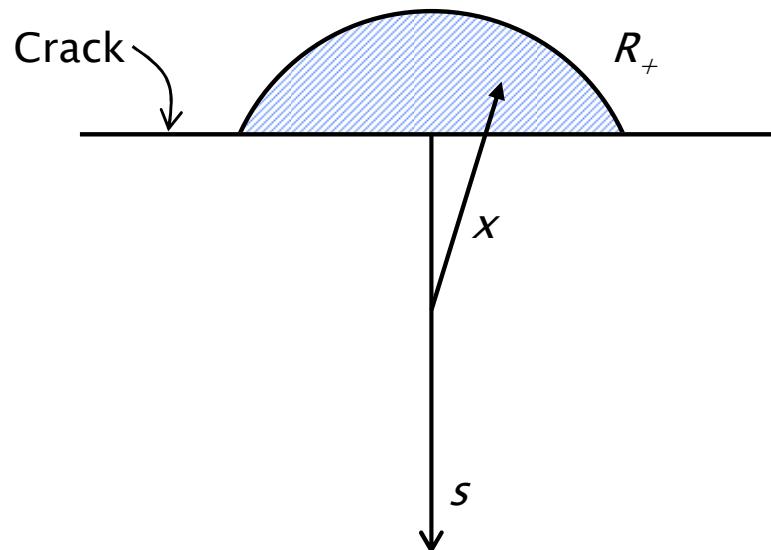
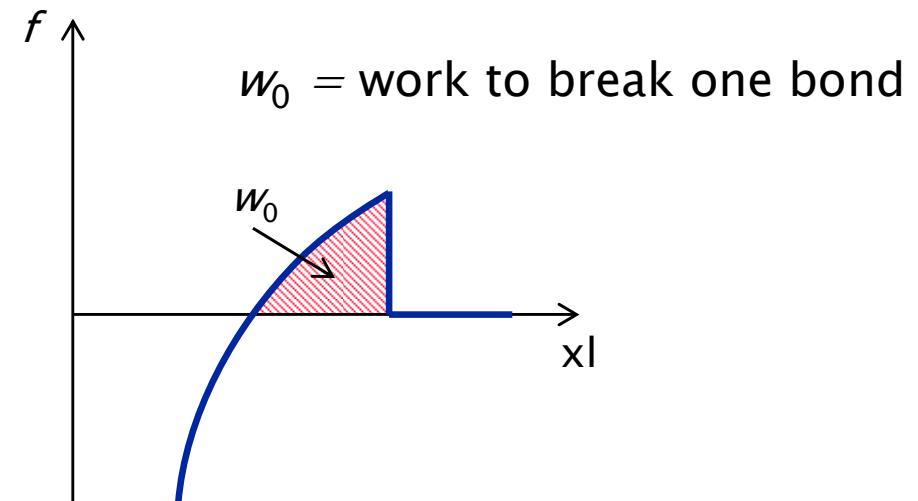




Peridynamic theory: Energy required to advance a crack

- Adding up the work needed to break all bonds across a line yields the energy release rate:

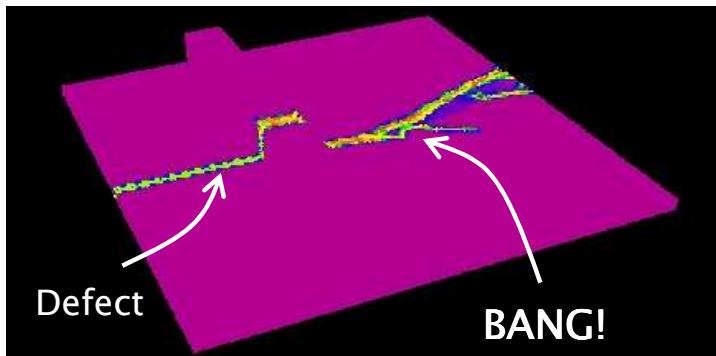
$$G = 2h \int_0^\delta \int_{R_+} w_0 dV ds$$



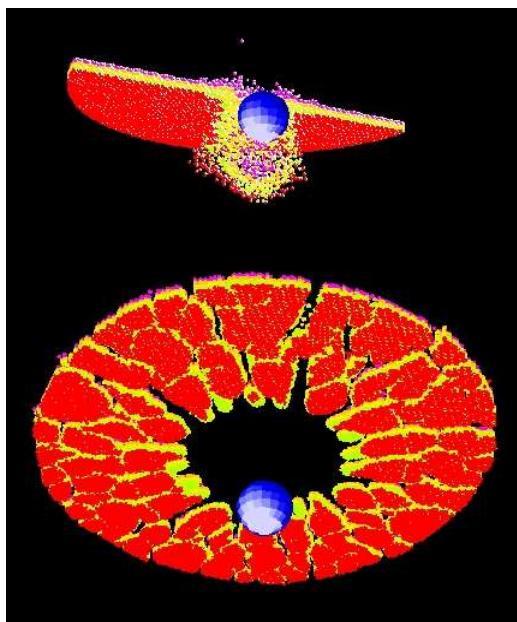
There is also a version of the J-integral that applies in this theory.



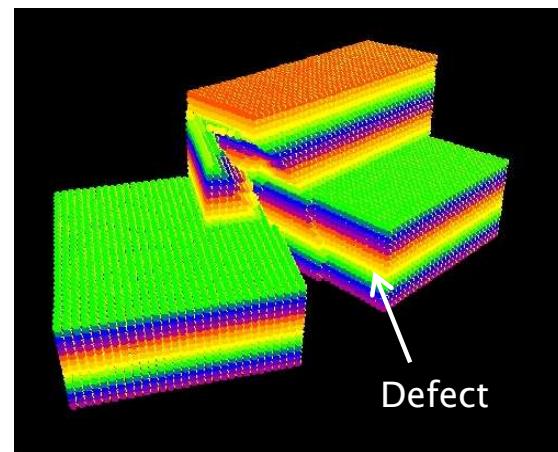
Bond based PD: Fracture and fragmentation



Transition to unstable crack growth



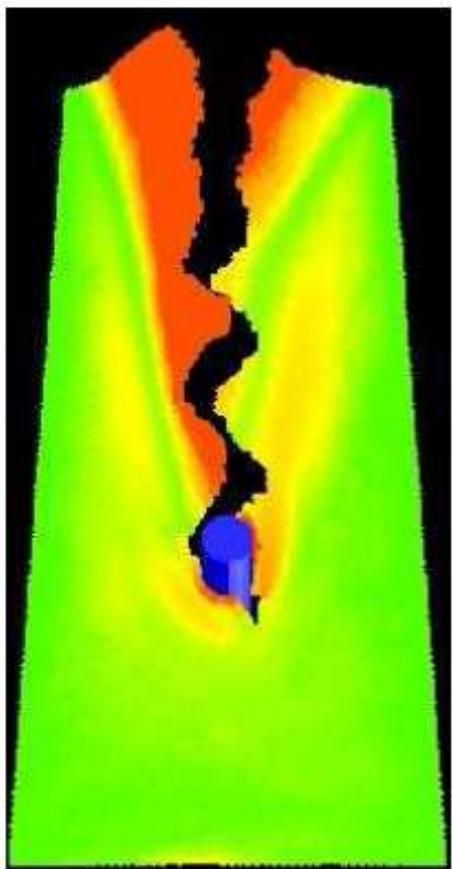
Impact and fragmentation



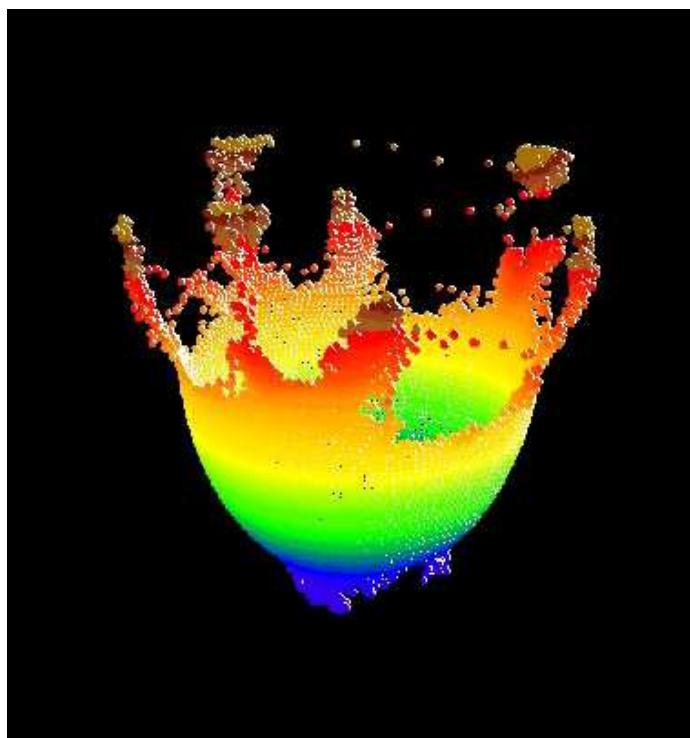
Crack turning in a 3D feature



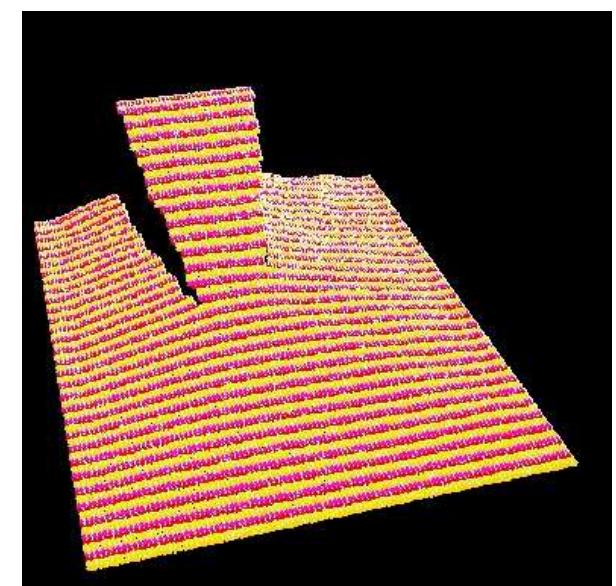
Bond based PD: Elastic membranes



Tearing instability



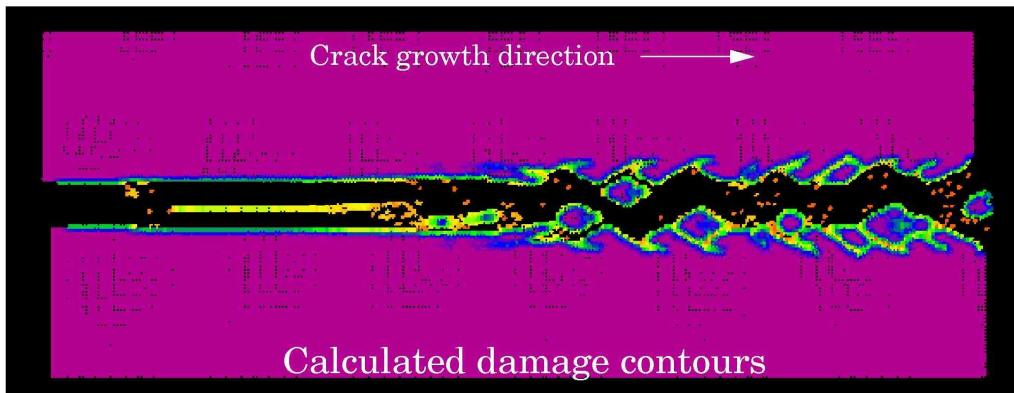
Balloon pop



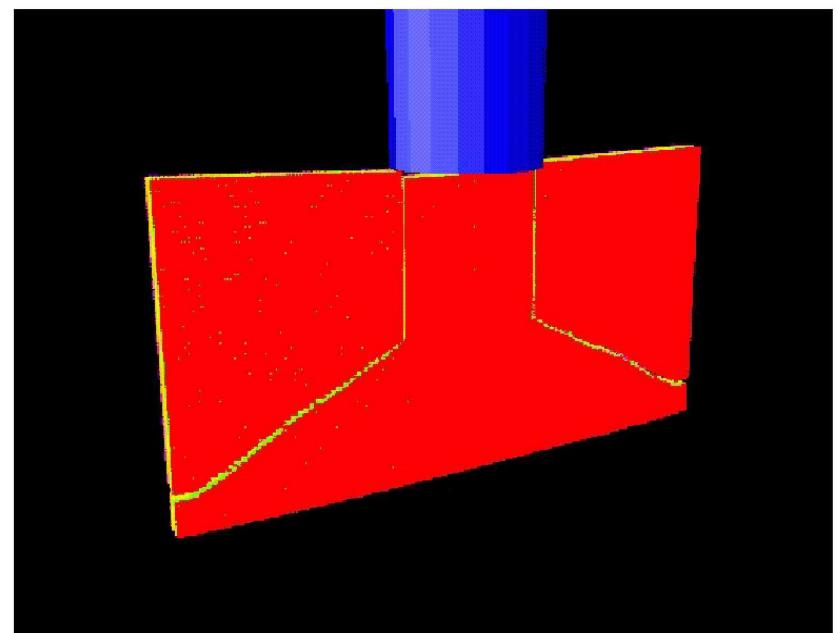
Peeling



Bond based PD: Dynamic fracture



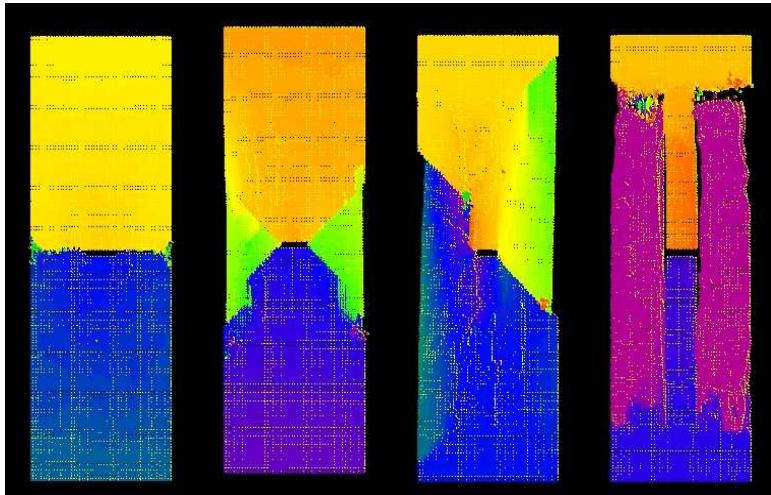
Crack instability in PMMA
(Fineberg & Marder, 1999)



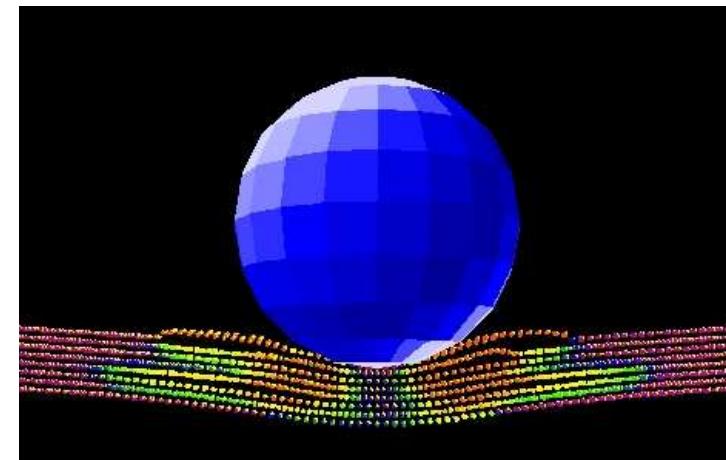
Dynamic fracture in steel
(Kalthoff & Winkler, 1988)

Bond based PD: Damage in composites (Boeing)

- How does the fraction of fibers in each direction affect the direction of crack growth?
- What damage occurs when a composite panel is struck by hail?

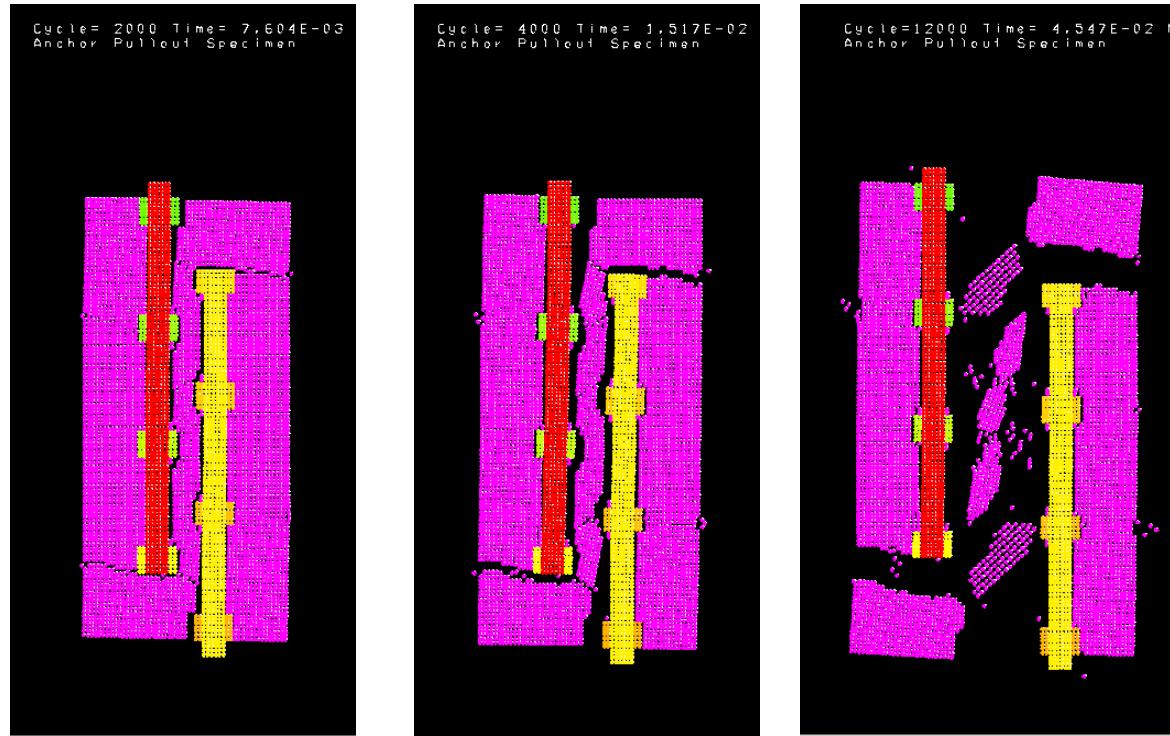


Crack growth in a notched panel

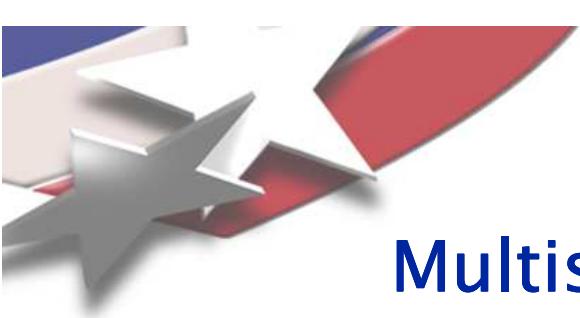


Delamination caused by impact

Splice of ribbed reinforcing bars

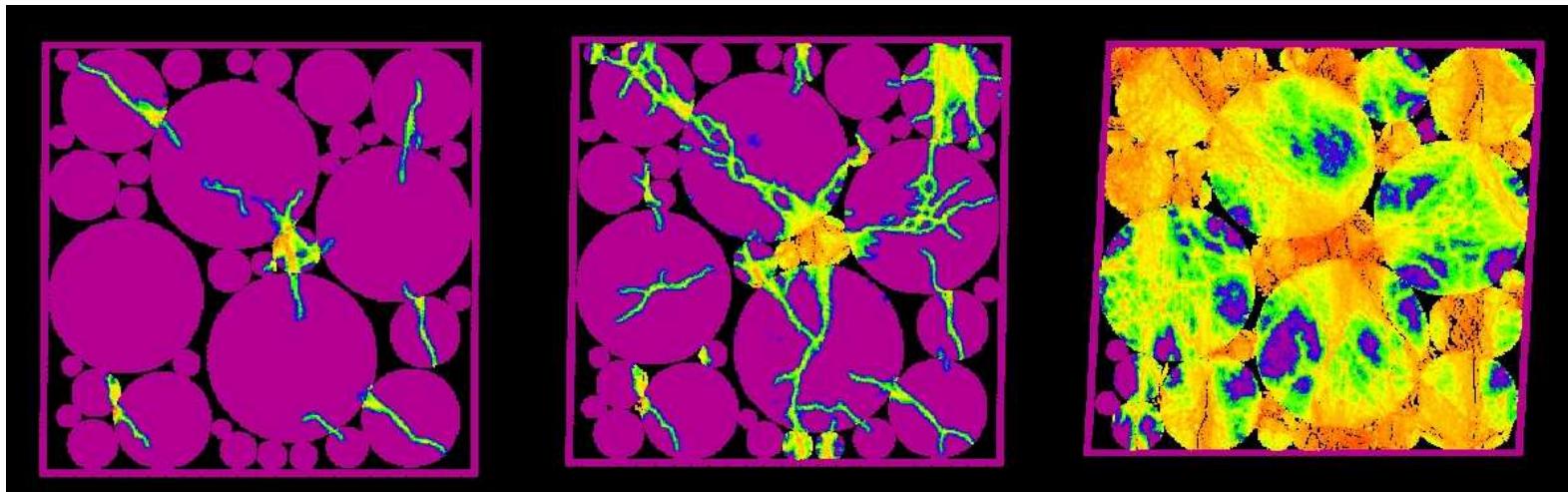


Magnified deformed shapes of splice of reinforcing bars in concrete at three stages
(fine discretization – grid spacing is 0.03 m)

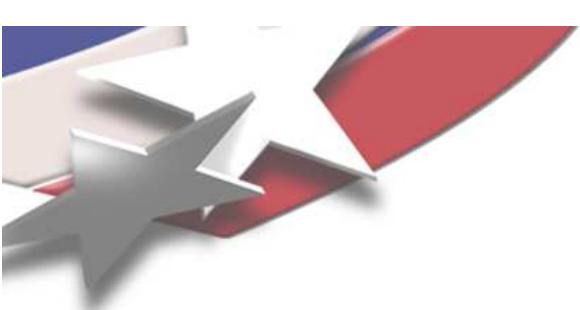


Multiscale high-rate material modeling

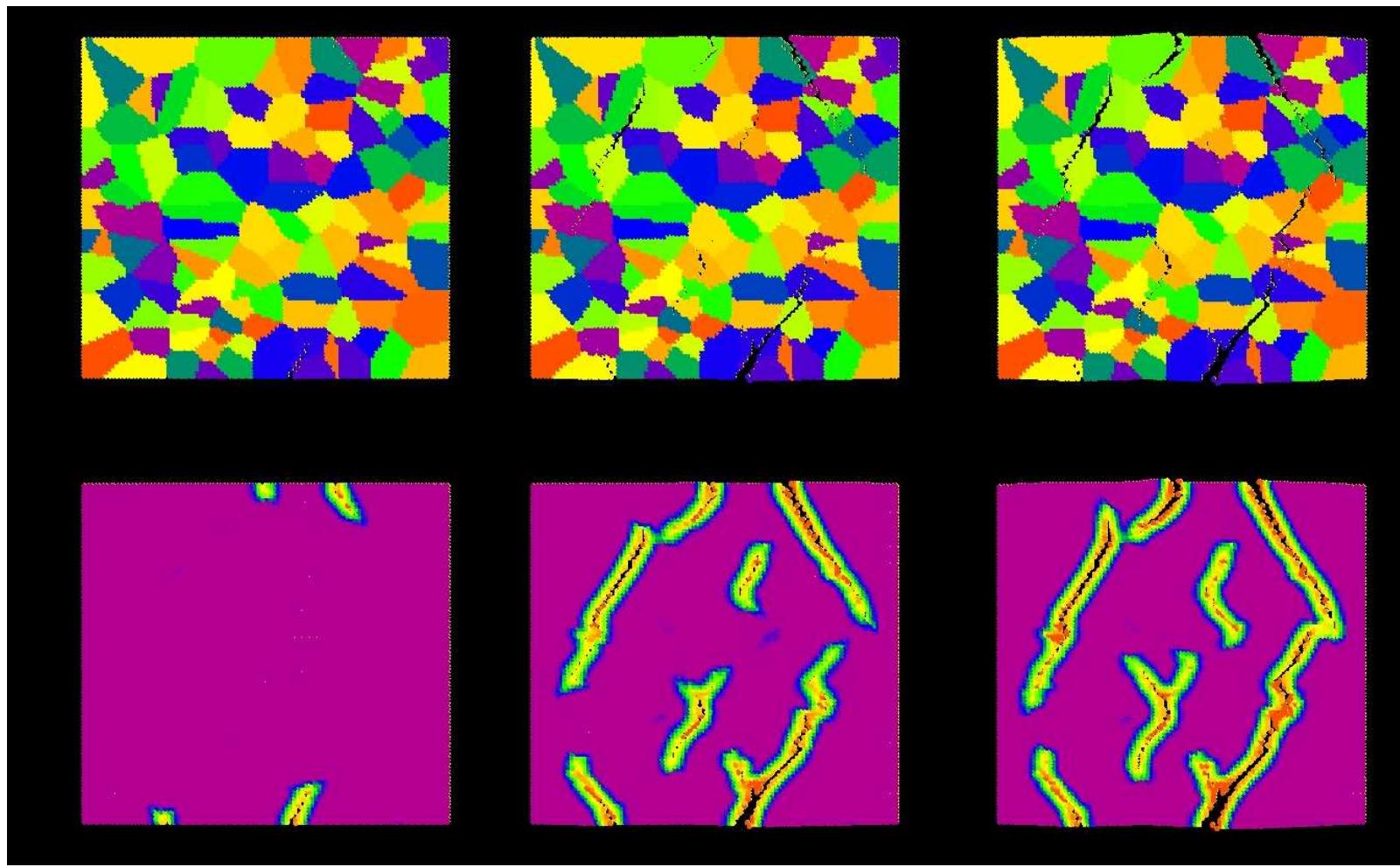
- Grain-scale model includes all relevant physics.
- Statistical treatment leads to macroscale material model.



Combined compression and shear loading at boundaries



Fracture in a polycrystal



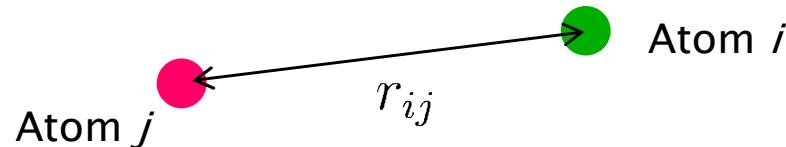
20.5 ms

21.3 ms

22.1 ms

Nonlocality and length scales

- Many physical problems have some natural length scale.
 - Sometimes the length scale is obvious, e.g.,
 - Interatomic forces
 - Molecular dynamics cannot be done without nonlocality.



$$F_{ij} \sim \left(\frac{a}{r_{ij}} \right)^{12} - \left(\frac{a}{r_{ij}} \right)^6$$

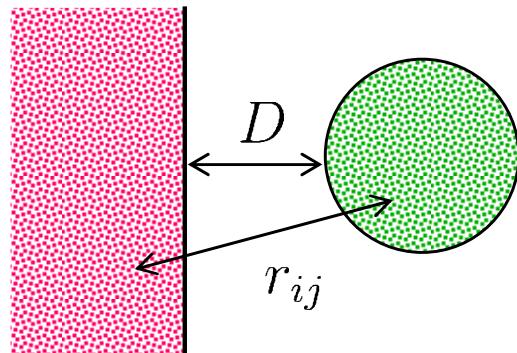
Nonlocality and length scales

- Sometimes the length scale is a little less obvious, e.g.
 - van der Waals forces that lead to longer-range surface forces.
 - Force between a pair of atoms as they are separated:
- Net force between halfspace and a sphere made of many of these atoms* occurs over a much larger length scale:

$$F_{ij} \sim 1/r_{ij}^6$$

- Net force between halfspace and a sphere made of many of these atoms* occurs over a much larger length scale:

$$F_{\text{sphere}} \sim 1/D$$

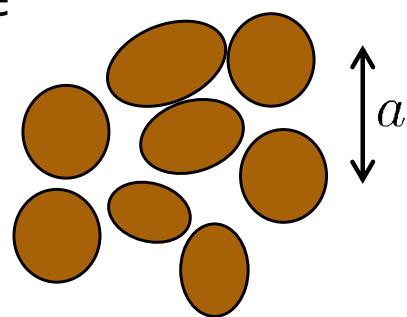


See J. Israelachvili, *Intermolecular and Surfaces Forces*, pp. 177.

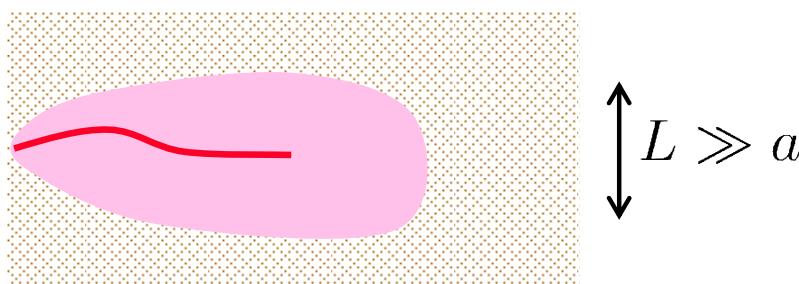


Nonlocality and length scales

- Macroscale: sometimes a length scale is determined by heterogeneity, e.g., concrete aggregate size



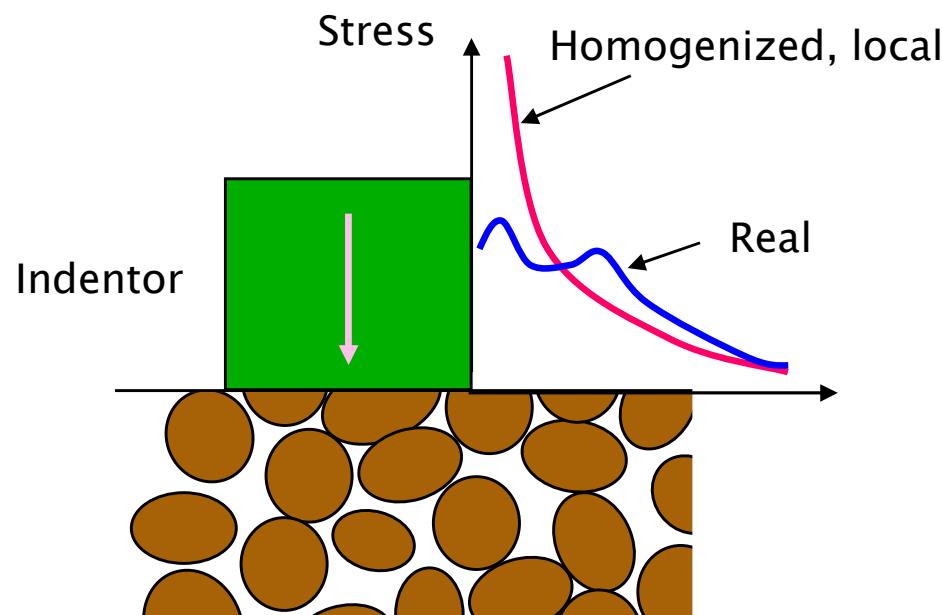
- Yet damage can occur in a much larger process zone



See Bazant,

Nonlocality and length scales

- Homogenization, neglecting the natural length scales of a system, often doesn't give good answers.



Bond-based peridynamic model: Observations

- Good things:
 - Now have a mathematically consistent way to treat material with cracks.
 - No additional equations are needed to tell cracks what to do.
- Bad things:
 - Independent bonds imply Poisson ratio = 1/4.
 - Can have permanent deformation in bonds, but can't enforce plastic incompressibility.
 - Can't use material models from the standard theory.

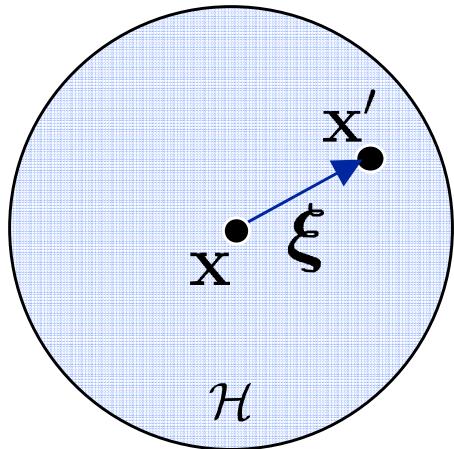
Can overcome these limitations by allowing bonds to interact with each other.

Peridynamic states: Mathematical tool for dealing with collections of bonds

A vector state $\underline{\mathbf{A}}$ is a mapping from \mathcal{H} to \mathbb{R}^3 .

A scalar state \underline{a} is a mapping from \mathcal{H} to \mathbb{R} .

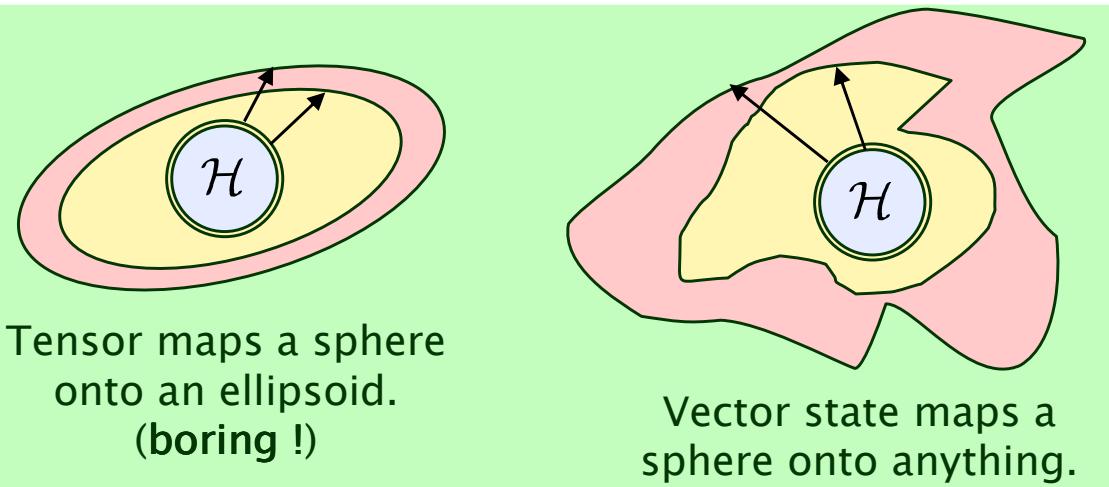
$\xi = \mathbf{x}' - \mathbf{x}$ is a bond. $\underline{\mathbf{A}}(\xi)$ is a vector. $\underline{a}(\xi)$ is a scalar.



\mathcal{H} = set of all bonds connected to \mathbf{x}

A vector state is like a 2nd order tensor, except:

- A vector state can be nonlinear.
- A vector state can be discontinuous.



Tensor maps a sphere
onto an ellipsoid.
(boring !)

Vector state maps a
sphere onto anything.

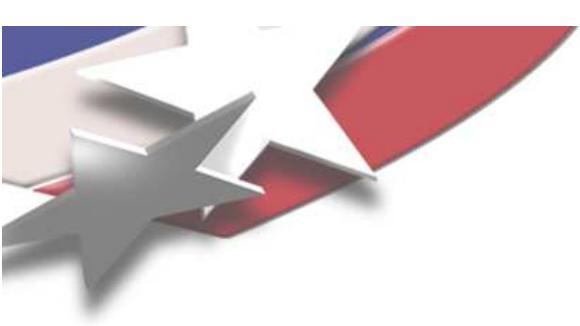


Dot product of two vector states

Suppose $\underline{\mathbf{A}}$ and $\underline{\mathbf{B}}$ are two vector states. Define the dot product of $\underline{\mathbf{A}}$ and $\underline{\mathbf{B}}$ by

$$\underline{\mathbf{A}} \bullet \underline{\mathbf{B}} = \int_{\mathcal{H}} \underline{\mathbf{A}}\langle \xi \rangle \cdot \underline{\mathbf{B}}\langle \xi \rangle \, dV_{\xi}.$$

The set of all vector states \mathcal{V} is an inner product space (even though each $\underline{\mathbf{A}} \in \mathcal{V}$ is a nonlinear mapping.)



Functions of states and Frechet derivatives

Suppose $\Psi(\cdot)$ is a scalar-valued function of a vector state $\underline{\mathbf{A}}$. For any differential $d\underline{\mathbf{A}}$ let

$$d\Psi = \Psi(\underline{\mathbf{A}} + d\underline{\mathbf{A}}) - \Psi(\underline{\mathbf{A}}).$$

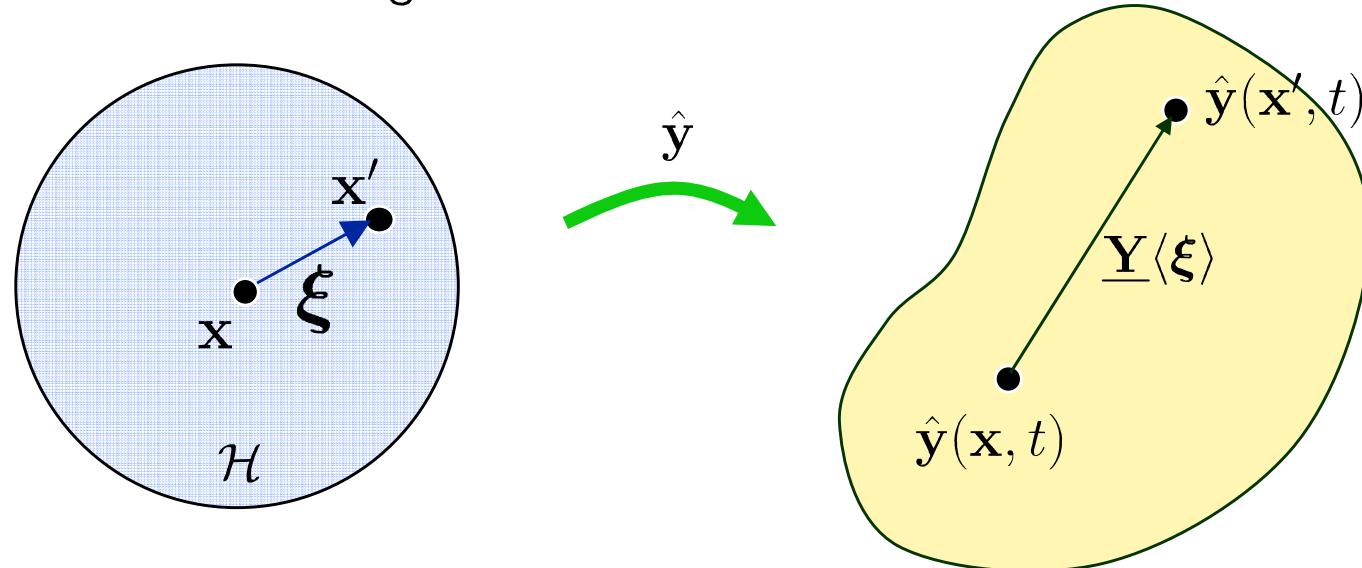
If there is a vector state $\nabla\Psi$ such that

$$d\Psi = \nabla\Psi \bullet d\underline{\mathbf{A}}$$

for any $d\underline{\mathbf{A}}$ then $\nabla\Psi$ is the Frechet derivative of Ψ at $\underline{\mathbf{A}}$.

Deformation states

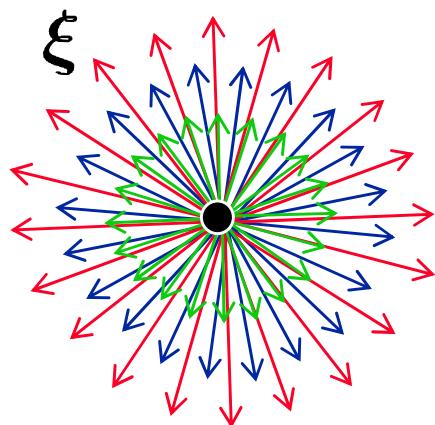
The deformation state $\underline{\mathbf{Y}}[\mathbf{x}, t]$ maps any bond connected to \mathbf{x} into its deformed image.



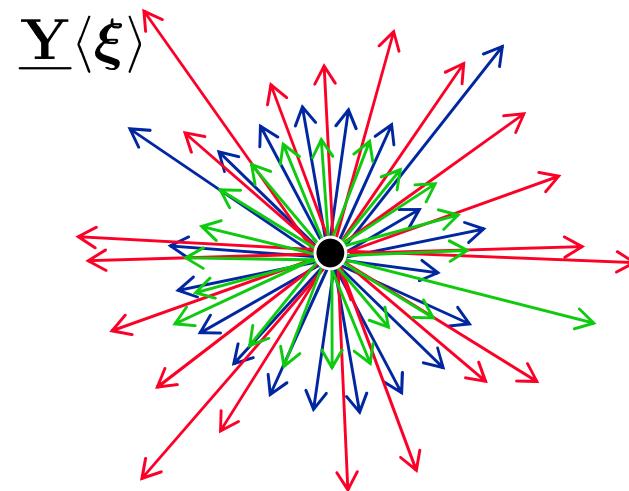
$$\underline{\mathbf{Y}}[\mathbf{x}, t]\langle \mathbf{x}' - \mathbf{x} \rangle = \hat{\mathbf{y}}(\mathbf{x}', t) - \hat{\mathbf{y}}(\mathbf{x}, t)$$

Deformation states contain a lot of kinematical complexity

$\underline{Y}(\xi)$ is the deformed image of any bond ξ .



Undeformed bonds connected to x



Deformed bonds connected to x

Elastic materials

Strain energy density at \mathbf{x} depends only on the deformation state there:

$$W(\mathbf{x}, t) = \hat{W}(\underline{\mathbf{Y}}[\mathbf{x}, t]) \quad (1)$$

Is this really so different from the standard theory?

Standard:

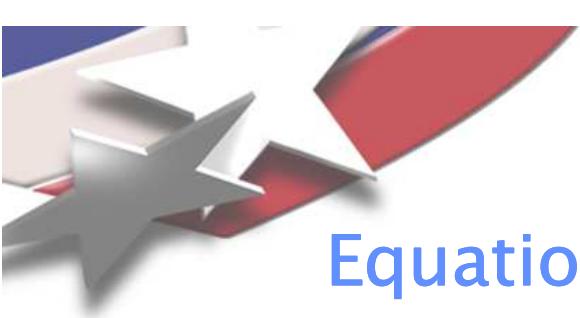
$$\hat{W} \left(\frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{x}} \right)$$

Energy depends on a
linear transformation

Peridynamic:

$$\hat{W}(\underline{\mathbf{Y}})$$

Energy depends on a
nonlinear transformation



Equation of motion from Hamilton's principle

Hamiltonian:

$$H = \int_0^\infty \int_{\mathcal{R}} \left\{ W - \frac{\rho \dot{\mathbf{u}} \cdot \dot{\mathbf{u}}}{2} - \mathbf{b} \right\} dV_{\mathbf{x}} dt$$

Euler-Lagrange equation (equation of motion):

$$\rho(\mathbf{x}) \ddot{\mathbf{u}}(\mathbf{x}, t) = \int_{\mathcal{H}} \left\{ \underline{\mathbf{T}}[\mathbf{x}, t] \langle \mathbf{x}' - \mathbf{x} \rangle - \underline{\mathbf{T}}[\mathbf{x}', t] \langle \mathbf{x} - \mathbf{x}' \rangle \right\} dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x}, t)$$

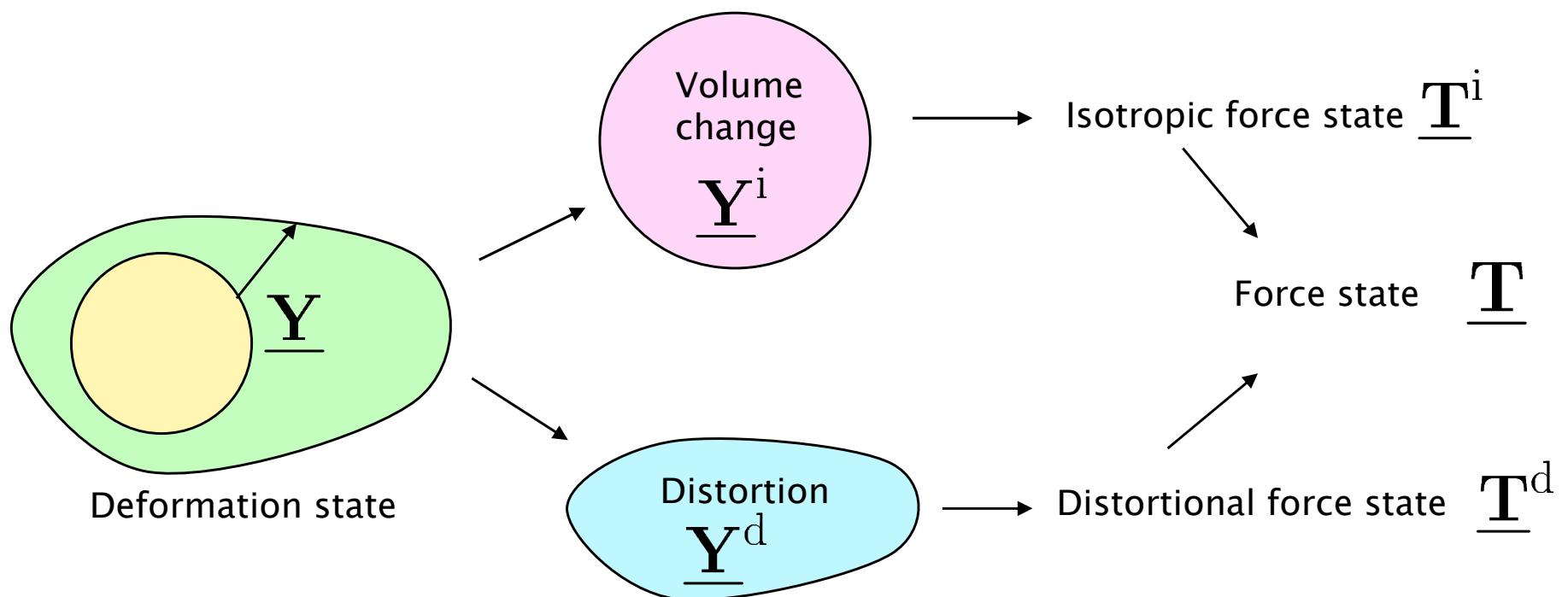
where \mathbf{T} is the *force state*:

$$\underline{\mathbf{T}}(\underline{\mathbf{Y}}) = \nabla \hat{W}(\underline{\mathbf{Y}})$$

i.e.,

$$dW = \int_{\mathcal{H}} \underline{\mathbf{T}}(\underline{\mathbf{Y}}) \langle \boldsymbol{\xi} \rangle \cdot d\underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle dV_{\boldsymbol{\xi}}$$

Can now treat pressure–volume response as decoupled from distortional response





PD material from a conventional model

Define an approximate deformation gradient tensor by

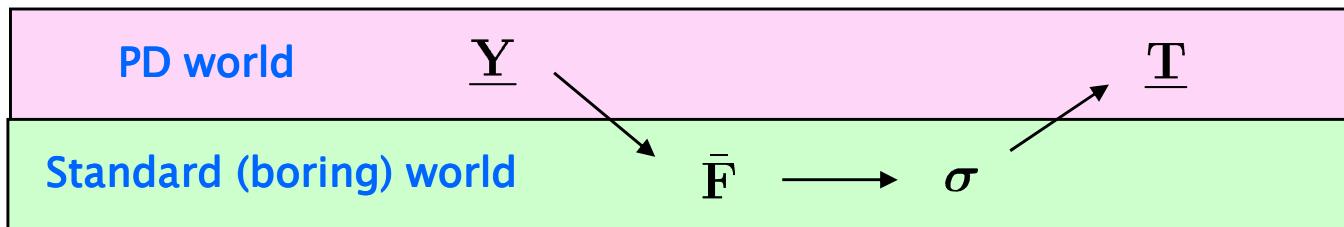
$$\bar{\mathbf{F}}(\underline{\mathbf{Y}}) = m \int_{\mathcal{H}} \underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle \otimes \boldsymbol{\xi} \, dV_{\boldsymbol{\xi}} \quad \forall \underline{\mathbf{Y}}$$

Now take any hyperelastic strain energy density function from the standard theory $\Omega(\mathbf{F})$ and set

$$\hat{W}(\underline{\mathbf{Y}}) = \Omega(\bar{\mathbf{F}}(\underline{\mathbf{Y}})) \quad \forall \underline{\mathbf{Y}}$$

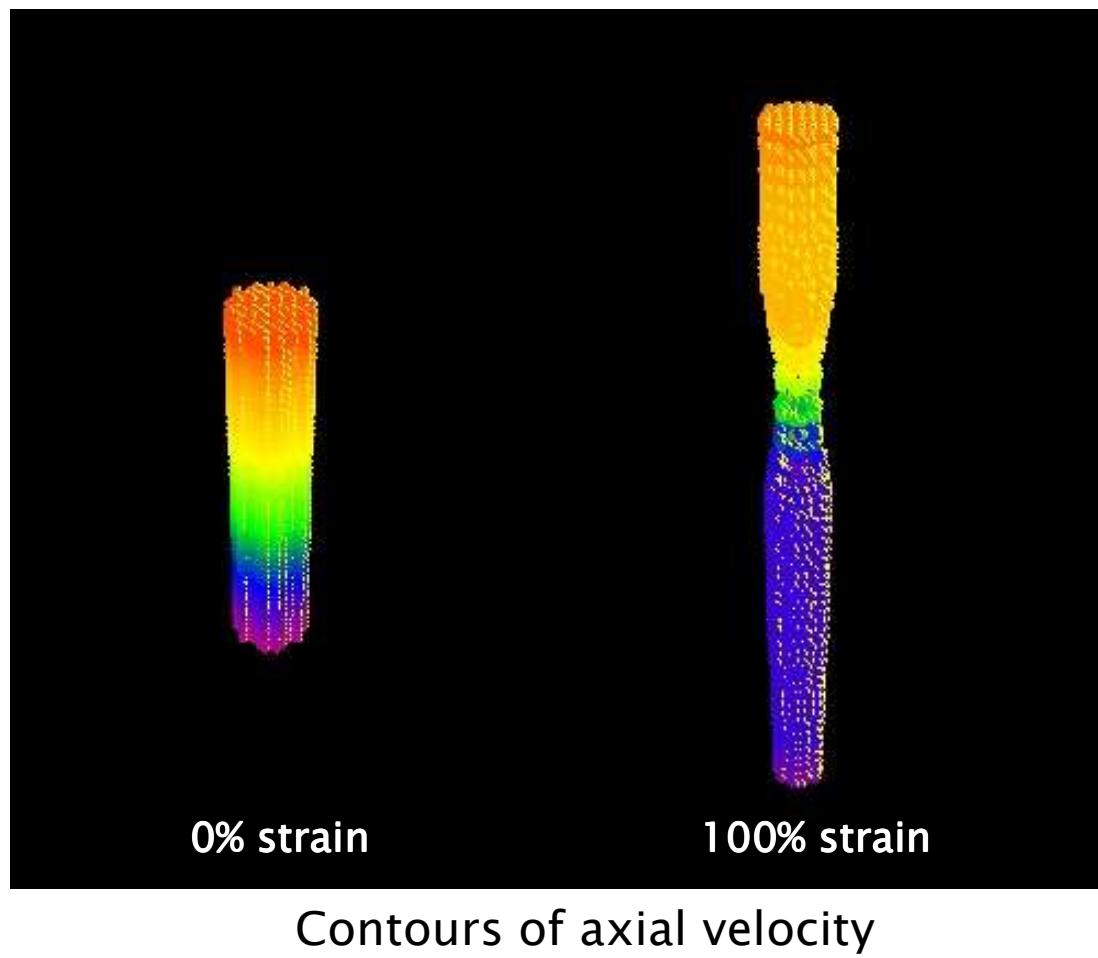
Find that the force state is related to the PK stress by

$$\underline{\mathbf{T}} \langle \boldsymbol{\xi} \rangle = \frac{1}{m} \boldsymbol{\sigma} \boldsymbol{\xi}, \quad \boldsymbol{\sigma} = \frac{\partial \Omega}{\partial \mathbf{F}}(\bar{\mathbf{F}})$$



Necking in a 6061-Aluminum Bar

- EMU simulation with state-based peridynamic implementation of large-deformation, strain-hardening, rate-dependent material model.
 - Material model implementation by J. Foster, SNL 5431.



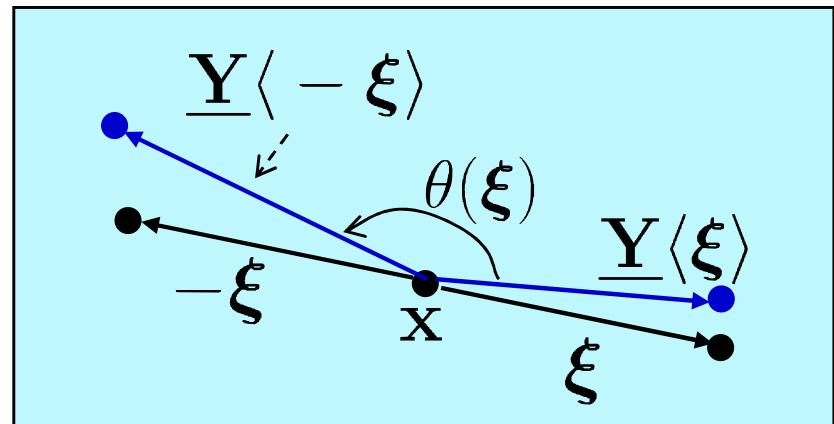
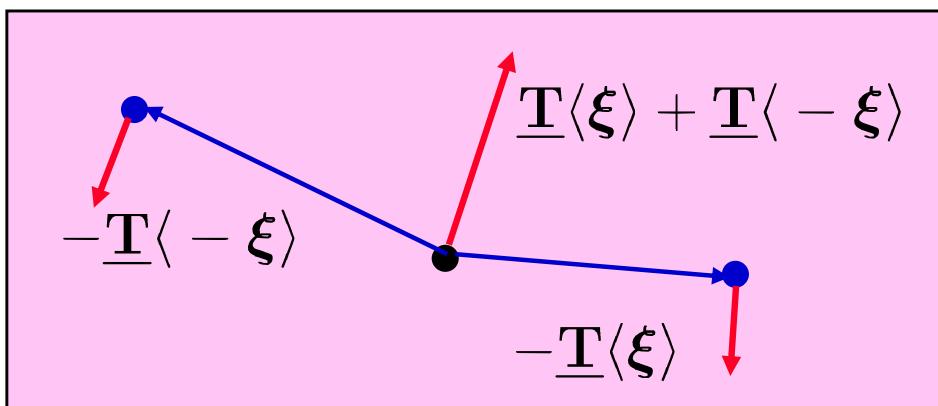


PD states can model interesting collective behavior

Consider a material that responds to angle changes between bonds at $\pm 180^\circ$.

$$\hat{W}(\underline{\mathbf{Y}}) = \int_{\mathcal{H}} (\theta(\xi) - \pi)^2 dV_\xi$$

After evaluating the Frechet derivative, find that the force state resists these angle changes.



Discrete particles and PD states

N -body potential:

$$U(\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_N),$$

$\mathbf{y}_1, \dots, \mathbf{y}_N$ = deformed positions, $\mathbf{x}_1, \dots, \mathbf{x}_N$ = reference positions.

Define a PD body by

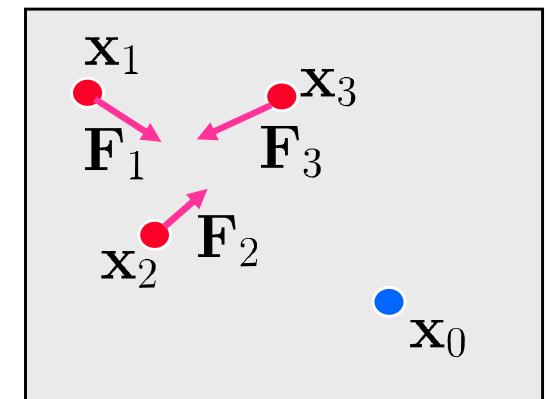
$$\hat{W}(\underline{\mathbf{Y}}, \mathbf{x}) = \delta_d(\mathbf{x} - \mathbf{x}_0) U(\underline{\mathbf{Y}} \langle \mathbf{x}_1 - \mathbf{x}_0 \rangle, \underline{\mathbf{Y}} \langle \mathbf{x}_2 - \mathbf{x}_0 \rangle, \dots, \underline{\mathbf{Y}} \langle \mathbf{x}_N - \mathbf{x}_0 \rangle),$$

Dirac delta $\rho(\mathbf{x}) = \sum_i \delta_d(\mathbf{x} - \mathbf{x}_i) M_i$ **Particle mass**

where \mathbf{x}_0 is an arbitrary point. Can show the PD equation of motion implies

$$M_i \ddot{\mathbf{u}}(\mathbf{x}_i, t) = -\frac{\partial U}{\partial \mathbf{y}_i}, \quad i = 1, \dots, N$$

Have represented discrete particles as a continuum



Convergence of peridynamics to the standard theory

- Suppose we change the horizon while holding the bulk properties (e.g., bulk modulus) fixed.
- If the deformation is continuous, the kinematical approximation

$$\mathbf{y}(\mathbf{x} + \boldsymbol{\xi}) - \mathbf{y}(\mathbf{x}) = \mathbf{F}(\mathbf{x})\boldsymbol{\xi} + o(|\boldsymbol{\xi}|^2)$$

becomes more and more accurate.

- Therefore

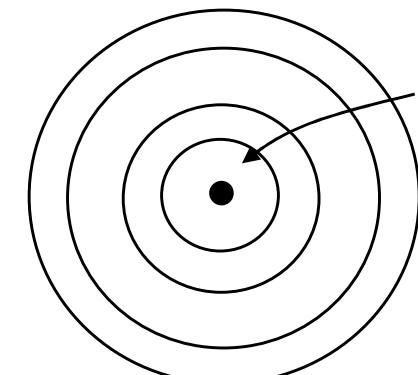
$$W(\underline{\mathbf{Y}}) \approx \hat{W}(\mathbf{F})$$

also becomes more accurate.

- The peridynamic force density is closely approximated by

$$\mathbf{L}(\mathbf{x}) \approx \nabla \cdot \boldsymbol{\sigma}, \quad \boldsymbol{\sigma} = \frac{\partial \hat{W}}{\partial \mathbf{F}}$$

Sequence of horizons



Conclusions

- The peridynamic approach offers a consistent mathematical framework for discontinuous problems.
 - Basic equations can be applied directly on cracks.
 - Nonlocality is inherent in the method, length scale is variable.
 - Discrete particles are treated with the same equations as a continuum.