



# Principles of compatible discretizations

Pavel Bochev

Applied Mathematics & Applications Department  
Sandia National Laboratories

RWTH Aachen, November 12th, 2008  
Chair for Computational Analysis of Technical Systems

Supported in part by





## Part I

Where we learn about computational modeling, discretization of PDEs, and develop two simple discrete models (with mixed success)

### Collaborators

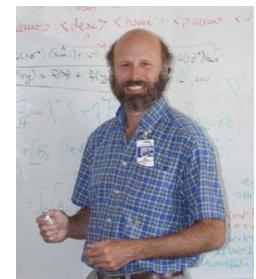
**Max Gunzburger**  
Florida State University  
Tallahassee



**Misha Shashkov**  
Los Alamos National  
Laboratory



**Mac Hyman**  
Los Alamos National  
Laboratory

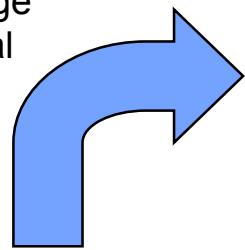




# What is this talk about?

## Applied math

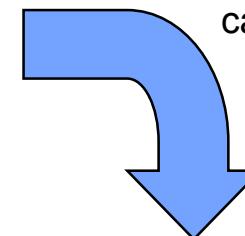
Use a formal language  
to encode a physical  
process



**Mathematical  
model**

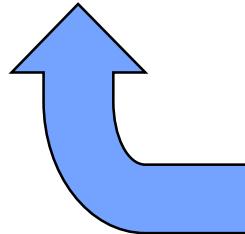
## Numerical math

Convert to models that  
can be solved on digital  
computers



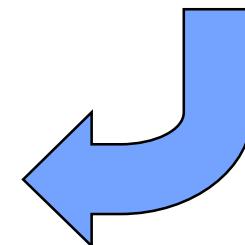
**Physics**

**Numerical  
model**



**Computational science**  
Use computers for discovery of  
new physics, design validation,  
proof of concept, virtual  
prototyping

**Solution  
algorithms**



**Computer science**  
Find faster and more  
efficient ways to solve  
numerical models

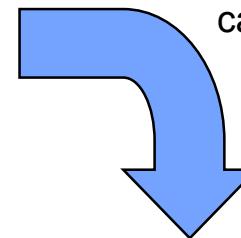


# Focus on Numerical Math

**Discretization**  
=  
**Model reduction**

$$\mathcal{A}u = f$$

mathematical model



**Numerical math**  
Convert to models that  
can be solved on digital  
computers

$$\mathbf{A}_h \mathbf{u}_h = \mathbf{f}_h$$

a parameterized family  
of algebraic equations

## 1. Is the sequence of algebraic equations well-behaved?

- are all problems **uniquely** and **stably** (in  $h$ ) solvable?
- do solutions **converge** to the exact solutions as  $h \rightarrow 0$ ?

## 2. Are physical and discrete models compatible?

- are solutions **physically** meaningful
- do they **mimic**, e.g., **invariants**, **symmetries**,  
or **involutions** of actual states

## 3. How to make a compatible & accurate discretization?

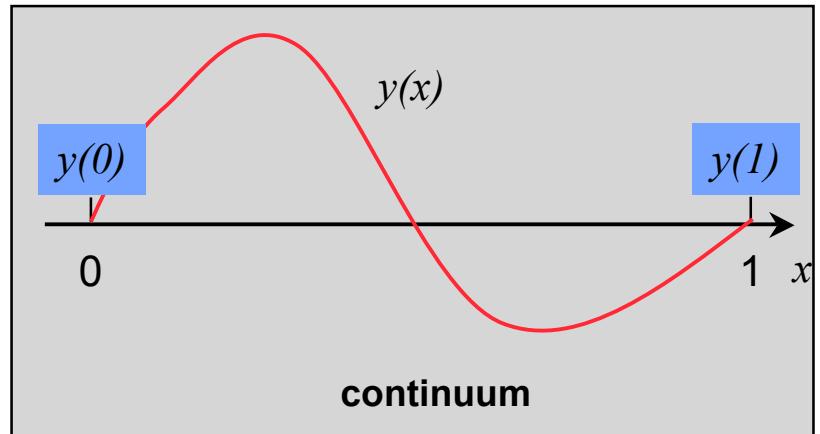
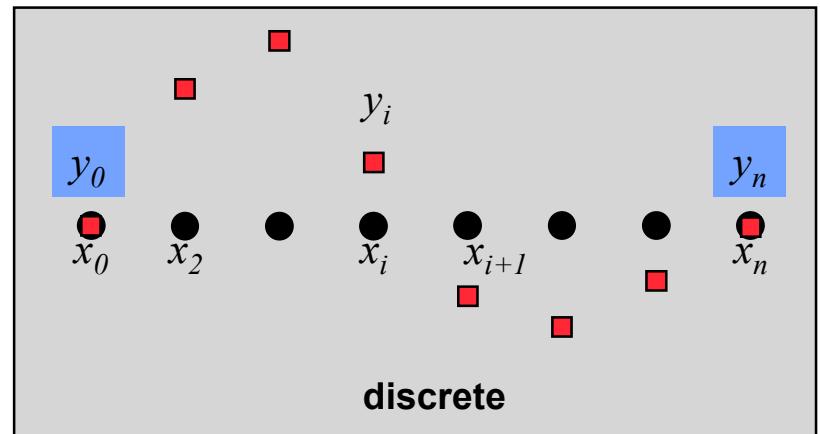
- how to **choose** the **variables** and where to **place** them;
- how to avoid **spurious** solutions.



# A toy problem

## Boundary value problem

$$\begin{aligned} -ay'' + by' + cy &= f \quad \text{in } (0,1) \\ y(0) = y(1) &= 0 \\ y''(x_i) &\approx \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} \\ y(x_i) &\approx \frac{y_{i+1} - y_{i-1}}{2h} \\ -a_i \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + b_i \frac{y_{i+1} - y_{i-1}}{2h} + c_i y_i &= f_i \\ y_0 = y_n &= 0 \end{aligned}$$



## Parameterized linear system

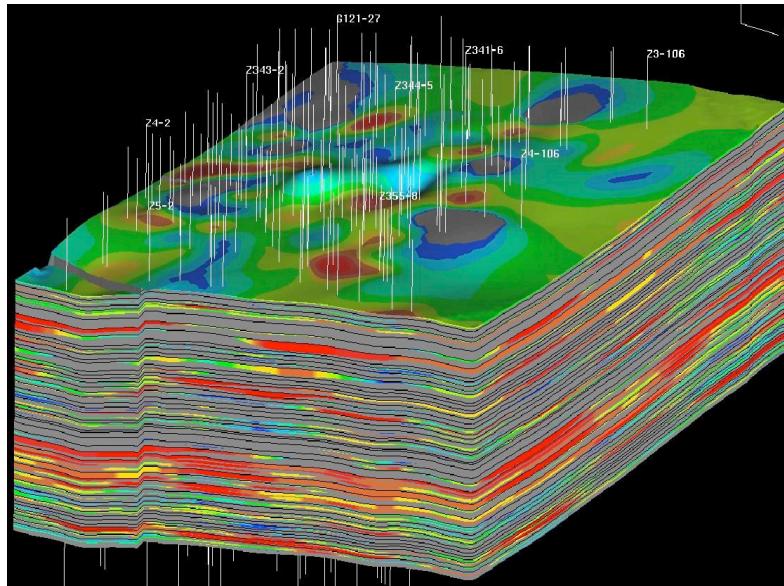
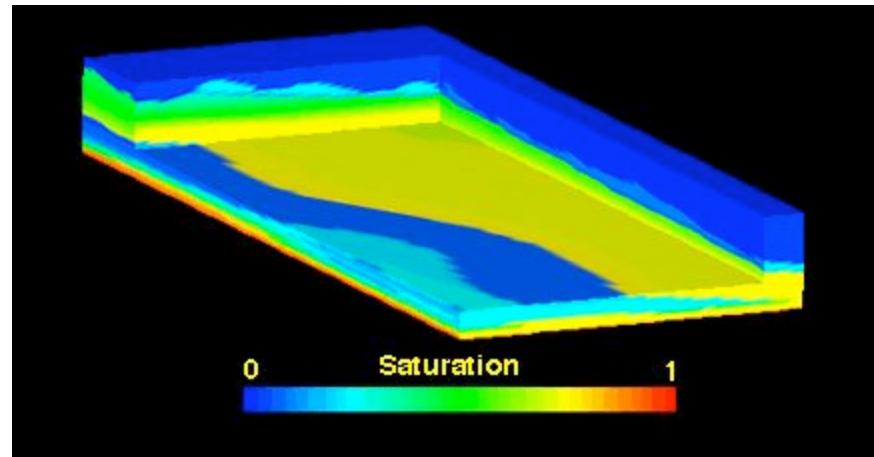


# Porous Media Flow

## Boundary value problem

$$\begin{aligned} -\nabla \cdot \rho \nabla p &= f \text{ in } \Omega \\ p &= 0 \text{ on } \Gamma \end{aligned}$$

$f$  - source term  
 $p$  - pressure  
 $\rho$  - permeability tensor



Steady state saturation in a site scale model of Yucca Mountain, Nevada. Model area is 1.7X4.2 square miles. Calculations like this are used for evaluating the suitability of **Yucca Mountain** as a potential repository for **high level nuclear waste**. *Courtesy LANL EES Division.*

Reservoir simulation can be used to forecast the **production of oil and gas fields**, optimize reservoir development, and evaluate the distribution of remaining oil. It is an **important tool** to improve the design of wells, the efficiency of reservoirs, and enhance oil and gas recovery. *Courtesy Prof. J. Chen, SMU*



## Darcy problem

In such applications, **velocity  $\mathbf{u}$** , rather than the **pressure  $p$**  is the variable of primary interest, and direct approximation is desirable.

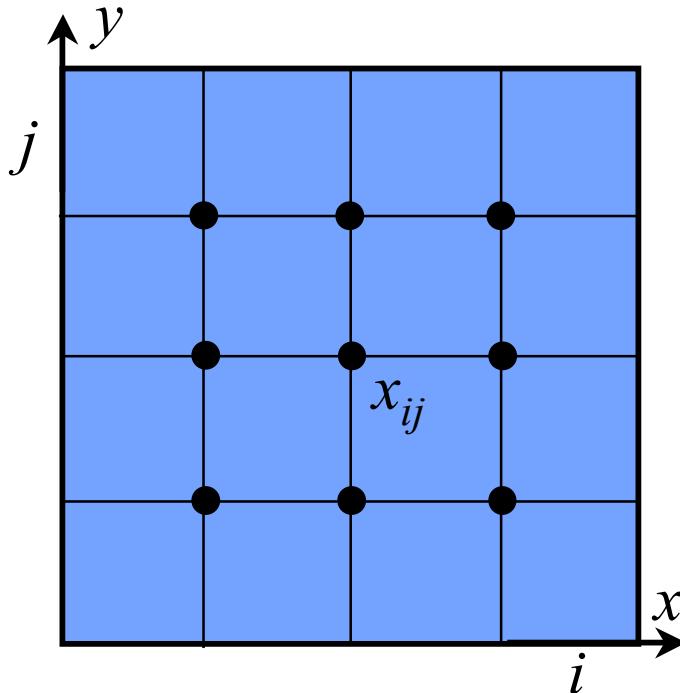
### Equivalent 1st order form

$$\nabla \cdot \rho \mathbf{u} = f \text{ in } \Omega$$

$$\mathbf{u} + \nabla p = 0 \text{ on } \Omega$$

$$p = 0 \text{ on } \Gamma$$

### Discretized domain





# PDE→Parameterized Linear System

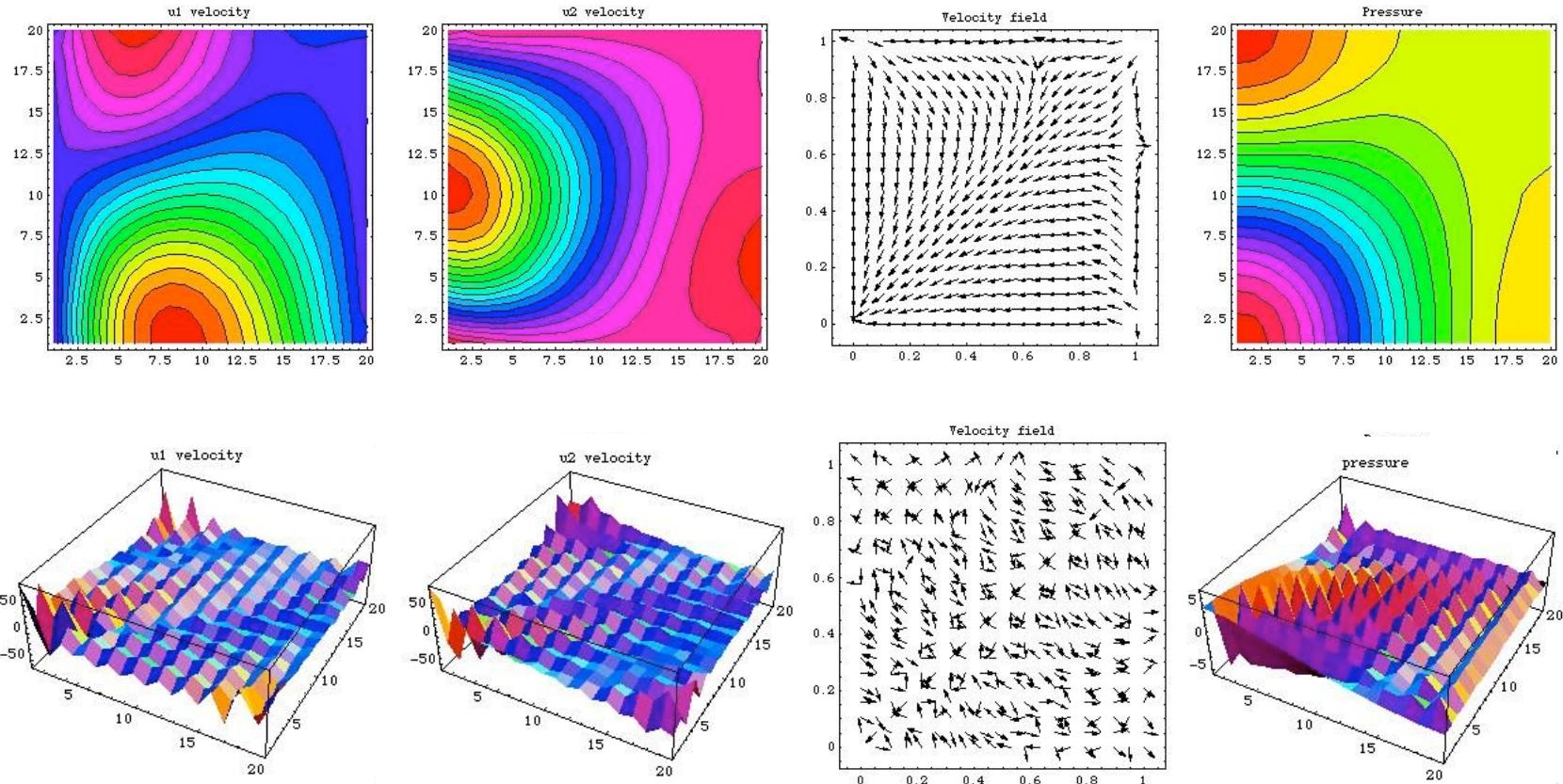
| Continuum                                                                            | Discrete                                                                                                                                                                                                                                           | Stencil |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| $\nabla \cdot \rho \mathbf{u} = \mathbf{u}_x^1 + \mathbf{u}_y^2 = f$                 | $\frac{\mathbf{u}_{i+1,j}^1 - \mathbf{u}_{i-1,j}^1}{2h} + \frac{\mathbf{u}_{i,j+1}^2 - \mathbf{u}_{i,j-1}^2}{2h} = f_{ij}$                                                                                                                         |         |
| $\begin{cases} \mathbf{u} + \nabla p = 0 \\ \nabla \cdot \mathbf{u} = f \end{cases}$ | $\begin{cases} A_h \mathbf{u}_h + B_h^T p_h = 0 \\ B_h \mathbf{u}_h = f_h \end{cases} \rightarrow \begin{pmatrix} A_h & B_h^T \\ B_h & 0 \end{pmatrix} \begin{pmatrix} \mathbf{u}_h \\ p_h \end{pmatrix} = \begin{pmatrix} 0 \\ f_h \end{pmatrix}$ |         |
| $\mathbf{u}^1 + p_x = 0$<br>$\mathbf{u}^2 + p_y = 0$                                 | $\mathbf{u}_{ij}^1 + \frac{p_{i+1,j} - p_{i-1,j}}{2h} = 0$<br>$\mathbf{u}_{ij}^2 + \frac{p_{i,j+1} - p_{i,j-1}}{2h} = 0$                                                                                                                           |         |

**Collocated discretization:** variables share **same grid location**

**Divergence and gradient** discretized by the **same stencil**



## Computational example



Complete DISASTER (💀 💀 💀)  
Our discrete model is **incompatible**

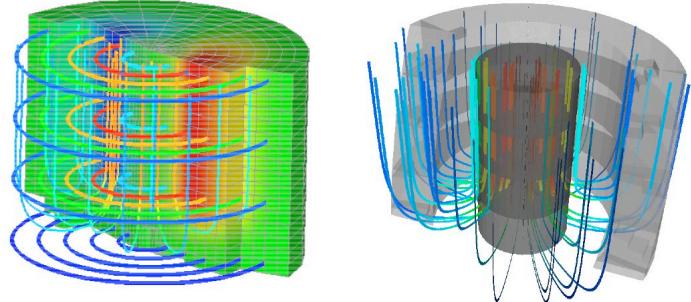


## Coupled multiscale, nonlinear physics is even more challenging: Z-Pinch simulation in ALEGRA

### Scales:

|                |                     |
|----------------|---------------------|
| PULSE DURATION | $10^{-9}$ sec       |
| TIME SCALE     | $10^{-3}$ sec       |
| CURRENT POWER  | $20 \times 10^6$ A  |
| X-RAY POWER    | $10^{12}$ W         |
| X-RAY ENERGY   | $1.9 \times 10^6$ J |

*C. Garasi, A. Robinson*



MHD MODEL

=

Hydrodynamics + Magnetic Diffusion

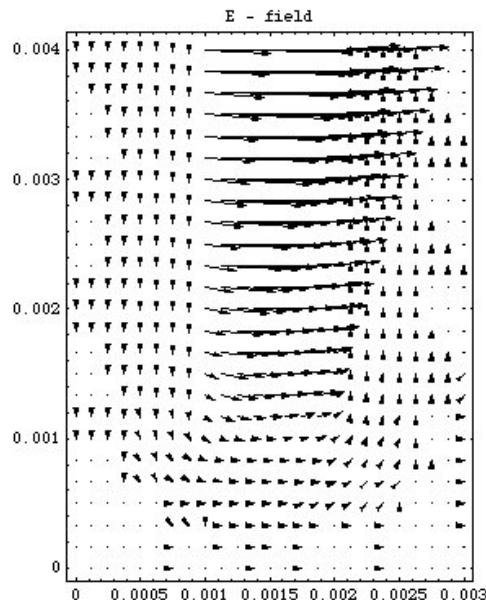
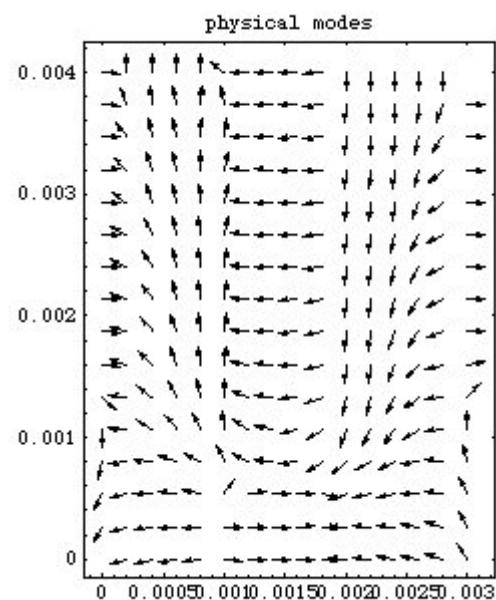
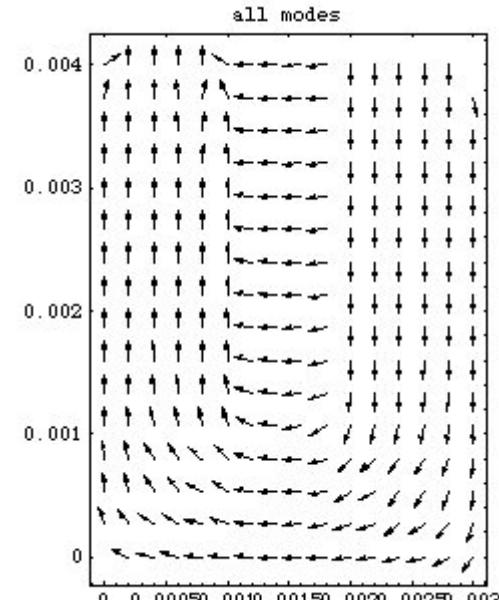
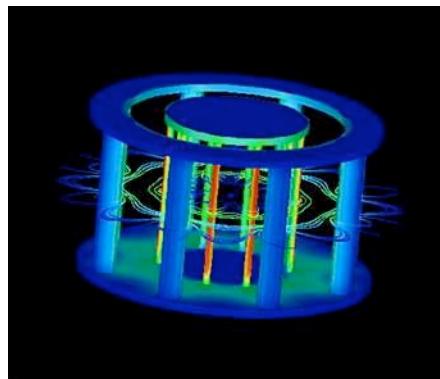


**Z-machine: (Ostensibly used by Ocean's 11)**

Electric currents are used to produce an ionized gas by vaporizing a spool-of-thread sized array of 100-400 wires of diameter  $\approx 10\mu\text{m}$



# Magnetic diffusion

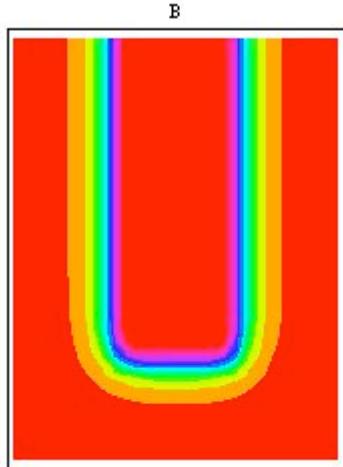
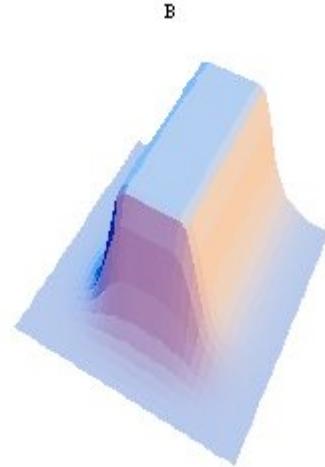
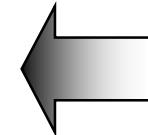


$$\nabla \times \frac{1}{\mu} \mathbf{B} = \sigma \mathbf{E} \quad \text{Ampere}$$
$$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t} \quad \text{Faraday}$$

Gap modeled as a heterogeneous conductor

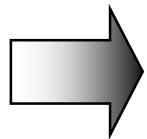
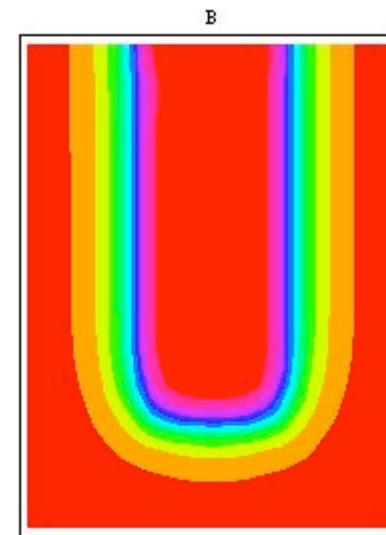
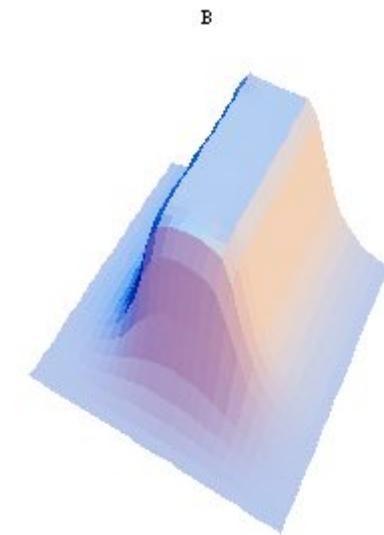


## Compatible vs. Collocated: B-field



Compatible  
 $\text{Ker}(\text{curl}) = \{\text{grad } p\}$

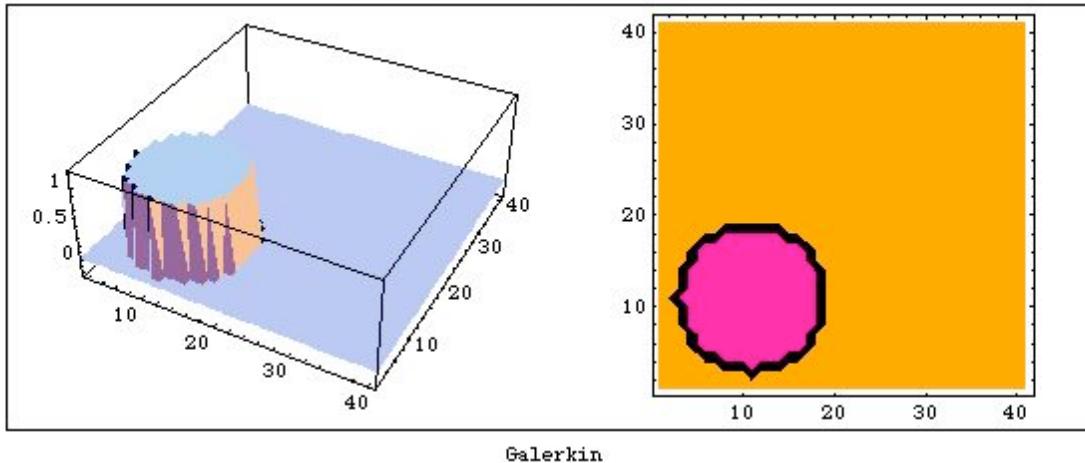
Collocated  
 $\text{Ker}(\text{curl}) = \{0\}$





# Incompatibility arises in other contexts as well, which are not discussed here!

Courant Number = 0.012, Pe=Infinity

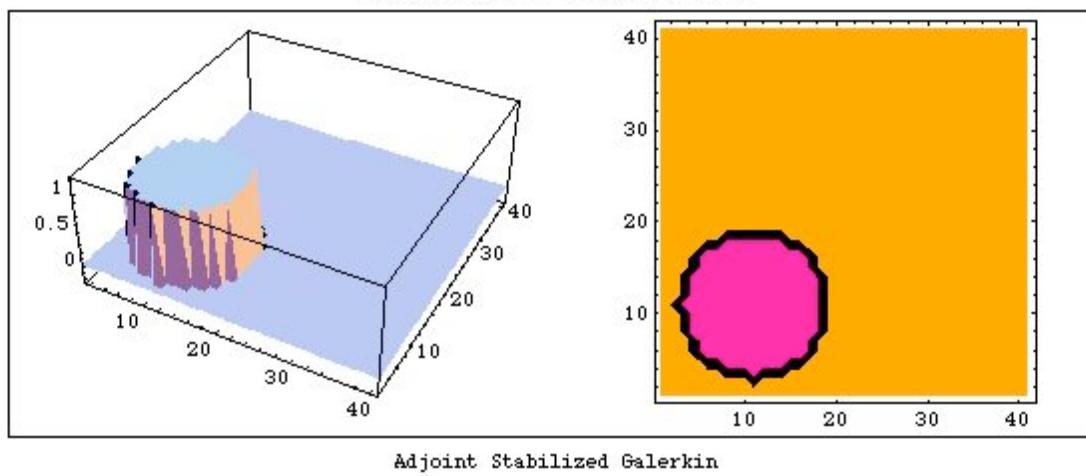


Advection of a scalar quantity

$$\nabla \cdot (\mathbf{a}\psi) = f$$

An extremely simplified case of a transport problem

Courant Number = 0.012, Pe=11.517



Seemingly reasonable fixes can make things even worse.



## Part II

---

Where we learn about duality, its role in  
PDE structure and what it can tell us about  
compatible discretizations



# All you ever wanted to know about duality (but were afraid to ask)

In mathematics “duality” is used in two contexts

## 1. Duality pairing

The process of combining **two objects** to generate a **scalar**

$\mathbf{a}^T \mathbf{b} \rightarrow \langle \mathbf{a}, \mathbf{b} \rangle$  Vector **a** dual to *co-vector* **b**

$f(x) \rightarrow \langle f, x \rangle$  Function *f* dual to *its argument* *x*

$\int_{\Omega} f \rightarrow \langle f, \Omega \rangle$  Function *f* dual to *integration domain*  $\Omega$

$\int_{\Omega} fg \rightarrow \langle f, g \rangle$  Function *f* dual to *distribution* *g*

$\langle f | g \rangle \rightarrow \langle f, g \rangle$  Bra vector *f* dual to *ket vector* *g*

$Fd \rightarrow \langle F, d \rangle$  Force *F* dual to *displacement* *d*



---

Leads to the fundamental notions of adjoint and self-adjoint operators

$$\langle Af, g \rangle = \langle f, A^* g \rangle \quad A = A^*$$

$$\mathbf{b}^T \mathbf{A} \mathbf{a} = \mathbf{a}^T \mathbf{A}^T \mathbf{b}$$

$$\langle \mathbf{A} \mathbf{a}, \mathbf{b} \rangle = \langle \mathbf{a}, \mathbf{A}^T \mathbf{b} \rangle$$

Adjoint of a matrix **A** is the **transpose**

$$\int_{\Omega} \nabla \cdot \mathbf{v} = \int_{\partial\Omega} \mathbf{n} \cdot \mathbf{v}$$

$$\langle \nabla \cdot \mathbf{v}, \Omega \rangle = \langle \mathbf{v}, \partial\Omega \rangle$$

Adjoint of **divergence** is **boundary**

$$\int_{\Omega} u \nabla \cdot \mathbf{v} = - \int_{\Omega} \nabla u \cdot \mathbf{v}$$

$$\langle u, \nabla \cdot \mathbf{v} \rangle = \langle -\nabla u, \mathbf{v} \rangle$$

Adjoint of **divergence** is **-gradient**

$$\int_{\Omega} -\Delta u v = \int_{\Omega} -\Delta v u$$

$$\langle -\Delta u, v \rangle = \langle u, -\Delta v \rangle$$

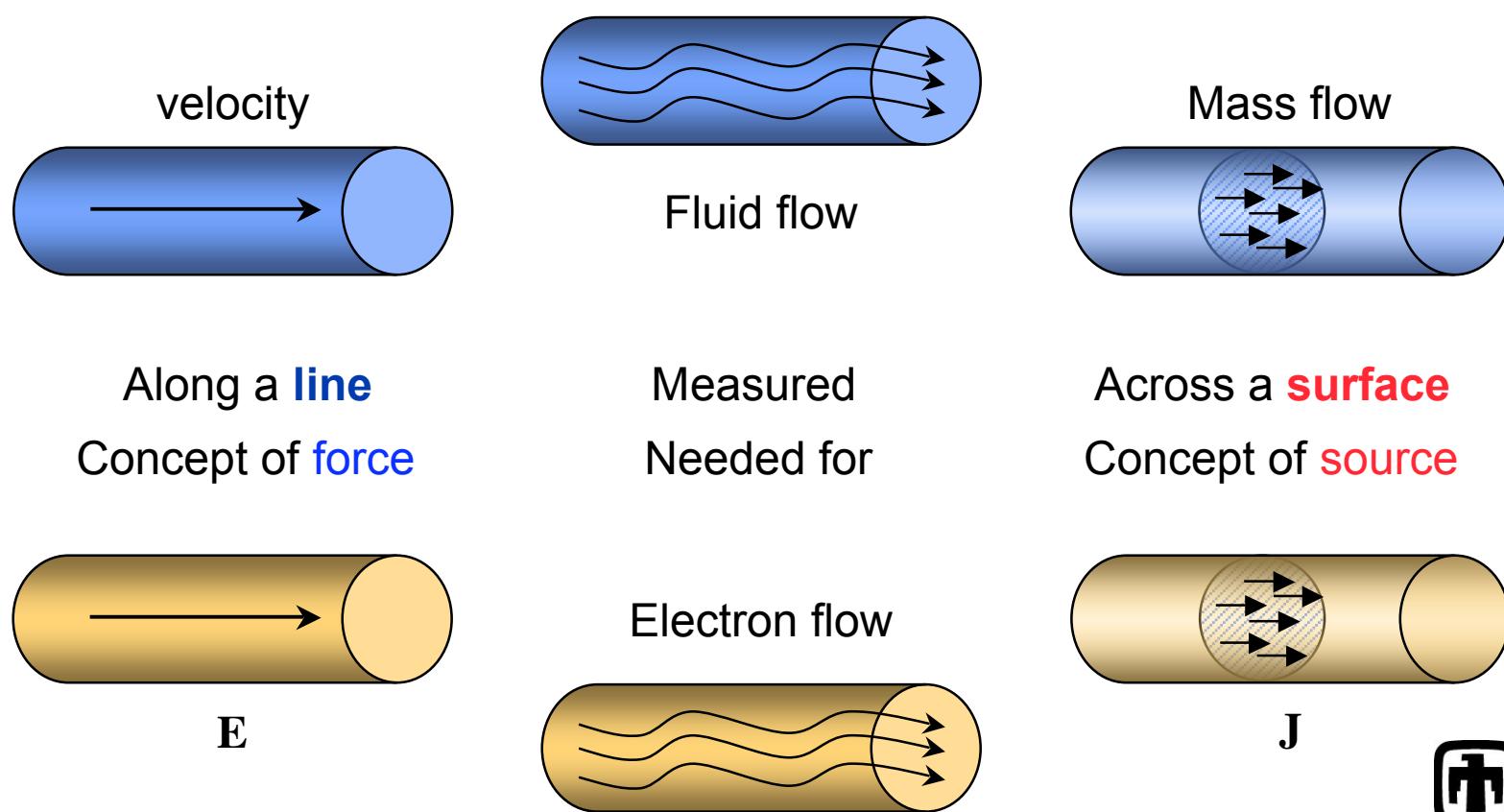
Laplacian is **self-adjoint**



## A second duality concept

### 2. Duality of representations

The process of using complementary descriptions of the same process





# Darcy problem deconstructed

Kinematic

$$\mathbf{u} + \nabla p = 0$$

Gradient

Forces

Line field

Constitutive

$$\mathbf{v} = \rho \mathbf{u}$$

Duality is  
ubiquitous!

Continuity

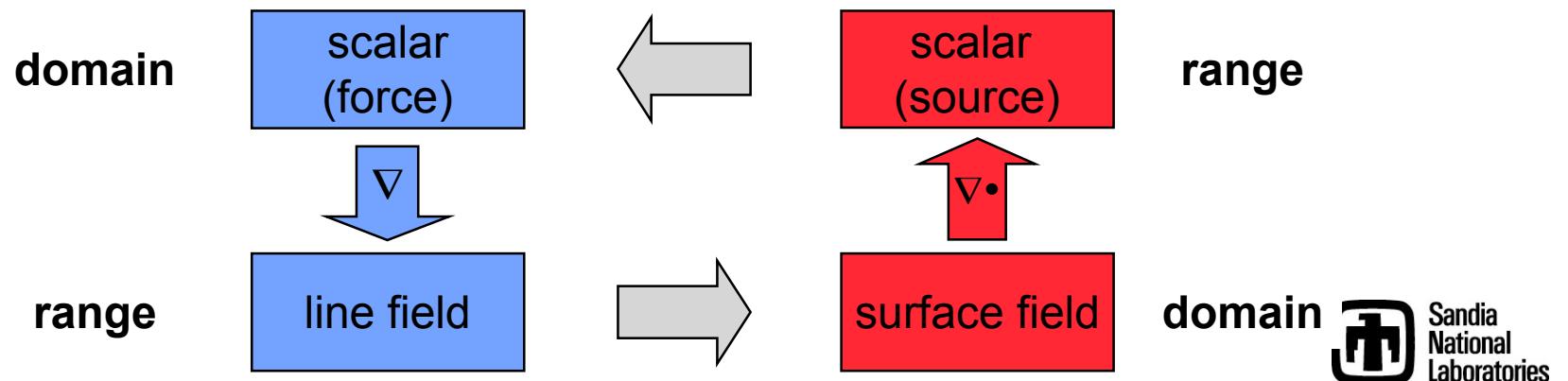
$$\nabla \cdot \mathbf{v} = 0$$

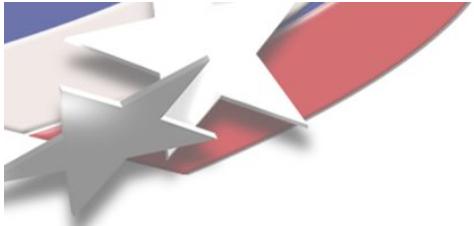
Divergence

Sources

Surface field

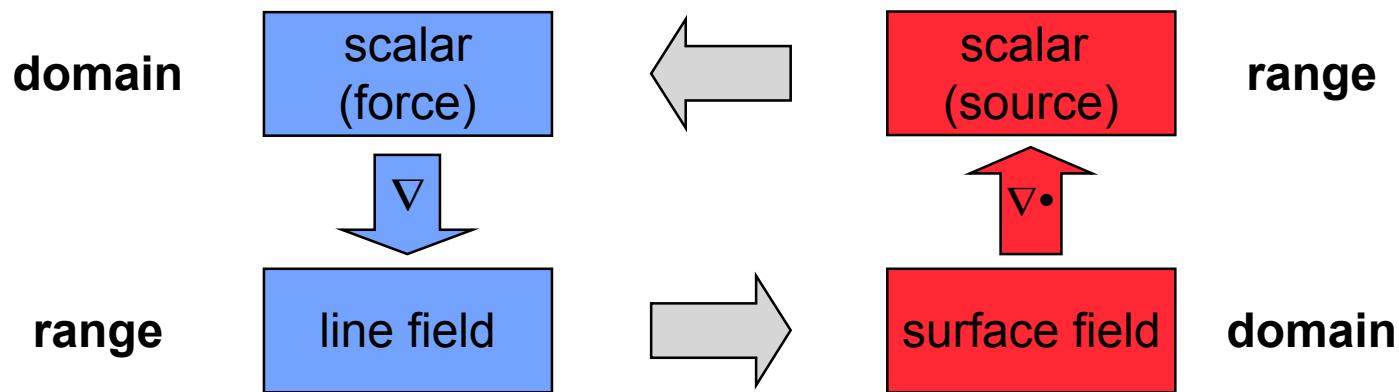
Duality structure can be encoded by the following diagram





# Compatible discretizations

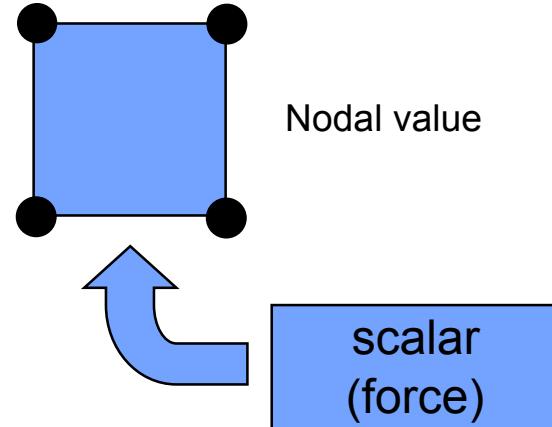
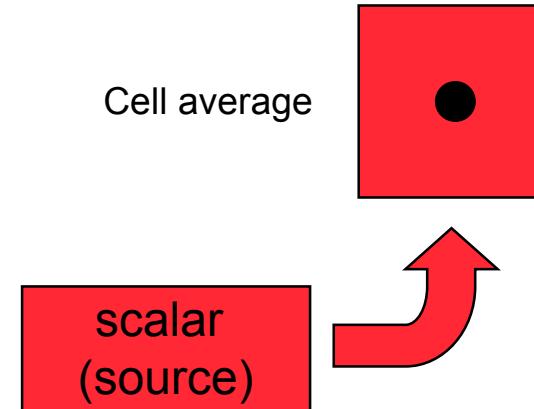
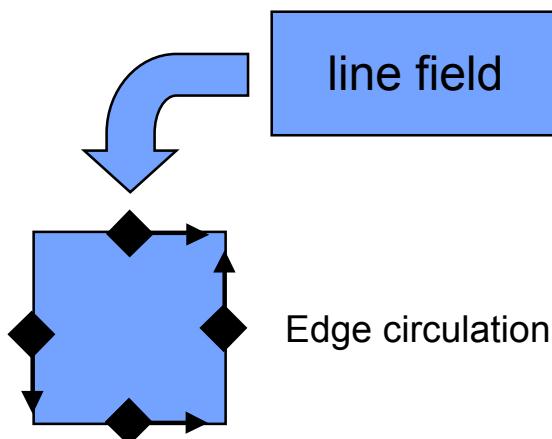
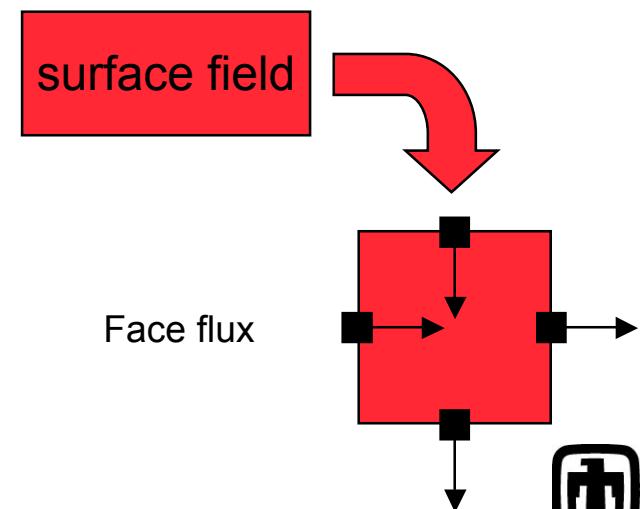
A compatible discretization should mimic the duality structure of the PDE



We need to build a discrete analogue of this diagram!

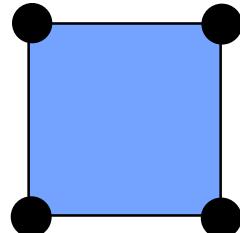


# 1. Compatible representations

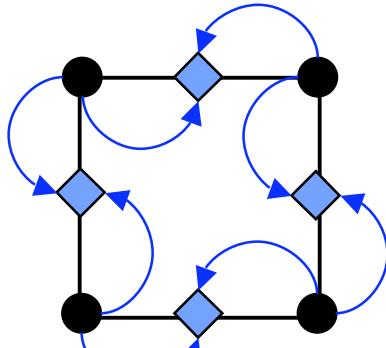




## 2. Compatible discrete operators

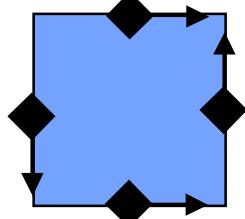


Nodal value

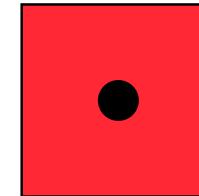


$$Gp = \frac{p_2 - p_1}{h}$$

Edge circulation



Cell average

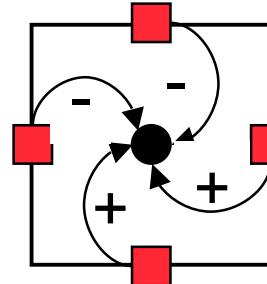


Node #

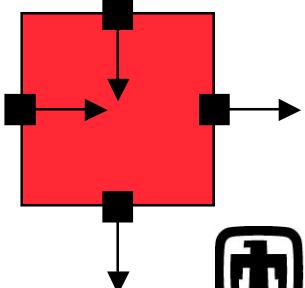


Face #

$$\mathbf{D}\mathbf{u} = \frac{\Phi_B + \Phi_R - \Phi_T - \Phi_L}{h}$$



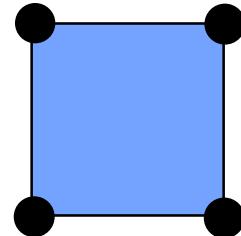
Face flux



Sandia  
National  
Laboratories



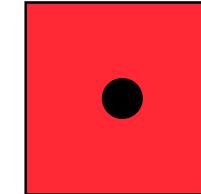
### 3. Putting it together



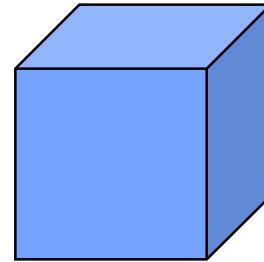
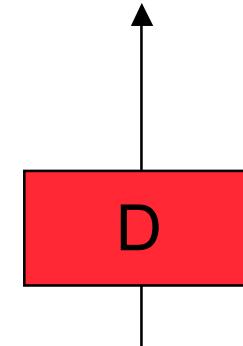
# nodes = 8



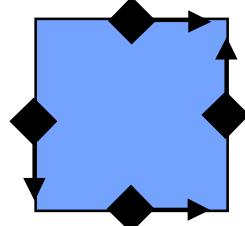
# cells = 1



Mission Impossible?!



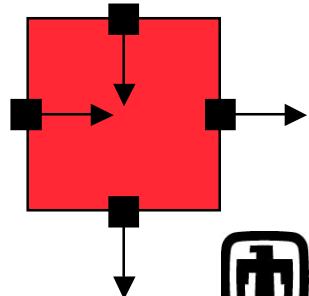
In the discrete world two different viewpoints cannot coexist at the same grid location!



# edges = 12

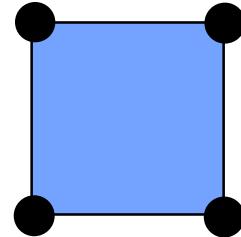
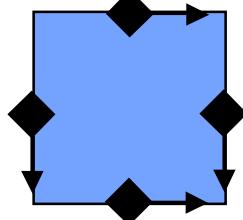
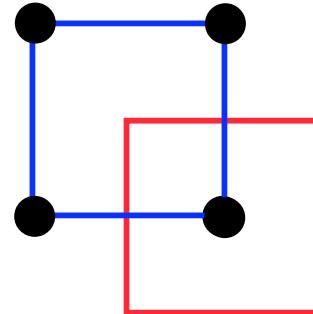
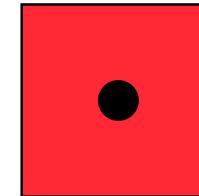
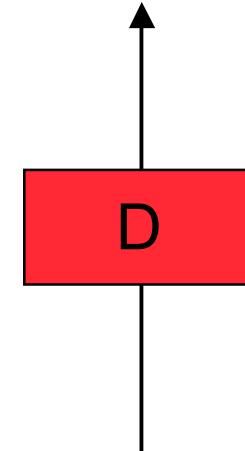
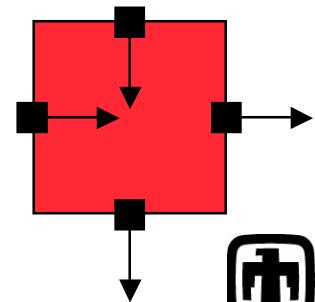


# faces = 6

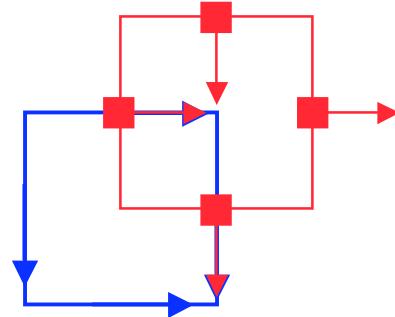




# Solution #1 Primal-Dual Grid Complex



**Staggered grid discretizations**  
Covolume (Delaunay-Voronoi)  
Box Integration Method

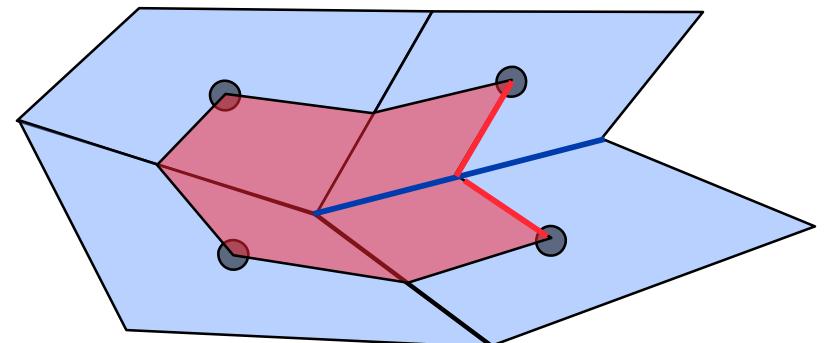
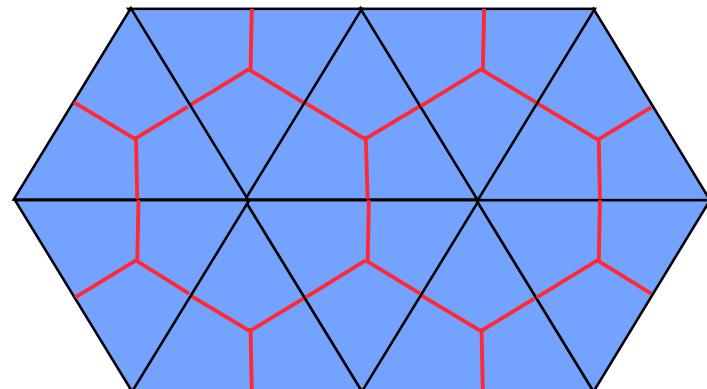
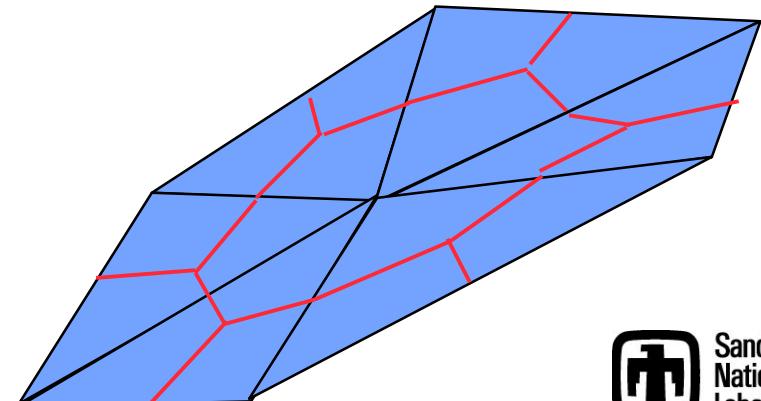


Sandia  
National  
Laboratories



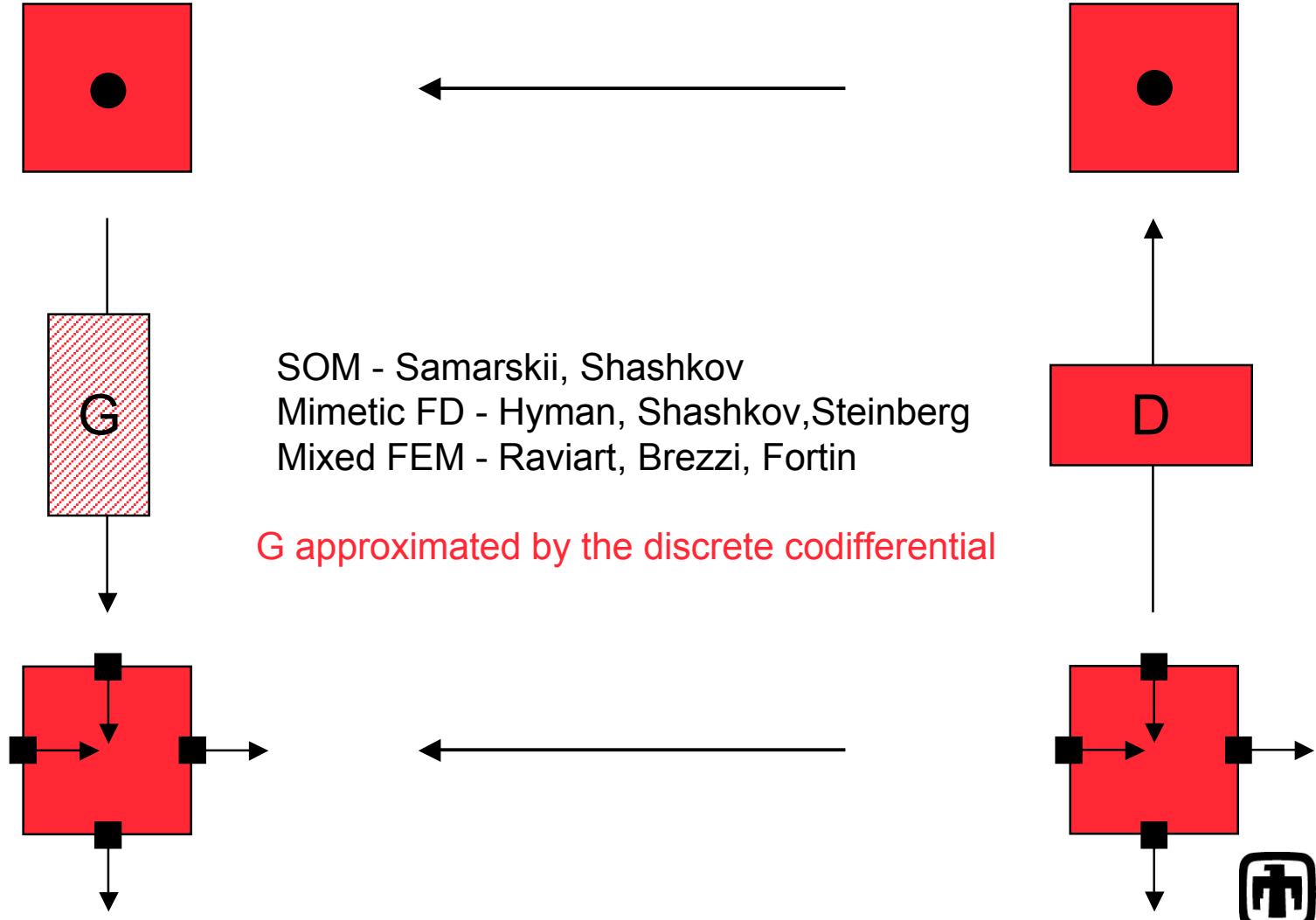
## Not always feasible

Topologically dual grids hard to maintain for unstructured meshes  
such as arising in ALE computations





## Solution #2: cheat cleverly





## So what went wrong earlier?



1. We used the same discrete representation for **all (!)** fields which was **incompatible** with their physical **meaning** and their **places** in the **domain** and the **range** of the gradient and divergence operators





## The loss of coexistence

In the continuum world line and surface fields **can coexist** at the same point in space:

- ⇒ Only one vector field can be used in the model
- ⇒ The other can be eliminated:

$$\begin{array}{c} \nabla \cdot \mathbf{v} = 0 \\ \mathbf{u} + \nabla p = 0 \\ \mathbf{v} - \rho \mathbf{u} = 0 \end{array} \quad \xrightarrow{\hspace{2cm}} \quad \begin{array}{c} \mathbf{v} = \rho \mathbf{u} \\ \nabla \cdot \rho \mathbf{u} = 0 \\ \mathbf{u} + \nabla p = 0 \end{array}$$

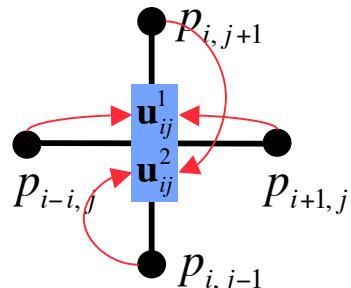
Unfortunately, in the discrete world line and surface fields **cannot coexist** at the same grid location

- ⇒ Either both types must be retained (requires primal-dual grid)
- ⇒ Or one of the operators must be modified



# Collocated discrete operators can't work properly!

## Discrete gradient



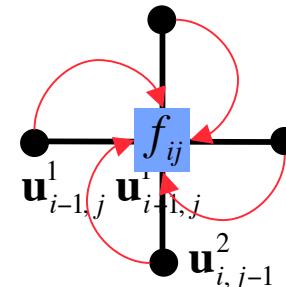
node → node

Adjoint of discrete divergence not **boundary**

$$\int_{\Omega} \nabla \cdot \mathbf{v} = \int_{\partial\Omega} \mathbf{n} \cdot \mathbf{v}$$

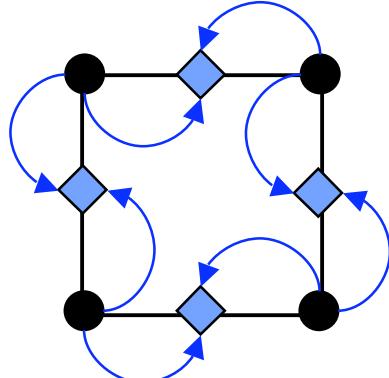
Non-conservative method

## Discrete divergence



node → node

node → edge

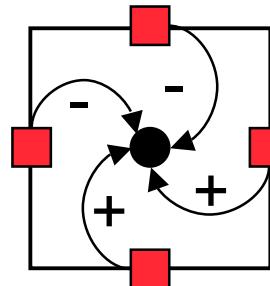


Adjoint of discrete divergence is **boundary**

$$\int_{\Omega} \nabla \cdot \mathbf{v} = \int_{\partial\Omega} \mathbf{n} \cdot \mathbf{v}$$

Conservative method

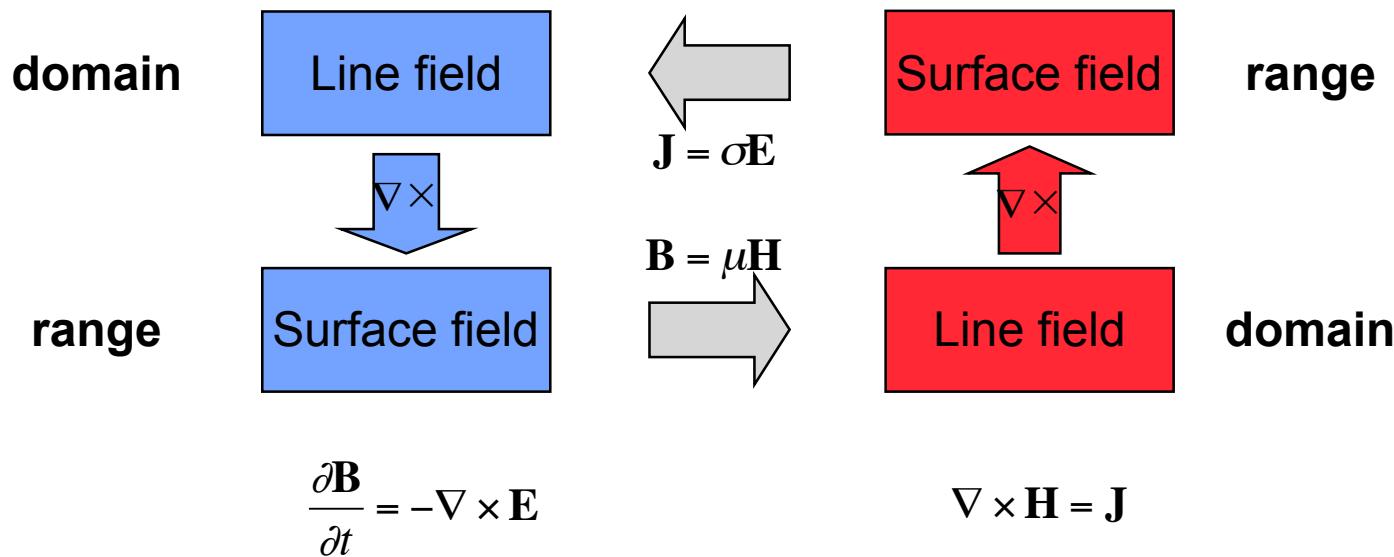
face → center





## Is this stuff useful in other cases?

Many other important models have identical duality structure



**E & J** provide dual description of electric phenomena  
**B & H** provide dual description of magnetic phenomena  
**Curl** is self-adjoint.



## Conclusions

---

- ❑ Discretization is a **model reduction**
- ❑ Careless discretization causes **unphysical behavior**
- ❑ Compatible discretizations **mimic** continuum structures
- ❑ Our discussion can be formalized using Differential Geometry and Algebraic Topology
- ❑ Differential geometry provides the **tools to encode** this structure
- ❑ Algebraic topology provides the **tools to copy** the structure to discrete models
- ❑ Further details:
  - Springer IMA Lecture Notes 142, **Spatial Compatible Discretizations**. Edited by D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides, M. Shashkov
  - <http://www.ima.umn.edu/talks/workshops/5-11-15.2004>
  - <http://www.sandia.gov/~pbboche/index.html>