
Rythmos
Addressing the error of our ways

Trilinos Users Group

October 21, 2008

Todd Coffey

Computational Mathematics & Applications
Roscoe Bartlett

Uncertainty Quantification & Optimization

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

SAND2008-7490P

What Is Rythmos?

• Transient Differential Equation Solver

• ODEs:

• DAEs:

• Algorithms: implicit BDF, implicit/explicit RK,
integrators, forward/adjoint sensitivities, more…

Addressing the Error of our Ways

• Global Error Estimation

• Runge-Kutta Updates

• Adjoint Integration

• Research

• Path Forward

Global Error Estimation

• What is this?

• Goal oriented a posteriori error estimation

– End point error:

– Average error:

• Donald Estep / Jeff Sandelin collaboration (CSU)

• GAASP code

• Rythmos/GAASP coupling

Global Error Estimation

• Consider the ODE:

• And the adjoint system:

• Where:

• Variational formulation

• (Dis)Continuous Galerkin in time resulting in IRK

Global Error Estimate

Discretization Error

Quadrature
Error

Global Error Process

• So, how does this work?

• Forward solve to compute:

• Adjoint solve to compute:

• Compute error estimate:

• Refine step-sizes to control global error

GAASP Code

• Globally Accurate Adaptive Sensitivity Package

• PhD research code written by Jeff Sandelin, CSU

• dG/cG methods (resulting in IRK)

• Error estimation with/without cancellation

• Model requirements: finite difference jacobians

• Error control algorithms

• Cubic spline smoothing of forward solution

• Quadrature approximations for integrals

Rythmos/GAASP coupling

• Model evaluator interface

• Residual only loads (at this point)

• GAASPErrorEstimator class

– setQuantityOfInterest

– getErrorEstimate

– controlGlobalError

• GAASPErrorEstimate class

– getTotalError

GAASP Algorithms -> Rythmos

• dG/cG IRK methods

• Adjoint integration

• Cubic spline interpolation buffer

• Quadrature calculations

• Error estimation objects

• Error control strategies

Implicit Runge-Kutta Method

• Differential-Algebraic Equation:

• RK method solves the system:

• RK solution:

• RK Butcher Tableau:

Runge-Kutta Butcher Tableau

• Defines combination of A, b, and c

• Accepts description and order

• Factory will create one by name, order, or type

• Can assert: explicit, implicit, diagonally implicit,
and singly diagonally implicit tableaus

• Once registered with factory, it will be
convergence tested automatically

Implicit RK Tableaus

• Implicit RK Butcher Tableau:

• Diagonally Implicit RK:

• Singly Diagonally Implicit RK:

IRK Implementation

typedef Thyra::ProductVectorBase<Scalar> PVB;

const RCP<const PVB> x_bar = rcp_dynamic_cast<const PVB>(inArgs_bar.get_x(),
true);

const RCP<PVB> f_bar = rcp_dynamic_cast<PVB>(outArgs_bar.get_f(), true);

for (int i = 0; i < numStages; ++i) {

// B.1) Setup the DAE's inArgs for stage f(i) ...

assembleIRKState(i, irkButcherTableau_.A(), delta_t_, *x_old_, *x_bar, outArg(*x_i));

daeInArgs.set_x(x_i);

daeInArgs.set_x_dot(x_bar->getVectorBlock(i));

daeInArgs.set_t(t_old_ + irkButcherTableau_.c()(i) * delta_t_);

// B.2) Setup the DAE's outArgs for stage f(i) ...

daeOutArgs.set_f(f_bar->getNonconstVectorBlock(i));

// B.3) Compute f_bar(i)

daeModel_->evalModel(daeInArgs, daeOutArgs);

daeOutArgs.set_f(Teuchos::null);

}

Thyra Product Vector Use:

More IRK Implementation

Thyra composite operators

typedef Thyra::BlockedLinearOpBase<Scalar> BLWB;
const RCP<BLWB> W_op_bar = rcp_dynamic_cast<BLWB>(outArgs_bar.get_W_op(), true);
if (!is_null(W_op_bar)) {

for (int j = 1; j < numStages; ++j) {
Scalar alpha = ST::zero();
if (i == j) {
alpha = ST::one();

} else {
alpha = ST::zero();

}
Scalar beta = delta_t_ * irkButcherTableau_.A()(i,j);
daeInArgs.set_alpha(alpha);
daeInArgs.set_beta(beta);
daeOutArgs.set_W_op(W_op_bar->getNonconstBlock(i,j));
daeModel_->evalModel(daeInArgs, daeOutArgs);
daeOutArgs.set_W_op(Teuchos::null);

}
}

IRK Stepper Usage

• Similar requirements as ImplicitBDFStepper

– Nonlinear Solver

– Jacobian

• Runge-Kutta Butcher Tableau

• Enlarged matrix solver

stateStepper = Rythmos::implicitRKStepper<double>(

stateModel, nonlinearSolver, irk_W_factory, irkbt

);

double dt = 1.0;

double dt_taken = stateStepper.takeStep(dt,Rythmos::STEP_TYPE_FIXED);

Explicit RK Method

• ODE:

• ERK method:

• ERK Solution:

• Butcher Tableau:

ERK Update

• Previously only supported
4 stage 4th order ERK method

• Now accept any explicit RK Butcher Tableau

• Full convergence tests

• Default constructor assumes 4 stage ERK
method

Convergence Testing

• Sine/Cosine problem:

• Diagonal problem:

• Integrate solution out to fixed time using
successively finer meshes

• Compare error to exact solution

• Compute least squares linear fit to log plot

• Slope of linear fit is order of method

Unit Testing

• See my Test Driven Development talk on
Thursday

• Teuchos Unit Test Harness (Ross)

• Example:
TEUCHOS_UNIT_TEST(Rythmos_RKButcherTableau,

createBackwardEuler_RKBT) {

RKButcherTableau<double> rkbt = createBackwardEuler_RKBT<double>();

TEST_EQUALITY_CONST(rkbt.numStages(), 1);

TEST_EQUALITY_CONST(rkbt.A()(0,0), 1.0);

TEST_EQUALITY_CONST(rkbt.b()(0), 1.0);

TEST_EQUALITY_CONST(rkbt.c()(0), 1.0);

TEST_EQUALITY_CONST(rkbt.order(), 1);

}

Global Error Path

• Along the way:

– Trilinos Vertical Integration Milestone (Charon)

– Aria Adjoint integration work

• Have IRK

• Need Adjoints

• Cubic spline interpolation buffer

• Quadrature calculations

• Error estimation objects

• Error control strategies

Vertical Integration Milestone

• Rythmos improvements to support Charon:

– BDF step-size strategy

– BDF error-weight norm strategy

– Integrator implementation

– Integrator step control strategy

– Observers

– Forward Sensitivities

– Breakpoint support

– Numerous bugfixes & other improvements

Adjoint Integration

• New Functionality in Rythmos

• Implemented to support adjoints in SIERRA/Aria

• Supports:
Linear Adjoint integration
End-point specification

• Model Evaluator implementation

• Tested in Aria nightly

On our Way…

• Have IRK

• Have Adjoints

• Whoa! How much does this cost?

• Cubic spline interpolation buffer

• Quadrature calculations

• Error estimation objects

• Error control strategies

Cost Hiding…

• How can we reduce the cost of adjoint based
global error estimation?

– Pre-compute error estimates for model problem

– Post-compute error estimates in down-time

– Parallel time integration to hide cost

• We betting this is well worth the retail price

Research Front

• Global error estimates for DAEs

• Global error estimates for BDF methods

• Relate model problem error estimates to
specific problem

• Global error control strategies

• Parallel time integration based on adjoint error
estimates

Path Forward

• To complete Global Error Estimation Algorithms:

– Cubic Spline InterpolationBuffer

– Quadrature algorithms

– Error Estimation algorithms from GAASP

• To continue application integration:

– More sophisticated adjoint integration

– Restarts and checkpointing support

– Variable step-size algorithms for RK methods

– Continue expanding & refining: Charon & Aria
support

– Develop Xyce integration support

Until next time…

Rythmos

Addressing the error of our ways

Global Error Estimates

Implicit RK

Convergence Tests

Thank you!

