
Test Driven Development

Trilinos Users Group, Developer Day

October 23, 2008

Todd Coffey

Computational Mathematics & Applications
Roscoe Bartlett

Uncertainty Quantification & Optimization

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

SAND2008-7488P

What are Unit Tests?

• A unit test is a fast test that localizes errors
“Working Effectively with Legacy Codes”

• Unit tests verify correctness of individual
functions (units) in a code

• Integration tests verify interfaces between units

• System tests verify the code end-to-end

Benefits of Unit Tests

Code Coverage
Safeguard code against future edits

Code gets better every time you work on it

Localizes coding errors Hardened Solvers

Feels good
Quick verification of edits

Shorter Development Time

What is Test Driven Development?

1. Write (unit) tests before you write code

2. Verify test fails

3. Write code to satisfy test

4. Refactor code

That’s the essence of it.

Benefits of TDD

Define work completionDesign better code

Find defects early

Write testable code

Tests get written
Detect unintended changes

See code from interface
Focus on refactoring

Foo

Teuchos Unit Test Harness

• Macros that make writing unit tests very easy
#include "Teuchos_UnitTestHarness.hpp”
TEUCHOS_UNIT_TEST(group_name, test_name) { … }

• Driver code which runs all the tests
#include "Teuchos_UnitTestRepository.hpp”
#include "Teuchos_GlobalMPISession.hpp”
int main(int argc, char* argv[]) {
Teuchos::GlobalMPISession mpiSession(&argc, &argv);
return Teuchos::UnitTestRepository::runUnitTestsFromMain(argc,

argv);
}

• Makefile defines which unit tests get pulled in

Teuchos TEST options:

TEUCHOS_ECHO(statement)

TEUCHOS_TEST_EQUALITY[_CONST](a, b)

TEUCHOS_TEST_INEQUALITY[_CONST](a, b)

TEUCHOS_TEST_FLOATING_EQUALITY(a, b, tol)

TEUCHOS_TEST_ITER_EQUALITY(it_a, it_b)

TEUCHOS_TEST_ARRAY_ELE_EQUALITY(A, i, val)

TEUCHOS_TEST_MATRIX_ELE_FLOATING_EQUALITY
(A, i, j, tol)

TEUCHOS_TEST_MATRIX_ELE_EQUALITY(A, i, j, val)

TEUCHOS_TEST_COMPARE(a, <=, b)

TEUCHOS_TEST_THROW(statement, std::logic_error)

TEUCHOS_TEST_NOTHROW(statement)

Hello World Unit Test

#include "Teuchos_UnitTestHarness.hpp”

std::string hello() {

// std::string hw = “Hello World”;

return hw;

}

TEUCHOS_UNIT_TEST(HelloWorld, test0) {

std::string hw = hello();

TEST_EQUALITY_CONST(hw, “Hello World”);

}

Xyce Example

• Harmonic Balance (HB) Algorithm
(based on MPDE algorithm)

• Builder is a factory for vectors and matrices

• HB uses product vectors

• HB uses Real Equivalent Form for FFT

• Verify product vectors are correct size

Write Unit Test

RCP<N_HB_Builder>

createHBBuilder(int numBlocks, int numSolutionVars, int numStateVars) {

RCP<N_HB_Buidler> hbBuilder;

return builder;

}

TEUCHOS_UNIT_TEST(HB_Builder, createVector) {

RCP<N_HB_Builder> hbBuilder = createHBBuilder(10, 3, 5);

TEST_EQUALITY_CONST(is_null(hbBuilder), false);

RCP<N_LAS_Vector> vec = hbBuilder->createVector(0.0);

RCP<N_LAS_BlockVector> bvec = rcp_dynamic_cast<N_LAS_BlockVector>(vec,false);

TEST_EQUALITY_CONST(Teuchos::is_null(bvec), false);

TEST_EQUALITY_CONST(bvec->blockCount(), 3);

TEST_EQUALITY_CONST(bvec->blockSize(), 20);

}

Run Test

$./XyceDemoUnitTest --show-test-details=ALL

Teuchos::GlobalMPISession::GlobalMPISession(): started serial run

*** Unit test suite ...

Sorting tests by group name then by test name …

Running unit tests …

0. HB_Builder_createVector_UnitTest ...

is_null(hbBuilder) = 1 == 0 : failed

Segmentation fault

Fill Dependencies

RCP<N_HB_Builder>

createHBBuilder(int numBlocks, int numSolutionVars, int numStateVars) {

N_IO_CmdParse cmdLine;

RCP<N_MPDE_Manager> mpdeMgrRCPtr = rcp(new N_MPDE_Manager(cmdLine));

N_MPDE_Discretization::Type type = N_MPDE_Discretization::Backward;

int order = 1;

RCP<N_MPDE_Discretization> discRCPtr = rcp(new N_MPDE_Discretization(type,order));

bool warpMPDEFlag = false;

RCP<N_HB_Buidler>

hbBuilder = rcp(new N_HB_Builder(mpdeMgrRCPtr, numBlocks, discRCPtr, warpMPDEFlag));

return builder;

}

TEUCHOS_UNIT_TEST(HB_Builder, createVector) { … }

More Dependencies
RCP<N_HB_Builder>

createHBBuilder(int numBlocks, int numSolutionVars, int numStateVars) {

N_IO_CmdParse cmdLine;

RCP<N_PDS_Manager> pdsMgrRCPtr;

bool isSerial;

bool procFlag;

pdsMgrRCPtr = rcp(new N_PDS_Manager(isSerial,procFlag));

cmdLine.registerParallelMgr(pdsMgrRCPtr);

int iargs = 2;

char *arg0 = "Xyce";

char *arg1 = "foo.cir";

char *cargs[iargs];

cargs[0] = arg0;

cargs[1] = arg1;

cmdLine.parseCommandLine(iargs,cargs);

RCP<N_MPDE_Manager> mpdeMgrRCPtr = rcp(new N_MPDE_Manager(cmdLine));

N_MPDE_Discretization::Type type = N_MPDE_Discretization::Backward;

int order = 1;

RCP<N_MPDE_Discretization> discRCPtr = rcp(new N_MPDE_Discretization(type,order));

bool warpMPDEFlag = false;

RCP<N_MPDE_Manager> mpdeMgrRCPtr = rcp(new N_MPDE_Manager(cmdLine));

N_MPDE_Discretization::Type type = N_MPDE_Discretization::Backward;

int order = 1;

RCP<N_MPDE_Discretization> discRCPtr = rcp(new N_MPDE_Discretization(type,order));

bool warpMPDEFlag = false;

RCP<N_HB_Buidler>

hbBuilder = rcp(new N_HB_Builder(mpdeMgrRCPtr, numBlocks, discRCPtr, warpMPDEFlag));

return builder;

}

TEUCHOS_UNIT_TEST(HB_Builder, createVector) { … }

Segfaults
RCP<N_HB_Builder>

createHBBuilder(int numBlocks, int numSolutionVars, int numStateVars) {

RCP<N_PDS_Comm> pdsCommRCPtr = rcp(new N_PDS_SerialComm);

N_IO_CmdParse cmdLine;

RCP<N_PDS_Manager> pdsMgrRCPtr;

bool isSerial;

bool procFlag;

pdsMgrRCPtr = rcp(new N_PDS_Manager(isSerial,procFlag));

cmdLine.registerParallelMgr(pdsMgrRCPtr);

int iargs = 2;

char *arg0 = "Xyce";

char *arg1 = "foo.cir";

char *cargs[iargs];

cargs[0] = arg0;

cargs[1] = arg1;

cmdLine.parseCommandLine(iargs,cargs);

RCP<N_MPDE_Manager> mpdeMgrRCPtr = rcp(new N_MPDE_Manager(cmdLine));

N_MPDE_Discretization::Type type = N_MPDE_Discretization::Backward;

int order = 1;

RCP<N_MPDE_Discretization> discRCPtr = rcp(new N_MPDE_Discretization(type,order));

bool warpMPDEFlag = false;

RCP<N_MPDE_Manager> mpdeMgrRCPtr = rcp(new N_MPDE_Manager(cmdLine));

N_MPDE_Discretization::Type type = N_MPDE_Discretization::Backward;

int order = 1;

RCP<N_MPDE_Discretization> discRCPtr = rcp(new N_MPDE_Discretization(type,order));

bool warpMPDEFlag = false;

RCP<N_HB_Buidler>

hbBuilder = rcp(new N_HB_Builder(mpdeMgrRCPtr, numBlocks, discRCPtr, warpMPDEFlag));

RCP<Epetra_Map> baseMap;

int numGlobalElements = numSolutionVars; int IndexBase = 0;

RCP<Epetra_Comm> comm = rcp(pdsCommRCPtr->petraComm(),false);

baseMap = rcp(new Epetra_Map(numGlobalElements,IndexBase,*comm));

hbBuilder->generateMaps(*baseMap);

// Now we have to call generateHBMaps or it will also segfault on createVector

hbBuilder->generateHBMaps(*baseMap);

return builder;

}

Test passes!

$./XyceDemoUnitTest --show-test-details=ALL

Teuchos::GlobalMPISession::GlobalMPISession(): started serial run

*** Unit test suite ...

Sorting tests by group name then by test name …

Running unit tests ...

0. HB_Builder_createVector_UnitTest ...

is_null(hbBuilder) = 0 == 0 : passed

Teuchos::is_null(bvec) = 0 == 0 : passed

bvec->blockCount() = 3 == 3 : passed

bvec->blockSize() = 20 == 20 : passed

[Passed]

Summary: total = 1, run = 1, passed = 1, failed = 0

End Result: TEST PASSED

Summary

• Unit tests should be fast and localize errors

• Unit tests should be first line of defense

• System tests are too slow and too global for
interactive development

• Test Driven Development results in

– Finding defects earlier

– Faster development

– Testable code

– Unit tested code

Action Items

1. Write “Hello World” program in Teuchos Unit
Test Harness

2. Pick a small block of your own code and unit
test it.

3. Report feedback on this to me at
tscoffe@sandia.gov

Thank you!

mailto:tscoffe@sandia.gov

