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1. Introduction

Our overall design goal was to make a very strong hashing function that performed
reasonably well on the most common architectures. We also had other desires for the
SANDstorm family, such as:

e Parallelizablility and/or pipelineablility

e Deviation in structure from the MD/SHA family designs

e A finishing step

e Internal state larger than the final output of the hash to add resistance to attacks on
very long messages as well as attacks focusing on multicollisions and herding.

e Reusage of the SHA family constants so that implementations that must support both
the SANDstorm family and the SHA family would be able to reuse those constants as
needed.

e Use the strategy for obtaining 224 bit hashes as is used in the SHA family. The
SANDstorm-224 function is the same as for SANDstorm-256 except that different
initialization variables are used. The same strategy is used for SANDstorm-384 and
SANDstorm-512.

e Be compatible with the NIST methods of HMAC, randomized hashing schemes. This
will allow a “plug and play” with many of the data formatting mechanism and
program wrappers currently in use.

Our design goals have been realized. Our algorithm has a great deal of mixing and its
performance is on par with the SHA family of algorithms on the 32 bit architectures that
we tested. Significant speed gains can be realized on 64 bit architectures. If a software
implementation includes a tiny amount of assembly code considerable speed
enhancements can also be found.

The real performance benefit of our algorithm is that it is designed so that there are two
different types of parallelization available. The compression function is parallelizable to a
large degree and the mode in which it is used also is designed especially to allow a large
degree of parallelization.

Design Overview

The SANDstorm-256 and -224 Hash processes 512 bit blocks and operates on 64 bit
words. Whereas the SANDstorm-512 and -384 Hash processes 1024 bit blocks and
operates on 128 bit words. Each uses a mode that is a modified and truncated k-ary tree
with a finalization step. Internal to the mode is the SANDstorm method of chaining,
which does fall under the Merkle-Damgard umbrella, but is different from the standard
implementation. We also have an efficient compression function.

The SANDstorm hash is compatible at the function level with the SHA family. In
particular it may be used with the typical HMAC methods such as those in

FIPS 198-1, The Keyed-Hash Message Authentication Code (HMAC), July, 2008 found
at http://csrc.nist.gov/publications/PubsFIPS.html, and randomized hashing methods
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such as those described in SP 800-106, DRAFT Randomized Hashing Digital Signatures
(2nd draft), July, 2008 and found at http://csrc.nist.gov/publications/PubsDrafts.html

There are four main components in the design

e Padding
e Mode
e Chaining

e Compression
Each of these will be explained in turn.

Notation and Conventions

The following section on notation and conventions was taken almost verbatim from
various portions of FIPS PUB 180-3, Dated October 2008 which can be found at:
http://csrc.nist.gov/publications/PubsFIPS.html

We felt that for the sake of consistency we should use the same notational conventions.
There are a few rearrangements and deletions of the FIPS text along with a few additions
as needed for the SANDstorm hash.

Symbols

The following symbols are used in the SANDstorm algorithm specifications, and each
operates on w-bit words

A Bitwise AND operation

@ Bitwise XOR (“exclusive-OR”) operation

— Bitwise complement operation

+ Addition modulo 2%

* Multiplication modulo 2"

<< Left-shift operation, where x << n is obtained by discarding the left-most n bits of the
word x and then padding the result with n zeroes on the right.

>> Right-shift operation, where x >> n is obtained by discarding the rightmost
n bits of the word x and then padding the result with n zeroes on the left.

The rotate left (circular left shift) operation, ROTL"(x), where x is a w-bit word and n is
an integer with 0 <n <w, is defined by ROTL"(X)=(x <<n) @ (x >>w - n). Thus,
ROTL"(x) is equivalent to a circular shift (rotation) of x by n positions to the left.

Bit Strings and Integers

The following terminology related to bit strings and integers will be used.

1. A hex digit is an element of the set {0, 1,..., 9, a,..., f}. A hex digit is the
representation of a 4-bit string. For example, the hex digit “7” represents the 4-bit string
“0111”, and the hex digit “a” represents the 4-bit string “1010”.
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2. A word is a w-bit string that may be represented as a sequence of hex digits. To
convert a word to hex digits, each 4-bit string is converted to its hex digit equivalent, as
described in (1) above. For example, the 32-bit string

1010 0001 0000 0011 1111 1110 0010 0011
can be expressed as “al03fe23”, and the 64-bit string

1010 0001 0000 0011 1111 1110 0010 0011
0011 0010 11101111 0011 0000 0001 1010

can be expressed as “al03fe2332ef301a”.

3. An integer between 0 and 2**-1 inclusive may be represented as a 32-bit word. The
least significant four bits of the integer are represented by the right-most hex digit of the
word representation. For example, the integer 201=2% + 2° + 2" + 2°=256+32+2+1 is
represented by the hex word 00000123.

The same holds true for an integer between 0 and 2%*-1 inclusive, which may be
represented as a 64-bit word. Similarly for other sized integers as well.

Sandstorm usually operates on 64(128) bit words, but occasionally the words are broken
into half size pieces. For example, if Z is an integer, 0 < Z < 2°*, then Z=2"*X + Y, where
0<X<22and0<Y <2

4. For the SANDstorm family of hash algorithms, the size of the message block depends
on the algorithm.

a) For SANDstorm-224 and SANDstorm-256, each message block has 512 bits, which
are represented as a sequence of eight 64-bit words. So a 512 bit data block D may be
represented as D=(dy, d, d, ds, da, ds, dg, d7) where the d; are 64 bit words. In the
description below 256 bit quantities are passed from one functional block to another and
are represented as four 64 bit words such as E=(ey, ei, €2, €3).

b) For SANDstorm-384 and SANDstorm-512each message block has 1024 bits, which
are represented as a sequence of eight 128 bit words. Similarly, a 1024 bit data block can
be represented as D=(dy, di, d», d3, d4, ds, dg, d7) where the d; are 128 bits in length.

2. The SANDstorm Padding and Message Length

The padding for SANDstorm is simple and unambiguous. We pad each message by
appending a 1 to each message and then filling with 0’s until the result is a multiple of the
block length.

Let n be the length in bits (before padding) of the message to be hashed. If | is a multiple
of the block length, then a 1 followed by the block length minus one number of zeroes
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will be added, which increases by one the number of blocks the message and padding is
be parsed into. Otherwise, the padding will not result in an extra block.

The message length in bits 1 must be passed into the mode which uses the length in the
finishing step.

The SANDstorm hash allows for 0 <1 < 2'*® no matter the hash output size.

3. The SANDstorm Mode

One downside to a typical Merkle-Damgard construction is that parallelization and/or
pipelining is not readily possible, thus limiting the throughput of high-end
implementations. On the other hand, tree based hashing is highly parallelizable, but the
depth of the tree and, the amount of storage needed are variable depending on the size of
the message. This variability makes the implementation of tree based hashing
challenging. Also latency issues may arise with a full tree based approach.

The SANDstorm mode is a truncated tree based approach that is partially parallelizable
but has a bounded depth and storage. The amount of storage is at most 8 blocks of
intermediate data, with careful message processing. Yet, given the right resources, there
is a tremendous opportunity for parallelization of on the order of a factor of 1000.

Each level of the tree uses the SANDstorm chaining described below to build the k-ary
tree. The mode also provides for a finishing step as well as an early out option to aid in
the performance of short messages.

1 Block Initialization Step L>
Level 1 | *I 10 Blocks | *I 10 Blocks | . .’I | . .’I | . *I 10 Blocks | *I 10 Blocks
|
|
|
v
100 Blocks *I | . *I | 100 Blocks
[ \
] \
' \
A 4 A 4
.’I Number of blocks/1000
y
| 1 Block Finishing Step |
y

| Hash Output |

Figure 1: SANDstorm Mode
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SANDstorm Mode Description

For this discussion it is assumed that the input message will already be padded and parsed
into an integral number of 512(1024)-bit blocks.

The SANDstorm mode, nominally has five different levels.

Level 0 and Level 4 are completed no matter the length of the input message and each
process a single block.

Level 0 is somewhat like a conditioning step and its output is used in all other levels.
Level 4 is a finishing step.

Levels 1, 2, and 3 are used depending on the length of the message.

Each level of the tree combines data into superblocks (a grouping and chaining of a
certain number of data blocks) the size of which depends on the level. The initialization
of each superblock will include a superblock number. The final output of each superblock
is the result of the chaining operations and is four 256(512) bit strings. Those strings are
combined to produce a new data block of 512(1024) bits. The new block is either fed into
the next level of the tree or fed directly to the finishing step depending on the message
length.

Let M=M,My,....My, be the input message parsed into m+1 512(1024) bit blocks, after
padding.

If m=0, then Level 0 processes M and passes the output to the finishing step, Level 4.
This passing of shorter message data to Level 4, rather than through the rest of the tree,
we call an “early out”.

If m>0, then Level 0 and Level 1 combine to partially compress M to create a new
message N=Nj, N,...,N,, where the N; are 512(1024) bits in length. In particular, the M;
are parsed into “superblocks” of size 10 and processed sequentially with the SANDstorm
chaining to create one block of N. That is, for i=1 to n the message blocks

Mi-1y#10 +1, M-1y*10 42 5. ., and Mi#o are processed with the SANDstorm chaining method.
The final chaining value of the superblock is the four 256(512) bit strings:

chn(0,1*10), chn(1,i1*10), chn(2,1*10), chn(3,i*10),

where each chn(j,1*10) is a 256(512) bit string. How these are computed will be
explained below and from which we compute:

Ni=( chn(0,i*10) @ chn(2,i*10), chn(1,i*10) @ chn(3,i*10))
N;i is a function of My via details from the compression function. If m is not an integer
multiple of 10, then N, is produced from SANDstorm chaining the last (m modulo 10)
blocks of M and XORing the four output values as is shown above.
If n=1, then N; is fed directly into the finishing step of Level 4. Otherwise, the message N

is partially compressed in Level 2 to produce P=Py, P»,...,P,, where again the P; are 512
bits in length. Here we have that 100 blocks of N are used to produce one block of P. In
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particular, for i=1 to p the data blocks Ni-1)*100 +1, Ni-1y¥100 +2,- . -» Ni*100 are chained
together with the SANDstorm chaining to produce the P;, in the same fashion that the N;
are produced. The four word output of the superblock are paired together and XORed as
above. If n is not an integer multiple of 100, then P, is produced by SANDstorm chaining
the last (n modulo 100) blocks of N.

If p=1, then P; is fed into the finishing step of Level 4. Otherwise, the message P is fed
into Level 3, which SANDstorm chains completely. The length of P is bounded by
(2'%%)/1000. The final four 256(512) bit strings are paired and XORed as above and fed
into the Level 4 finishing step.

For SANDstorm hash-224, the final message digest is the XOR of all four 256 bit strings
output of Level 4, with the leftmost 224 bits retained.

For SANDstorm hash-256, the final message digest is the XOR of all four 256 bit strings
output of the Level 4.

For SANDstorm hash-384, the final message digest is the XOR of all four 512 bit strings
output of Level 4, with the leftmost 384 bits retained.

For SANDstorm hash-512 the final message digest is the XOR of all four 512 bit strings
output of the Level 4.

The messages N and P are, in a sense, artificial and need not be fully created before the
algorithm begins processing the next level. As soon as the appropriate data is available, a
level may begin its processing. Morever, if an application can guarantee that its messages
will always be less than 12 blocks in length, its implementation of the SANDstorm need
not include code for Level 2 or Level 3. Similarly, Level 3 can be eliminated if all
messages are less than 1002 blocks in length.

Levels 2, 3, and 4 will always receive the 512(1024) bit message blocks. No padding is
necessary on those levels.

SANDstorm Mode Performance

The SANDstorm mode is designed to be partially parallelizable in the first two levels of
the tree. Levels 1 and 2 have Merkle-Damgard chaining within the superblocks of size 10
and 100, respectively, but the superblocks themselves can be processed independently.
Level 3 is processed sequentially in the Merkle-Damgard fashion. For large messages,
this allows a maximum speed up of 1/(1000) due to parallelization in the mode.

There is a good deal of flexibility in the construction and the available factor of
parallelizability depends on the size of the message being hashed. If one has a message
12+ blocks in length, there is an opportunity to process two Level 1 superblocks of size
10, independently. Such would give a speed up of roughly a factor. Similarly, if one has a
message of greater than 1002 blocks in length, then one can begin taking advantage of the
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parallelization in Level 2, with benefit ranging up to a maximum of a factor of 1000
depending on resources.

On the other extreme, if one does not have the resources to exploit the parallelizability of
the SANDstorm mode, then one pays a penalty of having to process the second and third
levels of the tree. That then implies a slowdown of a factor of (1+1/10+1/(1000)) over
straight sequential processing of the message blocks. That is less than an 11% slowdown
for long messages.

Because of the early out mechanisms for short messages, the effect of the levels of the
tree, including the impact of the finishing step, is mitigated to some extent. If one has a
message of length 0 <1 <512(1024) in bits, then the message will pad out to exactly one
block. So then Level 0 will operate on the message and then the output will pass directly
to Level 4 and so two compressions are needed to process a message of that size. A
message that is between 1< k < 11 blocks long would require k+1 compressions including
the finishing step.

The second level of the tree is not invoked until the message becomes at least 12 blocks
in length and would require 14 compressions. At that point, the message would not be
considered extremely short and the impact of the additional level is mitigated to some
degree by the length. Similarly, Level 3 is not invoked until the message is at least 1002
message blocks long.

There is a certain amount of latency associated with the last block to be processed. When
the final message block is received, that block must be processed as it propagates through
the levels of the tree. The latency depends on the length of the input message and ranges
from two to four compression operations. For messages less than twelve blocks in length
the final message block must be run through two compression functions. For messages of
length greater than 1001 blocks, four levels must be traversed.

The SANDstorm mode has some other flexibilities associated with precomputation. The
superblocks, especially in Level 1 may be computed independently of the other
superblocks. This means that in cases where large messages need to be hashed many
times with only small changes between hashings, then much of the hashing work
associated with the unchanged portion of the message may be computed and stored. Only
the change-affected superblocks in Level 1 and Level 2 need to be recomputed. Of course
this may require additional storage. If the places of change are known, and fixed to some
degree, say always contained in the input of a superblock on Level 1, then most of the
rest of the message may be processed down to Level 3. This would require the storage of
a new message of size roughly m/1000 blocks in length and would see a speed up of
nearly a 1000 over simple serial processing. Further the Level 3 process may process up
to the changed position, reducing the amount of needed storage and the computations
needed.

Choice of Superblock Size

The choice of a superblock size of 10 and 100 is somewhat of an arbitrary choice. If one
were to reduce the size of the either superblocks or both, then the maximum amount of
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resources needed to take full advantage of the mode would be less, but the maximum
potential advantage would be less as well. On the other hand, we could have added more
levels in the tree or increased the size of the blocks to increase the potential for
parallelizability. However, the resources needed to take full advantage could quickly
become absurd. Our choice is based on what we considered an upper bound on what
might be reasonable for a very high end implementation. In this way, one may pick the
amount of resources they are willing to apply and, for any reasonable choice, one may
see performance benefit associated with that choice.

If the SANDstorm hash survives the competition and is chosen by NIST, further
discussion of the choice of superblock size might be in order. Even though we would
support a discussion of changing the superblock size to some other fixed value, it is
another issue to have a variable superblock size. It does not seem to matter what the
superblock sizes are from a security standpoint, but when one is able to freely adjust both
message and superblock size one must analyze all possible combinations to determine if
something untoward is going to happen. We know of no such vulnerabilities, but as a rule
having too much variability in an algorithm may induce vulnerabilities associated with
those variabilities.

4. The SANDstorm Chaining

In the usual iterative description of the Merkle-Damgard construction, one computes a
chaining variable as hi=H(h;.;,M;). So that the value of h; is a function of h;.; and the
message block M;. Almost all implementations XOR inputs and outputs such as setting
hi=H(hi.;1 © M;), which is simply not compatible with parallelization and/or pipelining.
So, to achieve some level of parallelizability within the chaining, we deviated from this
usual implementation and leveraged the more general form of the Merkle-Damgard
construction.

Another of our design goals was to have a larger amount of internal state than is in the
SHA family to add resistance to various types of attacks that exploit the size of the
internal state, such as, long messages, multicollisions, and herding, etc,. However there is
a direct correlation with performance and the amount of state that is operated on during
the course of the compression function.

Our nonstandard view of h=H(h;.;,M;) allows us to parallelize within the chaining of the
superblocks and allows us to carry more internal state forward and yet remain efficient.

SANDstorm Chaining Description

Suppose that M=My,My,...,My, is the message to be hashed. Then M is operated on in the
SANDstorm truncated tree mode in levels to produce successively more compressed data.
The data will be operated on in superblocks of a given size as explained in the section
describing the SANDstorm mode. Here we describe the data flows down at the
superblock level and show how to pass data from one level of the tree to the next.
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Level 0
Level 0 operates on a single block and is somewhat different than the other levels.

The compression function nominally has 5 rounds. Each of those rounds will see an input
from a bank of constants and from the message schedule. The input constants for each
hash size C,, C;, C,, Cs3, and C4 are defined below.

The output of Level 0 is four 256-bit strings S, S», S3, and S4. The four values will be
part of the inputs for each superblock compression on levels 1, 2, and 3.

If the input message is one block long, S;, S,, S3, and S4, are sent directly to Level 4 to
comprise the input message (ss,S¢) for that level. Where

S5=Sl @® S3 and S6=Sz @® S4

Co
v MS(0,M,)
RO

c,
v MS(1, My)
R1

c, - s,
v MS(2, M)
RZ

C3 »l SZ
v MS(3, M,)

v

Bl

MS(4, M,)

S,

v

Figure 2: Level 0
e R is the round function.

e MS(r, My) is the message schedule with a 256(512) bit output, which is a function of
round r and data block M.
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e Both R and MS will be explained in detail in the compression function section.

The input into Ry is Co © MS(0,My)
For 0<i<4 the input to Ri is Ri; @ C; @ MS(i,My)

For 1<i<3 the output Si=R; @ Ci;
The output S4=R4

Note that in the description of Level 0 we have used My as inputs for the message
schedule. Level 0 always operates only on the first message block My. No other level
does this. For the other levels, we use D in place of M since the other levels may not
actually operate on the message blocks directly.

Levels 1.2, and 3

Levels 1, 2, and 3 chain multiple blocks of data together. Given a sequence ofj
512(1024) bit data blocks Dy,D», ...,Djwe process these j blocks sequentially. Each data
block is processed as in Level 0 except that the four 256(512)-bit output strings act as the
input constants for the next block. So, for instance, the output of round three in the
compression function for block i will be part of the input for round three in block i+1.

The following graphic shows the state transition from one block position to the next
given a superblock of size two.
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[N c0

M(0,1) A MS(0, D,)

C4

MS(1,D,)
S, s,

MS(2, D,)
S

S

v

[

MS(3, D,)

Cy S,

v

MS4, D,)

Sy

v

Figure 3: Two Block Superblock

Figure 2 represents a superblock of size two. To extend to superblock of larger size one
continues the construction by taking the output state of one round and applies it to the
input state for the same round for the next block.

Note that superblocks of many sizes are possible. In Level 1 the size is bounded by 10. In
Level 2 the size is bounded by 100, and in Level 3 by roughly m/1000.

As with Level 0, to initialize the compression of the superblock there are input constants
Co, C1, C2, C3, and c4. These constants are a level dependent function of the Level 0 input
constants and the Level 0 output state. For a given level in the SANDstorm mode tree the
value cy is fixed. For Levels 1 and 2 the superblock number is also included in the
computation of the initialization constants. The specific constant values are given below.

For a given level and superblock position, let chn(i,k) be the chaining value from round i
at block position k. The input constant for the superblock is then c;=chn(i,0). Similarly,
let R(i,k) be the output of round i at block position k.

For I<i<4and 1 <k <j the input into round i at block position k is
R(i-1,k) @ chn(i,k-1) © M(1,Dx)
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We also have for 1 <i<3and 1 <k <j chn(i,k)=R(i-1,k) @ chn(i+1,k-1)
For 1 <k <j chn(4,k) = R(4.,k).

The end of the superblock compression produces four 256(512)-bit values sj, sz, 3, and s4
that are combined together to produce the data (s5,s6) for the next level in the tree. The
pair of values

Ss=8; @ szand sg=5, D s4

are 256(512) bits in length values which are treated as a 512(1024) bit data block (s5, s6),
which is fed into the next level of the tree.

Level 4

The finishing step of Level 4 is similar to Level 0 in that it operates on a single block of
data.

Co

A MS(0 M
Ro
Cq =
A MS(1,D)
Ri
C2 > out1
A MS(2,D)
Rz
Cs > out2
A MS(3,D)
Rs3
Ca > out3
A MS(4,D)
R4
out4

v

Figure 4: Level 4

The input constants are defined below, but are a function of the prepadded message bit
length, n. The input message for Level 4 is the single block output D=(ss,s¢) from one of
the previous 4 levels depending on the message length as explained in the SANDstorm
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mode section. The output combines together to create the final hash value of the message
M.

SANDstormHash(M)= outl @ out2 @ out3 @ out4

Initialization Constants

For each level of the SANDstorm mode, the values ¢, ci, ..., ¢4 are a function of Cy, Cy,
..., Cqand Sy, Sy, S5, and S4. For Level 1 and Level 2 the constants are also a function of
the block position. Since there is only one superblock on Level 3, that level does not
include a superblock number.

Again given message M=M,My,...,Mp,.

For SANDstorm-256 and -224, Level 1 processes 10 blocks at a time. Then with
Mi-1y*10 +1, Mi-1y*10 42, . ., and M=o the counter 1 is a 128 bit number, and o=(1,1) is 256
bits in length. For Level 1, let k be the smallest integer greater than m/10, then the
counter 1 < i <k. SANDstorm-512 and -384 have a message length bounded by 2'**.
The 128 bit counter i is viewed as a 256 bit integer so that o;=(i,1) is 512 bits in length.

Level 2 processes derivates of Level 1 in superblocks of size 100. Each data block in
Level 2 is the result of SANDstorm chaining of 10 input messages blocks. So each
superblock in Level 2 is a function of message blocks Mi-1)*1000 +1, Mi-1)*1000 +2, - - ., and
Mi«1000. Set Bi=(1, 1). For Level 2, let k be the smallest integer greater than m/1000, then
the counter 1 < i <k. As above, for SANDstorm-512 and -384 we have that 3;=(i,1) is
512 bits in length.

For SANDstorm-256 and -224 let ¢ and d be defined as the first 64 bits of the fractional
part of the fifth root of 5 and 7 respectively. Given in hex:

C=6135f68d4cOcbb6f

d=79cc45195cf5b7a4

Let $=(0, 0,0, c) and &= (0,0, 0, d) be two 256 bit strings.

For SANDstorm-512 and -384 let ¢ and d be defined as the first 128 bits of the fractional
part of the fifth root of 5 and 7 respectively. Given in hex:
C=6135f68d4c0cbb6fb43b47a245778989

d=79cc45195ct5b7adaecde7496801dbb9

Let $=(0, 0,0, c) and &= (0,0, 0, d) be two 512 bit strings.

The message length, before padding, 7, in bits, is included in Level 4. Let e=(—,n),
which is viewed as a 256(512) bit string.
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Level 0 Level 1 Level 2 Level 3 Level 4

Co Co Co® Sy Co®S4s@B Co®S,;, @9 Co®d
@ oy @ Bi ®Pe

C1 Ci Ces, CeSi®p Ci®S @9 Ci®d
@ oy @ Bi ®Pe

C2 G (RSN C:OS:®B C,DS, @6 C,®d
@ oy @ Bi ®Pe

C3 G C;®S; CGOS;DPB CDS; D C:®d
@ oy @ Bi ®Pe

C4 C4 Cs®Sy Ci®Ss®B Ci®S4®D 6 Ci®0
@ oy @ B ®De

Figure S: Initialization Constants

Co, Cy, ..., C4 each are 256(512) bit words comprised of the SHA initialization constants.
Where Hy, Hi, H», Hs, H4, Hs, H¢, H7 are those constants.

Co= ( Ho, Hy, H,, H3, Hy, Hs, Hg, H7)
Cl = ( H], Hz, H3, H4, H5, H6, H7, Ho)
C,= ( Ha, H3, Ha, Hs, He, Hy7, Ho, Hy)
Cs= ( Hs, Ha, Hs, He, H7, Ho, Hy, Hy)
Cs= ( Hy, Hs, Hs, H7, Ho, Hy, Ha, H3)

The following are the initial values for SHA-224, which are given in hex. These are used
to create the C; for SANDstorm-224.

Ho = ¢1059ed8
H, = 367¢cd507
H, = 3070dd17
H; = £70e5939
Hy = ££fc00b31
Hs = 68581511
H¢ = 64£98fa’
H; = befadfa4d

The following are the initial values for SHA256, which are given in hex, and which are
obtained by taking the first thirty two bits of the fractional part of the square root of the
first eight prime numbers. These are used to create the C; for SANDstorm-256.

Ho = 6a09%e667
H, = bb67ae85
Hy = 3c6ef372
Hy; = a54ff53a
Hy = 510e527f
Hs = 9b05688c
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1£83d9%ab
S5be0cdl?9

He
Hy

The following are the initial values for SHA-384, which are given in hex. These words
were obtained by taking the first sixty-four bits of the fractional parts of the square roots
of the ninth through sixteenth prime numbers. These are used to create the C; for
SANDstorm-384.

Ho = cbbb9d5dc1059%ed8
Hy = 629a292a367cd507
H, = 9159015a3070dd17
H; = 152fecd8£70e5939
Hy = 67332667££c00b31
Hs = 8eb44a8768581511
Hs = db0c2e0d64£98fa7
H; = 47b5481dbefadfa4

The following are the initial values for SHA-512, which are given in hex. These words
were obtained by taking the first sixty-four bits of the fractional parts of the square roots
of the first eight prime numbers. These are used to create the C; for SANDstorm-512

Ho = 6a09e667£3bcc908

H;, = bb67ae8584caa73b
H, = 3c6ef372fe94£82b
H; = a54ff53a5f1d36fl
H; = 510e527fade682d1l

Hs = 9005688c2b3e6clf
Hs = 1£83d9%abfb41bd6b
H; = 5be0cd19137e21709.

Parameters and Performance

In more standard implementations of the Merkle-Damgard construction, one must wait
until one block of data is completely finished before beginning the processing of the next
block of data. In the SANDstorm chaining, if each message or data block is processed
sequentially, as may happen in software, then the throughput associated with SANDstorm
chaining in the superblocks is comparable to a standard Merkle-Damgard. However, if
one has sufficient resources available, and can take advantage of the connections between
rounds there is the possibility of having a partial pipelining. That partial pipelining will
have latency of a single round rather than the latency of all 5 rounds needed for a typical
Merkle-Damgard construction.

For the SANDstorm compression function, about 2/3 of the work is done in the message

schedule which can be parallelized and pipelined, so if the resources are available, one
should be able to see a factor of 3*5=15 increase in speed over sequential processing of
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the data blocks in the standard Merkle-Damgard fashion. This does not include any gains
one might see by including additional resources to speed up the round function itself.

5. The SANDstorm Compression

The SANDstorm compression function has two main ingredients, the round function and
the message schedule. The SANDstorm round function is a one-to-one function of
256(512) bits operating on four 64(128) bit words. The round function is divided into two
different sections one more algebraic and the other more logical in nature. The
SANDstorm message schedule operates on eight 64(128) bit words in a one-to-one
fashion.

SANDstorm-256 and -224 Compression Function Description

General Functions

Let Z=X*2**+Y be a 64 bit word, where Y and Z are 32 bits each.

Define functions:

e ROTLY(Z)=A left rotation of Z by n positions

F(Z)=X*+Y?* modulo 2%

G(Z)= [X*+Y*+ROTL*((X+a)(Y+b)) Jmodulo 2**

o The additions Y+a and Z+b are taken modulo 2°** before the product

(X+a)(Y+b) is computed. The product is viewed as a 64 bit quantity and so
the rotation is a swap of the high and low order halves. The constants a and b
are defined below.

Ch(A,B,C)=(A"B)®(—A"C)

SB(Z)= Z except that low order byte, z, of Z is replaced with the AES sbox(z)

The constants a and b are defined as the first 32 bits of the fractional part of the fifth root
of 2 and 3 respectively, with the high and low bits forced to one.

a = a6lll86b

b = bee8390d

BitMix Function

The bit mix function operates at the bit level on four 64 bit state words to produce four 64
bit state words. There are four 64 bit constants that select separate bit positions of a 64 bit
word. Given in hex, these are:

Jg = 0x8888888888888888

J4= 0x4444444444444444

J, = 0x2222222222222222

Ji=O0x1111111111111111

If A, B, C, D are all 64 bits in length, then (A’, B’, C’, D’)=BitMix(A, B, C, D), where
A=Js&A)DJs&B)D (1, &C)D (J; &D)
B=Js&B) @4, &C)D(J, &D)D (J; & A)
C=U&0C)DJ:&D)® (1, &A) D (J; &B)
D=J&D)®(Js&A)D(J,&B)D (J; & C)
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Round Function

The round function consists of two parts. The first is a mixing of the four state words
with, primarily an integer multiplication. The second is a bit mixing that helps destroy the
algebraic properties associated with the multiplication.

Wi Wi W Wa

\ 4 \ 4 A\ 4 A\ 4

Round Function

Wi Wi W5 Wa

Figure 6: Round Function

ForifromOto 3
Set W; = ROTL*(SB ([W;+ F(Wi.1) + Ch(Wi.1,Wi2,Wi3) + A(r,i)] modulo 2%%)
Set (Wo, Wi, Wa, W3) = BitMiX(Wo, Wi, Wa, W3)

The A(r,i) are round constants defined below, where r is the round number and i is the
word position number. In the For loop, the subscripts are taken modulo four and the
computations of W; are assumed to be iterative, so when each value is updated the
updated value is used to update subsequent values. As mentioned the BitMix function
operates on the words in parallel.

Message Schedule

The message schedule receives a 512 bit block of data viewed as eight 64 bit words.
Given input data block D=(dy, di, ..., d7) the eight words are expanded to a total of 34 64
bit words.

Fori from 8 to 32
Set d=ROTL?*" (SB([di.s + G(di.;)+Ch(di.;,di-2,di3) +dis + B; ] modulo 2°%))

In the SANDstorm chaining description we used the notation MS(r,D) to denote the
contribution from the message schedule for round r as operated on data block D.
MS(0,D)=

BitMix(ROTL" (dy) ® ds, ROTL" (d)) @ ds, ROTL" (d2) @ ds, ROTL" (d3) @ dy)
MS(1,D)=(d14, dis, dis, di7)
MS(2,D)=(d19, dzo, d21, d22)
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MS(3,D)=(d24, das, dr7, d27)
MS(4,D)=(d29, d30, d31, d32)

Constants

SHA-224 and SHA-256 use the same sequence of sixty-four constant 32-bit words. These
words represent the first thirty-two bits of the fractional parts of the cube roots of the first
sixty-four prime numbers. SANDstorm uses the first 50 of the SHA constants, Ky, K, ...,
Kus. In hex, these 48 constant words are (from left to right)

428a2f98 71374491 b5cO0fbcf e9b5dbab5 3956c25b 59f111f1 923f82a4 ablcbed5
d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deblfe 9bdc06a7 cl9pfl74
e49b69cl efbed786 0fcl9dc6b 240calcc 2de92c6f 4a7484aa 5cbl0aSdc 76f988da
983e5152 aB83lcoobd b00327¢c8 bf597fc7 c6e00bf3 d5a79147 06ca6351 14292967
27b70a85 2el1b2138 4d2codfc 53380d13 650a7354 766alabb 81c2c92e 92722¢85
a2bfe8al aB8la664b c24b8b70 c76c51la3 dl192e819 d6990624 f40e3585 106aal070

The constants B; in the message schedule are 64 bits in length and are formed by
concatenating the SHA-256 constants, that is:
For i from 8 to 32

Set j=1-8

Set Bi=K2j*264 + Kz*j+1

There are 20 constants A(r,i). They are equal to the B; but are in reverse order, that is:
ForO<r<4and1<i<4
Set A(r,1) = B3s(ax+i

SANDstorm-512 and -384 Compression Function Description

The SANDstorm-512 and -384 round function is a one to one function operating on four
128 bit words and returns four 128 bit words.

General Functions

Let Z=X*2°*+Y be a 128 bit word, where Y and Z are 64 bits each.

Define functions:

e ROTL"(Z)=Rotation of Z by n positions

e F(Z)=X*+Y* modulo 2'**

o  G(2)= [X*+Y*+ROTL*((X+a)(Y+b)) Jmodulo 2'**

o The additions Y+a and Z+b are taken modulo 2°* before the product

(X+a)(Y+b) is computed. The product is viewed as a 128 bit quantity and so
the rotation is a swap of the high and low order halves. The constants a and b
are defined below.

e Ch(A,B,C)=(A"B)®(—A"C)

e SB(Z)=Z except that low order byte, z, of Z is replaced with the AES sbox(z)

The constants a and b are defined as the first 64 bits of the fractional part of the fifth root
of 2 and 3 respectively, with the high and low bits forced to one. In hex we have:
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a6ll1186bae67496b

a
b bee8390d43955aed

BitMix Function

The bit mix function operates at the bit level on four 128 bit state words to produce four
128 bit state words. There are four 128 bit constants that select separate bit positions of a
128 bit word. Given in hex, these are:

Jg = 0x88888888888888888888888888888888

J4= 0x44444444444444444444444444444444
Jo=0x22222222222222222222222222222222

Ji=Ox111111111 111111ttt 1tt1t11e1111

If A, B, C, D are all 128 bits in length, then (A’, B’, C’, D*)=BitMix(A, B, C, D), where
A=Js&A)DJs&B) D1, &C)D (J; &D)
B=Js&B) @& C)D(J,&D)D (J; & A)
C=UJ&0C)DJ:&D)® (1, &A) D (J; &B)
D=J&D)®(Js&A)D(J, &B)D (J; & C)

Round Function
Forifrom O to 3

Set W; = ROTL’’(SB ([W;+ F(Wi.;) + Ch(Wi.;,Wi..,Wis3) + A(r,i)] modulo 2'%*))
Set (Wo, Wi, Wa, W3) = BitMiX(Wo, Wi, Wa, W3)

The A(r,1) are round constants defined below, where r is the round number and i is the
word position number. In the For loop the subscripts are taken modulo four and the
computations of W; are assumed to be iterative, so when each value is updated the
updated value is used to update subsequent values. As mentioned the BitMix function
operates on the words in parallel.

Message Schedule

The message schedule receives a 512 bit block of data viewed as eight 128 bit words.
Given input data block D=(d0, d1, ..., d7) the eight words are expanded to a total of 40
128 bit words.

For i from 8 to 32
Set d=ROTL"’ (SB([di.s + G(di.;)+Ch(di.;,di-2,di3) + dis +B; ] modulo 2°%))

In the SANDstorm chaining description we used the notation MS(r,D) to denote the
contribution from the message schedule for round r as operated on data block D.
MS(0,D)=

BitMix(ROTL" (dg) ® ds, ROTLY (d) @ ds, ROTL?’ (d2) @ ds, ROTL?” (d3) @ dy)
MS(1,D)=(d1s4, dis, dis, di7)
MS(2,D)=(d19, dzo, d21, dzz)
MS(3,D)=(dz4, dos, da7, d27)
MS(4,D)=(d29, d3o, d31, d32)
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Constants

SHA-384 and SHA-512 use the same sequence of eighty constant 64-bit words. These
words represent the first sixty-four bits of the fractional parts of the cube roots of the first
eighty prime numbers. SANDstorm-512 and -384 will use 50 of those constants, Ky, K,

..., Kus. In hex, these constant words are (from left to right)

428a2£98d728ae22
3956¢c25b£348b538
d807aa98a3030242
72bebd74£27b896 £
e49b69cl9%efldad2
2de92c6£592b0275
983e5152eebbdfab
c6e00bf33da88fc2
27b70a8546d22ffc
650a73548baf63de
al2bfe8aldcfl0364
d192e819d6e£5218

7137449123ef65cd
59f111f1b605d019
12835b0145706fbe
80deblfe3bl696bl
efbed786384f25e3
4a7484aa6eabed83
a831c66d2db43210
d5a79147930aa725
2elb21385¢c26c926
766a0abb3c77b2a8
a8la664bbc423001
d69906245565a910

b5c0fbcfecd4dd3b2f
923f82a4afl194£f%b
243185bedeedb28c
9bdc06a725¢c71235
0fc19dc68b8cd5b5
5cb0a9%dcbd41fbd4
b00327¢c898fb213f
06ca6351e003826f
4d2ce6dfcbhacd2aed
81c2c92e4d7edaeechb
c24b8b70d0£89791
£f40e35855771202a

e9%5dbab8189dbbc
ablc5ed5dacd8118
550c7dc3d5ffbde?2
cl99fl174cf692694
240calcc77ac9c65
76£988da831153b5
bf597fc7beefleed
142929670a0e6e70
53380d139d95b3df
92722c851482353b
c76c51a30654be30
106aa07032bbd1b8

The constants B; in the message schedule are 128 bits in length and are formed by
concatenating 50 of the the SHA-512 constants, that is:

For i from 8 to 32
Set j=i-8
Set Bi=K5*2%* + Kasj41

There are 20 constants A(r,i). They are equal to the B; but are in reverse order, that is:
ForO0<r<4and1<i<4
Set A(r,1) = B3s(ax+i)

SANDstorm Compression Function Performance

SANDstorm uses multiplication as one of the primary mixing agents. On most modern
machines this operation is relatively efficient. Since multiplication inherently does a very
good job of mixing, we don’t need a great number of rounds to accomplish our design
goals. Thus we have a small number of rounds that heavily mix the data. The smaller
number of rounds and relative speed of the individual operations allows for an efficient
design.

As mentioned above, the message schedule performs much of the mixing and it operates
independent of the state variables. That means a large fraction of the work in the
compression function may be accomplished in parallel and/or pipelined.

By having one round output feed forward as input in the same round of the next block,

the latency associated with the typical Merkle-Damgard construction is reduced to
something more manageable. One must account for the latency of a single round.
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6. Cutdown and Extension Alternatives

We were asked to provide appropriate cutdown functions for analysis and to provide a
method to extend the algorithm to have more strength if deemed necessary.

The simplest method to cut down would be to chop of a number of rounds starting with
round 4. Round 0 is different than the rest and does not make for a good chopping point.
The smallest reasonable place to cut to is right after Round 1. By chopping to Round 1
there would still be a chaining value from previous blocks.

Of course if the algorithm is cut down to Round 1, the output size is only 256 bits. This
small amount of chaining state necessarily would loose the resistance to multicollisions,
herding and the like.

Chopping other rounds, provided the appropriate chain forward values are kept, would
keep in the spirit of the algorithm. We also assume that if rounds are cut out of one
portion of the algorithm (Level in the mode) that all other compressions, no matter what
level in the mode, will be cut in a similar fashion.

It would not be in the spirit of the algorithm to change the superblock sizes. We don’t feel
that there is a security risk in changing the superblock sizes. However, we have not
analyzed to any great extent the effect of changing the superblocks sizes on the fly or
during execution, nor have we compared outputs of different size choices with different
messages and the like. In this stage of the selection process, leaving the block sizes alone
would be more appropriate.

We, of course, don’t believe it is necessary to increase the strength of the algorithm, but
since NIST requested it we provide a couple of possibilities.

Option 1: Increase the number of rounds. Continue with the message schedule with the
one step then four. The round functions can be added on, with the chaining values linking
the last four rounds in the pattern above. There are a number of unused SHA constants.
The B; and the A(r,i) can be defined appropriately.

This option makes most sense if changes are completed before widespread
implementation. The issue is that the connections between rounds would have to be
changed and the constants reworked to line up with the right rounds. So the adjustment is
not simple.

Option 2: We may post process the chaining values as they are produced. The amount of
state being carried from one block position to the next is significant, so additional
processing of one or more of the chaining values may give the desired enhancement. In
particular, the information as output from Round 4 is at least the size of the final hash
output. Therefore processing that information further may be a simple and
straightforward to implement and provide whatever security enhancement is needed.
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For instance, Round 4 may be repeated a specified number of times. That is, we take the
output of Round 4 and run it through the round function again. This does not include
additional stepping of the message schedule, just repeat the For loop and the BitMix.
Since all outputs are combined and eventually fed into Level 4, the finishing step
provides additional strength.

7. Design Choices

In this section we discuss the primary design choices of the SANDstorm family. Several
of these have been discussed above.

The SANDstorm constants were chosen to be those either used by SHA-256 or
derived in a similar fashion. The primary reason for this was to save space in
situations where both SHA and SANDstorm might be simultaneously implemented.
A secondary reason is that of back doors. The constants exist and they and their
method of generation are well known.

The constants a and b in the message schedule have high and low bits set to 1. This
ensures a broader set of values as output of the multiplication.

The multiplication is the workhorse of the mixing operations. For efficiency and bit
mixing sake we modified the square. The function Z*2 mod 2%-1 has the property
that each bit of output is a function of each bit of input, and thus this is a fairly good
mixing agent. The down side is that the square has the property that low hamming
weight words stay low hamming weight. In particular, a one bit change in a low
weight input has limited effect on the output. The cross term in the function G(Z)=
X*+Y?+ROTL**((X+a)(Y+b)) is designed to force a small change in low weight
inputs to be noticeable. The ROTL*? is just an efficient approximation of what
happens to the cross terms of the square mod 2%'-1.

The function F(Z)= X*+Y? in the round function is an efficient version of G(Z). It
doesn’t mix as well, but we wanted to make sure there was sufficient difference
between the message schedule operations and the round function operations.

There is an application of the AES sbox in the low order byte of certain words during
the round function and the message schedule. The AES sbox is highly non linear and
provides excellent mixing for the bits that it acts on. The choice to apply the sbox on
the low order byte was for efficiency sake. Our sbox operation actually stores x ®
sbox(x) wo that we can, with a single xor, swap out x for sbox(x). Any other byte
position requires other manipulations with the data to accomplish. Further, the
application of the sbox is not our primary mixing operation, it is there to break up
changes that happen to land in the low order byte position. To propagate small
changes one must repeatedly dodge the low order byte.

The BitMix function was chosen as a method to break up the algebraic dependencies
that might appear in the round function and give further separation between what
comes in via the message schedule. The BitMix function take influence from each
state word and efficiently packs it into each byte.

The mode was designed specifically so that parallelization could happen and the
structure of the chaining values between rounds so that careful management may
allow partial parallelization and pipelining within the round function.
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8. Security Discussions

Collisions in the Chaining Values

It is a straight forward exercise that if, for any i=1 to 3, we have that

MS(1,D) = MS(I,D’) and MS(i+1,D) = MS(i+1,D’), then D=D’. The function in the
message schedule was designed to fill the gap in the values pulled out of the schedule.

This means that if the message input (excluding the contribution to round zero) taken in
adjacent pairs is the same, i.e. a collision on the message contribution, then the input
messages had to be the same. This means that if D # D’ There must be a difference in at
least two non adjacent contributions from the message schedule.

From this we can show that given string of data blocks with a single block changed then
the chaining values cannot collide. In a given superblock suppose D and D’ are at block
position j and suppose that the preceding data blocks are the same. Then the chaining
values coming into position j must be the same. Now suppose that the chaining values
moving into position j+1 are equal. Then

Starting at the bottom suppose that chn(4,j) = chn’(4,j) and that chn(3,j) = chn’(3,j).

For the first equality to hold the inputs to Round 4 must be the same. The inputs are a
sum of the chaining variables and the message schedule. Sor for Round 4 we have that
chn(3,j) ® MS(4, D) = chn’(3,j) ® MS(4,D’), and so MS(4,D)=MS(4,D’). Similarly by
equating chn(2,j) and chn’(2,j) we determine MS(3,D)=MS(3,D’). From above this
means that D = D’. This means that to construct a collision in the chaining values, one
must manipulate at least two different data blocks. Of course this may not necessarily be
true when the chaining values are combined to be the superblock output value to be
moved into the next Level.

Message Schedule

We have tested the mixing effectiveness of the message schedule. Given an input data
block D=d,, ..., d; the message schedule is a powerful mixing operation. In particular,
each bit of word d; is a fairly strong function of each bit of d, ..., d; except ds;. The word
ds enters the d;, as a sum simple sum of the other words hit with the sbox and rotated.
Deltas in d; are passed directly into G(Z) in the computation of d;». There are a couple of
weak bits, namely those d; bits rotate into bit positions 60-63. By weak bits we mean we
ran a series of tests comparing one bit deltas in each of the 512 input bits of the do, ..., d7.
Bit position 36 of d; yields noticeable non-uniform statistics in many bit positions of d;».
To a much lesser degree so do positions 35, 34, and 33 of d3.

The rotation value of 27 was chosen so that d; deltas in the low order byte are first
operated on by the sbox and then rotated into bit positions 28-31. Other rotation amounts
where the delta is not operated on by the sbox, but rotates into positions 28-31, will also
give non-uniform results for d;,. The rotation value of 27 was chosen to make sure that
the sbox output sits in the top of the low order half of d;».
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Even though there a couple of weak bits in d; as viewed from d;», the rest of the bit
positions of do, ..., d; have a fairly uniform affect on d;, and there are no weak bits when
viewed from d;3. As a rough gauge of the mixing ability of the messages schedule, we
have that each bit of di; 3 is a strong function of each bit of d;, ..., di;7. That means that if
we take any group of contiguous eight words in the message schedule and then step our
message schedule five times, the sixth word will be a full mix of the message state we
started with.

The SANDstorm message schedule skips the first six values and then outputs four. Each
bit of MS(1,D)= (d14, dis, dis, di7) is a function each bit of D. Similarly, each bit of
MS(2,D)=(d19, d20, d21, d22) is a function of each bit of (dg, ..., di3)

MS(3,D)=(d24, d25, d27, d27) 1s a function of each bit of (d11, ceey dlg)

MS(4,D)=(dy9, d30, d31, d3») is a function of each bit of (dyg, ..., d23)

Note that SANDstorm steps and extra time so that MS(1, D) begins with d4. This was
done to provide additional distance between MS(0,D) which begins the state operations
in the round functions.

Round Function

The round functions is not quite as complex as the message schedule and so does not mix
quite as well as. Plus there are fewer mixing steps in the round functions than in the
message schedule. However, the BitMix function removes the algebraic structures that
may arise in the first part of the round function. Let (Wo, Wi, W2, W3) be the inputs to the
round function, let (W’o, W’1, W’,, W’3) be what is produced by the For loop in the
round function, and le (W”y, W1, W, W3)=BitMix(W’y, W’1, W’,, W’3). We have that
W’ is not a strong function of all of the W; but successively the strength increases until
each bit of W’s is a strong function of each bit of the input words, W;. After the BitMix
operation the each byte of the W”; has two bits from each of the W’; and so we may say
that each byte of W is a strong function of each input bit of the W;. The output of the
For loop in the next round turns each bit of the outputs a strong function of each input bit
one round up. This means that the output of Round 4 has seen more than two full mixes
of Round 0 inputs and two mixes of Round 1 inputs. Each of the chaining values are a
full mix of the data two rounds previous.

Attacks on the Merkle-Damgard Structure

For a really long message, Level 3 acts like a typical Merkle-Damgard construction so it
will be susceptible to the ills of that method. That is, long messages attacks,
multicollisions and herding are all possible. However these methods of attack require one
to get collisions in the chaining values. SANDstorm’s chaining values carry forward at
least four times as much state as is in the final hashing value. That means that if some
sort of random process is used to construct nefarious intermediate state, then those attacks
will be completely foiled.

Less state is carried from level to level than from block position to block position. That
means random attacks on the block data formed from superblock chaining would be more
efficient. However, twice as much state is contained in the data blocks than is in the final
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message digest. So, again, if random processes are used to construct nefarious data
blocks, the work factor will be impractical for those attacks as well.

9. Computational Efficiency

Our computational efficiency estimates are based on the reference platform indicated in
the NIST documentation. Our tests were run on

e NIST Reference Platform: Wintel personal computer, with an Intel Core 2 Duo
Processor, 2.4GHz clock speed, 2GB RAM, running Windows Vista Ultimate 32-bit
(x86) and 64-bit (x64) Edition.

e Compiler (Note that the selection of this compiler is for use by NIST in Rounds 1 and 2,
and does not constitute a direct or implied endorsement by NIST.): the ANSI C compiler
in the Microsoft Visual Studio 2005 Professional Edition.

Do to their method of construction the timings for SANDstorm-224 and SANDstorm-256
will be virtually identical. Similarly for SANDstorm-512 and -384, so our timing results
reflect only for SANDstorm-256 and SANDstorm-512.

An optimized version of SHA-1 and SHA-256 were used as reference points of
comparison. The timings below focus on the time to complete a single compression
function. This is where we spend most of our time optimizing our algorithms. Below are
timings including our mode with various block sizes.

The compiler listed does not support assembly insertions, nor does it appear that
assembly coded versions of the algorithm will be given much priority in Round 1 of the
competition. However, we include the timing numbers as a reference.

32-bit Machine 64-bit Machine
Optimized | Assembly | Optimized | Assembly
SANDstorm-256 | 1917 ns 1437 ns 639 ns 479 ns
SHA-1 2566 ns 2566 ns
SHA-256 3218 ns 3218 ns
SANDstrom-512 | 7668 ns 2556 ns
SHA-512 9648 ns 3216 ns

Figure 7: Relative Timings
Since assembly versions of the algorithm were not to be a priority in the Round 1 of the

competition we did not include an assembly version for SANDstorm-512, at this time.
We assume that the same relative speed enhancements would be available.
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10. Memory Usage

SANDstorm-256 uses 50 of the 64 32-bit constants used by the SHA family, during the
compression operation, it also uses the same eight initialization constants, and it also
requires eight additional fixed constants. Two of the additional constants are 32 bits each
and 6 are 64 bits. This is a total of 50*32 +8%32+448= 2304 bits. Only 448 constant bits
are separate from what is needed for an implementation of SHA-256. Of those 448 bits
we have that 4*64 bits are the selector bits in the BitMix function. These have a very
simple bit pattern that may be recreated when needed to reduce the fixed storage.

The message schedule computes 25 additional 64 bit values after the 512 bit message is
input. These 25 values can be unrolled and stored or computed as needed. If completely
unrolled and combined with the input message we have 33*64=2112 bits. On the other
hand the message schedule may be thought of as a block of 8 64 bit words and processed
in an as-needed fashion. In this case there are only 512 bits to store.

Both the round function and the message schedule use the AES sbox. There are 256 one
byte entries. From a storage standpoint, an implementation of the SANDstorm algorithm
has a high probability of being combined with AES encryption so the sbox should be
available for use, thus, possibly, conserving on the total memory usage. Total 2048 bits.

In the compression function, there are five rounds, each requiring a chaining variable that
is 256 bits in length. (One of the chaining variables is actually a constant, determined
after Level 0). Each of the five levels in the tree requires five chaining values. However,
Level 0 must be completed before Levels 1, 2, and 3 can begin. The values from Level 0
are used as part of the initialization of the chaining values for those levels. Similarly,
Level 4 is not invoked until all other levels are complete. So at any given time at most
three of levels require storage of the chaining values. That is 5*3*256= 3840 bits.
However, the chaining variables the initialization constants are tied together. The eight 32
bit initialization constants are expanded into five 256 bit initial chaining values. So, an
implementation may, for simplicity sake, keep these values around for each level rather
than reconstitute them as needed. So it is reasonable to expect to see an implementation
require 5*5*256=6400 bits of chaining variable to be available rather than the 3840 that
is minimally required.

Data is also passed to from one level of the tree to the next. At most this will require 2
512 bit values in addition to the message blocks being processed in Levels 0 and 1. The
data for Level 4 does not get created until Level 3 is completed. So, there is a total of
1024 bits required to be passed from level to level.

At any given time the round function actively operates on four 64 bit state words
requiring 256 bits.
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Constant | Volatile | Active
Constants 2304
AES sbox 2048
Message Schedule 512
Chaining Variables 3840-6400
Level Data 1024
State Words 256
Totals 4352 | 5376-7936 256 | 9984-12544

Figure 8: Memory Usage

Note that for short messages the memory usage is reduced. For one block messages there
is no level data aside from Level 0 and Level 4 in which Level 0 must be completed
before Level 4 begins. At any given time only one set of five chaining values needs to be
retained. This requires then 4352+512+5%256+256= 4352+2048=6400 bits.

Similarly, messages of shorter length will not require Level 2 or 3 and so will use fewer
resources than longer messages. One would expect memory requirements to be around
4352 bits for fixed constants and between 2048 and 8192 additional bits required for
processing, depending on message size and implementation.

SANDstorm-224 will require this same amount of storage as SHA-256. The constants are
the same except for an additional eight 32 bit initialization values. SANDstorm-512 and -
384 require approximately twice the storage as SHA-256 and -224.

Note these calculations do not include memory usage for the code either compiled or not.
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Appendix A Source Code for SANDstorm-256

#include
#include
#include
#include
#include

/* Type
typedef
typedef
typedef
typedef

typedef

<stdio.h>
<math.h>
<time.h>
<string.h>
<stdlib.h>

definitions */

unsigned long long ULL;
unsigned int UI;

unsigned char BitSequence;

unsigned long long DatalLength;

enum {

SUCCESS = 0,
FAIL = 1,
BAD HASHBITLEN = 2

} HashRe

typedef

turn;

struct {

int blockIters([3];
int hashbitlen;

int pipedBits;

int initCompressFlag;

BitSequence queuedDatal[64];
Datalength prevBlock[3][5][4];
} hashState;

//typical 64 bit value

//
//
//
//
//
//

iterators to manage which level we are at in the algorythm
length of the resultant hash

current number of bits in the pipe to be processed

lets program know if we have accomplished the first compress
data that are left over from last call to update

data to feed into the next compression round

HashReturn Init (hashState *state, int hashbitlen);

HashReturn Update (hashState *state, const BitSequence *data, Datalength databitlen);

HashReturn Final (hashState *state, BitSequence *hashval);

HashReturn Hash (int hashbitlen, const BitSequence *data, Datalength databitlen, BitSequence *hashval);

#define
#define
#define
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MAXBITS 512 /* Maximum number of bits for one run of the compression function */
MAXBYTES 64 /* Maximum number of bytes for one run of the compression function */

BYTELENGTH 8
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#define L1SBLENGTH 10
#define L2SBLENGTH 100

/* r and s, used in G(x) function */
#define RCONST O0xA611186BLL
#define SCONST OxBEE8390DLL

/* used to select the high or low 32 bits of a 64-bit variable */
#define HIWORD MASK Oxffffffff00000000LL
#define LOWORD MASK OxfffffffflLL

static const BitSequence WORDMASK = OxFF;

typedef unsigned long long ULL;
typedef unsigned int UI;

ULL rand64 (void) ;

void seedrand64 (int seed);

void toBin64 (ULL word, char binstring[65]);
ULL fromBin (const char * binstring);

/* Constants as specified in the write up document for SANDstorm */

Datalength levelOneToThreeConst[3][5][4];

Datalength static const mainConstantInputWords([5][4] = {
{0x6a09%e667bb67ae85ull, 0x3c6ef372a54ff53aull, 0x510e527f9b05688cull, 0x1£83d%abbbelcdlSull},
{0xbb67ae853c6ef372ull, 0xa54ff53a510e527full, 0x9b05688clf83d9%abull, 0x5be0cdl196a09%e667ull},
{0x3c6ef372a54£f£f53aull, 0x510e527f9b05688cull, 0x1£f83d9%abbbelcdlull, 0x6a09e667bb67ae85ull},
{0xab54ff53a510e527full, 0x9b05688clf83d%abull, O0x5bel0cdl96a09%e667ull, Oxbb67ae853c6ef372ull},
{0x510e527£f9p05688cull, 0x1f83d9%ab5belcdl9ull, 0x6al09e667bb67ae85ull, 0x3c6ef372a54ff53aull}

}i

Datalength levelFourConstants[5][4] = {
{0x6a09%9e667bb67ae85ull, 0x3c6ef372a54ff53aull, 0x510e527f9b05688cull, 0x1£83d%abbbelcdlSull},
{0xbb67ae853c6ef372ull, 0xa54ff53a510e527full, 0x9b05688clf83d9%abull, 0x5be0cdl196a09%e667ull},
{0x3c6ef372a54£f£f53aull, 0x510e527f9b05688cull, 0x1£f83d9%abbbelcdlull, 0x6a09e667bb67ae85ull},
{0xab54ff53a510e527full, 0x9b05688clf83d%abull, O0x5bel0cdl96a09%e667ull, Oxbb67ae853c6ef372ull},
{0x510e527£9b05688cull, 0x1£f83d9%ab5belcdl9ull, 0x6al09e667bb67ae85ull, 0x3c6ef372a54ff53aull}
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Datalength initialVectorTempWo
{0x6a09e667bb67ae85ull,
{0xbb67ae853c6ef372ull,
{0x3c6ef372a54ff53aull,
{0xab54ff53a510e527full,
{0x510e527£9p05688cull,

}i

rds[5][4] = {

Ox3c6ef372a54£f£53aull,
O0xa54£f£53a510e527full,
0x510e527£9005688cull,
0x9b05688clf£83d%abull,
0x1£83d9ab5belcdl9ull,

/* C 1 used in the message schedule function */

static const ULL ¢ const[32] =
4467991496273718166ULL,
18098227363425582228ULL,
14558954315831534781ULL,
12309653837346549563ULL,
17916474989054938856ULL,
13722667571113909459ULL,
11099891854858561604ULL,
16010891426447765750ULL,

/* B i used in the round funct

static const ULL B[5][4] = {
{7477780175313128172ULL,
{7363963421162251098ULL,
{8136103064137497703ULL,
{151713105414105658ULL,
{427832072915204837ULL,

/* SB(x) = x ~ AES sbox[x] */

static const unsigned char fsb
99, 125, 117, 120, 246,
218, 147, 219, 110, 238,
151, 220, 177, 5, 18, 26
52, 24e¢, 17, 240, 44, 16
73, 194, 110, 89, 95, 43
3, 128, 82, 190, 116, 16
176, 142, 200, 152, 39,
33, 210, 50, 252, 230, 2
77, 141, 145, 111, 219,
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{

10320099885548846075ULL,
8491746423542996155ULL,
2243670746741826757ULL,
3732889600109516124ULL,
10966890579359513908ULL,
3932965942609372318ULL,
12419788189904350619ULL,
2315841336524277508ULL,

ion */

3012268973459497798ULL,
2692313750071500500ULL,
4467991496273718166ULL,
18098227363425582228ULL,
14558954315831534781ULL,

ox[256] = {
110, 105, 194, 56,
76, 81, 231, 181,
, 209, 235, 28, 140,
3, 51, 173, 63, 43,
, 28, 231, 26, 114,
9, 231, 12, 50, 1l4e,
40, 85, 226, 45, 144,
32, 78, 130, 196, 207,
18, 194, 144, 76, 4o,

8,

109,
205,
207,
186,
156,
228,
104,

244,

0x510e527£f9b05688cull,
0x9p05688c1£83d9%abull,
0x1£83d9%ab5belcdl9ull,
0x5bel0cdl196a09%e667ull,
0x6a09%e667bb67ae85ull,

32, 242, 218, 165,
184, 180, 128, 185,
218, 93, 245, 31,
217, 215, 26, 140,
248, 101, 174, 97,
98, 22, 17, o, 144,
20, 60, 81, 241,
90, 108, 130,
182, 232, 208,

160,

3652204158256733020ULL,
12148758605418197427ULL,
1473621306817345891ULL,
13506051301407686133ULL,
13573654079133674501ULL,
5706647085361811113ULL,
667347512028540877ULL,
17648493929504081603ULL,

8989841230781802381ULL,
12372177379239678993ULL,
10320099885548846075ULL,
8491746423542996155ULL,
2243670746741826757ULL,

108,
58,
74,
203,

0x1£83d9%ab5belcdl9ull},
0x5bel0cdl196a09%e667ull},
0x6a09%e667bb67ae85ull},
Oxbb67ae853c6ef372ull},
0x3c6ef372a54f£f53aull}

121,
223,

199,
141,
151,

173,
252,

151713105414105658ULL,
427832072915204837ULL,
4283033351706511836ULL,
855994113871575081ULL,
12431660292823995810ULL,
608219812982248520ULL,
11782682359274698311ULL,
4469244204797080503ULL};

8528179847982205338ULL},
1045525886582774919ULL},
3652204158256733020ULL},
12148758605418197427ULL},
1473621306817345891ULL} };



195, 149,
61, 56, 74,
199, 16, 183,

112, 69, 69,

68,
214,

240,
64,

87,

122,
160,
1, 25,
124, 80,

1o,
147,
121,

221,
152,
133,

79,
169,
222,

182, 191, 6, 31, 222,
237, 163, 130, 251,
57, %6, 248, 30, 212, 239, 78,
185, 231, 237, 216, 99, 114, 1, 32, 20, 1%0, 212, 135,
239, 103, 181, 156, 214, 32, 217, 185, 236, 141, 98, 90, 28, 195, 65,
122, 242, 141, 0, 104, 115, 115, 247, 109, 2, 34, 184, 198, 48,

123, 254, 75, 19, 180, 159, 185, 96, 215, 244, 76, 169, 69, 233};

119, 34,
106, 122,

143, 66,
6, 201,
81, 217,

used in round function */
20, 28, 36};

/* Offset for message schedule inputs,
static const int first m[5] = {4, 12,

/* Number of bits to rotate in message schedule and in round functions */

#define MS ROT BITS 51

#define R ROT BITS 19

/*===== Global variables used in ModMix =====%*/
ULL MS[40]; /* message schedule buffer*/

ULL w([4]; /* round buffer */

void createMessageFromBlock (Datalength M[8], DatalLength input[5]1[41]);
unsigned short Do Block ModMix Ref (ULL db[8], ULL block buffer[5][4]);
void compress (hashState *state);

void initCompress (hashState *state);

ULL F(ULL x);

ULL G(ULL x);

ULL Ch(ULL a, ULL b, ULL c);

ULL RotLeft (ULL n, int 1);

ULL Rot32(ULL n);

ULL SB(ULL x);

ULL C(int 1);

int mm(int 1i);

ULL Msg M(int 1i);

void round in(ULL buffer([4], int);

void round out (ULL prev block[4], ULL current block[4]);

void round4 out (ULL current block[4]);

void
void

Page

do round(int round num);
block init();
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Initializes a hashState with the intended hash length of this particular
instantiation. Additionally, any data independent setup is performed.
Parameters:
state: a structure that holds the hashState information
hashbitlen: an integer value that indicates the length of the hash output in bits.
Returns:
SUCCESS - on success
BAD HASHBITLEN - hashbitlen is invalid (e.g., unknown Value)

k% ok ko ok ok ok ok ok

/
HashReturn Init (hashState *state, int hashBitLen) {
int 1i,73,k;

state->hashbitlen = hashBitLen;
state->pipedBits = 0;
state->initCompressFlag = 0;
state->blockIters[0] = 0;
state->blockIters[1l] = 0;
state->blockIters[2] 0;

Process the supplied data.
Parameters:
state: a structure that holds the hashState information
data: the data to be hashed
databitlen: the length, in bits, of the data to be hashed
Returns:
SUCCESS - on success
HashReturn Update (hashState *state, const BitSequence *data,
DatalLength databitlen);

P T T T S S S S

/
HashReturn Update (hashState *state, const BitSequence *data, Datalength databitlen) {

int neededBits, gDataIndex, bytesToCpy,i;
ULL dataBitsLeft,datalIndex;

dataIndex = 0;
dataBitsLeft = databitlen;

Page 34 of 66



gDataIndex = state->pipedBits / BYTELENGTH;

// byteOffset = state->pipedBits >> 3;
neededBits = MAXBITS - state->pipedBits;

// This will check to see if we have enough bits to run compress (512), and if not it
// will add those bits to the queue and then return
if (dataBitsLeft < neededBits ) {

}

//
//
//

// 1f we are on the last call to update we could have a bits left that is not divisible
// by 8. So if we have any bits we have to make sure we get the full last byte.
if( (dataBitsLeft & 7) > 0 ){
bytesToCpy = (databitlen / BYTELENGTH) + 1;
telse({
bytesToCpy = databitlen / BYTELENGTH;
}
memcpy (& (state->queuedData[gDataIndex]),data, (size t)bytesToCpy);
state->pipedBits += (int)databitlen;
return SUCCESS;

This is true when the piped bits are greater than 0, but not yet 512, but because
we passed the previous condition we know we have enough bits to process between
what is in the queue already and what has currently been input to the function

if (state->pipedBits > 0) {
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// figure out how many bytes are needed to complete 512 bits then put them into
// the message queue

bytesToCpy = neededBits / BYTELENGTH;

memcpy (& (state->queuedData[gDataIndex]),data, (size t)bytesToCpy);
state->pipedBits = MAXBITS;

datalIndex = bytesToCpy;

dataBitsLeft -= neededBits;

// now we need to check if this is the first call to compress, and if it is it will
// require a special first run to set state variables to all subsequent calls to compress.
// 1f it is not the first time then do a normal compress

if (state->initCompressFlag == 0) {
initCompress (state);



telse(
compress (state) ;
}
}

while (dataBitsLeft>=MAXBITS) {
memcpy (state->queuedData, &data[datalndex],MAXBYTES) ;
dataBitsLeft -= MAXBITS;
dataIndex += MAXBYTES;
state->pipedBits = MAXBITS;

if (state->initCompressFlag == 0) {
initCompress (state);
}else({
compress (state) ;
}
}

state->pipedBits = (int)dataBitsLeft;
if( (dataBitsLeft & 7) > 0 ){

bytesToCpy = (dataBitsLeft / BYTELENGTH) + 1;
telse({

bytesToCpy = dataBitsLeft / BYTELENGTH;
}
memcpy (state->queuedData, &data[datalndex], (size t)bytesToCpy):
return SUCCESS;

/*

* Perform any post processing and output filtering required and return the final hash value.
* Parameters:

* state: a structure that holds the hashState information

* hashval: the storage for the final hash value to be returned

* Returns:

* SUCCESS - on success

* HashReturn Final (hashState *state, BitSequence *hashval);

*/

HashReturn Final (hashState *state, BitSequence *hashval) {
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int lastDataBytelIndex, validBits, 1i,7;
BitSequence mask, str[8], ormask;
Datalength Mess[8], messagelength;

// if we have some bits leftover, pad them with a one bit value of 1 and then zeros till 512 bits
validBits = state->pipedBits & 7;
lastDataByteIndex = state->pipedBits >> 3;

if(validBits > 0) {
// last byte index will be the index of the byte that we have an integral number of bits
// left to deal with. i.e. we have 4 bits left on the character indexed by this wvalue.
mask = WORDMASK << (7-validBits);

// this mask will zero out the non message bits.
state->queuedData[lastDataByteIndex] = state->queuedDatal[lastDataBytelIndex] & mask;

// set the bit to one to start the padding then perform inclusive or on last character
ormask = ORMASK << (7-validBits);
state->queuedData[lastDataByteIndex]
telse({
state->queuedData[lastDataByteIndex] = 0x80;

state->queuedData[lastDataByteIndex] | ormask;

}

// pad the rest of the message out with zeros

for (i=lastDataByteIndex+1;1<64;i++) {
state->queuedData[i] = 0x00;

}

// If we haven't done Level 0 compress do it, and go straight to Level 4 from there
if (state->initCompressFlag == 0) {
// no level zero has been performed so we run here and set the message for level 4
initCompress (state);
createMessageFromBlock (Mess, initialVectorTempWords) ;
messagelength = state->pipedBits;

}else({
messagelength = (state->blockIters[0] + 1) * MAXBITS + state->pipedBits; // add 1 for level 0

// perform one last run of compress then find out where last ouput is at
compress (state) ;
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createMessageFromBlock (Mess, state->prevBlock[0]) ;
// handle last set of do block calls
if (state->blockIters[1l] > 0){
Do Block ModMix Ref (Mess,state->prevBlock[1]);
createMessageFromBlock (Mess, state->prevBlock[1]) ;
if (state->blockIters[2] > 0){
Do Block ModMix Ref (Mess,state->prevBlock[2]);
createMessageFromBlock (Mess, state->prevBlock[2]) ;

}

// xor message length into level four constants
for (1=0;1<5;1++) {
for(j=0;3<4;j++){
levelFourConstants[i] [j] = levelFourConstants[i] [7]

A

messagelength;

}
}

Do Block ModMix Ref (Mess, levelFourConstants);
createMessageFromBlock (Mess, levelFourConstants) ;

// Final hash is in Mess so move them into hasval
for (3=0;3<8;3++) {
BitSequence tmp;
for(i=7;1>=0;1i--) {
int finalVallIndex = (3*8) + (7-1);
hashval[finalValIndex] = (char) (Mess[j] >> (i*8));
}
}
return SUCCESS;
}

/*

* Hash the supplied data and provide the resulting hash value. Set return code as
* appropriate.

* Parameters:
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hashbitlen: the length in bits of the desired hash value

data: the data to be hashed

databitlen: the length, in bits, of the data to be hashed

hashval: the resulting hash value of the provided data
Returns:

SUCCESS - on success

FAIL - arbitrary failure

BAD HASHBITLEN - unknown hashbitlen requested

I

/
HashReturn Hash (int hashbitlen, const BitSequence datal[], Datalength databitlen, BitSequence *hashval) {
hashState state;

// First initialize
Init (&state,hashbitlen);

// Hash entire message
Update (&state, data, databitlen);

// Perform finalize passing the var hashval to hold the data
Final (&state, hashval) ;

// return status code

}

void initCompress (hashState *state) {
int i, 3, k;
Datalength Mess[8];
state->initCompressFlag = 1;

// Copy the data in the queue to a variable capable of holding it as 8 64 bit words (ULL)
for (1=0;1i<8;1++) {

memcpy (&Mess[1i], & (state->queuedDatal[i*8]),8);
}

// perform initial do block and store all outputs into the array LevelZeroConst, we won't need
// these any more for the rest of the algorithm
Do Block ModMix Ref (Mess, initialVectorTempWords) ;
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// now we need to set up the constants for levels 1 through 3 constants as some function of the

// output of the initial block index works like for CO words it is mainConstINW[O0] [i]

// for level 1
for (1i=0;1i<4;i++) {

levelOneToThreeConst[0] [0
//for level 1 constant O
levelOneToThreeConst[0] [1
//for level 1 constant 1

//for level 1 constant 2
levelOneToThreeConst[0] [3
//for level 1 constant 3
levelOneToThreeConst[0] [4

co ©~ s4

cl ~ sl

c2 "~ s2

c3 ~ s3

Cl=MCIW[1][1i]

[i] = mainConstantInputWords[0][1i] » initialVectorTempWords[4][i];

[i] = mainConstantInputWords[1l][i] » initialVectorTempWords[1l][i];

[i] = mainConstantInputWords[3][i] » initialVectorTempWords[3][i];

[i] = mainConstantInputWords[4][i] » initialVectorTempWords[4][i];

]
1
levelOneToThreeConst[O][ZE[i] = mainConstantInputWords[2] [1i] ~ initialVectorTempWords[2][i];
1
1

//for level 1 constant 4

}

// level 2

cd ~ s4

for (1=0;1i<5;i++) {
for (3=0;3<4;j++) {

}

// Copy over new constants into the prevBlock array for subsequent calls to compress

// level 2
levelOneToThreeConst[1][1][]]
// level 3
levelOneToThreeConst[2] [1][]]
// level 4

~(levelOneToThreeConst[0] [i]1[3])

levelOneToThreeConst[0] [1i]1[3];

levelFourConstants[i] [j] = ~(mainConstantInputWords[i][j]);

for (1=0;1<3;i++) {
for (3j=0;3<5;++) {
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void compress (hashState *state) {
// First thing to do is convert the BitSequence character array to 8 64 bit ULLs
int 1, 3j;
DatalLength MessLl1[8],MessL2[8],MessL3[8], levelOneSuperBlock, levelTwoSuperBlock;

// Copy the data in the queue to a variable capable of holding it as 8 64 bit words (ULL)
for (1=0;1i<8;1++) {

memcpy (&MessLl1l[i], & (state->queuedDatal[i*8]),8);
}

/* This will evaluate to true when there is enough information to run a comprees
* at the last level of mod mix. If we have 100 level 1 blocks complete then we
* pass the outputs of rounds 4 and 5 up to the third level as the message to a
* mod mix block.
*/
if(((state->blockIters[1]-1)%100) == 0 && (state->blockIters[l] > 1) ){
createMessageFromBlock (MessL3, state->prevBlock[1]);
// run block function on level 3
Do Block ModMix Ref (MessL3,state->prevBlock[2]);
// Reset rounds 2 through 5 for the next set of 100
levelTwoSuperBlock = state->blockIters[l] / L2SBLENGTH;
for (1=0;i<4;i++) {
for(j=0;3<4;j++) {
state->prevBlock[1] [i+1][]j] = levelOneToThreeConst[1l][i+1][]j] *~ levelTwoSuperBlock;
}
}
}
if(((state->blockIters[0]-1)%10) == 0 && state->blockIters[0] > 1) {
createMessageFromBlock (MessL2, state->prevBlock[0]) ;
// run block function on the 100 block level
Do Block ModMix Ref (MessL2, state->prevBlock[l]);
// Reset rounds 2 through 5 for the next set of 10 and xor the super block #
levelOneSuperBlock = state->blockIters[0] / L1SBLENGTH;
for (1=0;i<4;i++) {
for(j=0;3<4;j++) {
state->prevBlock[0] [i+1][]J] = levelOneToThreeConst[0] [i+1][]j] ~ levelOneSuperBlock;
}
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// increment the block counters
state->blockIters[1l]++;
}
// run block function on the 10 blcok level
Do Block ModMix Ref (MessLl,state->prevBlock[0]);
state->blockIters[0]++;
}

void createMessageFromBlock (Datalength M[8], DatalLength input([5][4]) {
M[0] = input[1][0] ~ input[3][0];

M[1] = input[1][1] * input[3]I[1];
M[2] = input[1][2] * input[3]I[2];
M[3] = input[1][3] * input[3]I[3];
M[4] = input[2][0] » input[4]I[0];
M[5] = input[2][1] * input[4][1l];
M[6] = input[2][2] * input[4][2];
M[7] = input[2][3] » input[4]I[3];

}

/*
* Name: Do Block ModMix Ref - This function hashes a 512-bit block using the ModMix Hash Algorithm
*/
unsigned short Do Block ModMix Ref (ULL data input[8], ULL prevBlockArr[5][4]) {
unsigned short i;
unsigned short ercode = NO HASH ERROR; /* initialize error return flag */

/*===== MESSAGE SCHEDULE =====*/
/* First 8 M's of the message schedule are the input into this function */
for (i=0; 1 < 8; 1i++)

MS[i] = data input[i];

/* Calculate the rest of the message schedule */
for (i=8; i < 40; i++)
MS[i] = Msg M(i);

/* Set up inputs for the first round; this is an XOR of the data input. */

for (i=0; 1 < 4; i++)
MS[i4+4] = MS[i] »~ MS[i+4];
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/*===== ROUND FUNCTIONS =====%/

// Round 0

round in (prevBlockArr([0], first m[O0]);
do_round(0) ;

round out (prevBlockArr[l], prevBlockArr([1l]):;

// Round 1

round in (prevBlockArr([1l], first m[1l]);
do_round(1);

round out (prevBlockArr([2],prevBlockArr[1]);

// Round 2

round in (prevBlockArr([1l], first m[2]);
do_round(2);

round out (prevBlockArr([3],prevBlockArr([2]);

// Round 3

round in (prevBlockArr([2], first m[3]);
do_round(3);

round out (prevBlockArr([4],prevBlockArr[3]);

// Round 4

round in (prevBlockArr([3], first m[4]);
do round(4);

round4 out (prevBlockArr[4]);

return ercode;

}

/* Set the round buffer "w" for the next round. */
/* NOTE: In rounds 0-2, w is XOR'ed with a constant; in rounds 3-4, w 1s XOR'ed with the state of the
previous block (unless it's the first block in a section, in which case "the state of the previous block"
will be a constant */
void round in(ULL buffer[4], int ms index) {
w[0] = buffer[0] "~ MS[ms_ index];
w[l] = buffer[l] "~ MS[ms index + 1];
w([2] buffer([2] ~ MS[ms index + 2];
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w[3] = buffer[3] "~ MS[ms index + 3];
}

/* Once the round buffer has been set, do the round. Round num tells the function which M's to get from the
message schedule */
void do round(int round num) {

w[0] = RotLeft (SB(w[O0]+F(w[3])+Ch(w[3],w[2],w[1])+B[round num] [0]),R ROT BITS);
w[l] = RotLeft (SB(w[l]+F(w[0])+Ch(w[0O],w[3],w[2])+B[round num][1]),R ROT BITS);
w[2] = RotLeft (SB(w[2]+F(w[1])+Ch(w[1l],w[0],w[3])+B[round num][2]),R ROT BITS);
w[3] = RotLeft (SB(w[3]+F(w[2])+Ch(w[2],w[1],w[0])+B[round num] [3]),R ROT BITS);

}

/* Sets the given buffer equal to the current state of the round buffer */
void round out (ULL prev block[4], ULL current block[4]) {
current block[0] = prev block[0] "~ w[O0];
current block[1] prev_block[1] ~ w[l];
current block[2] = prev block[2] "~ w[Z2];
current block[3] = prev block[3] "~ w[3];

}

/* Sets the given buffer equal to the current state of the round buffer, after XORing it with buffer in */
void round4 out (ULL current block[4]) {

current block[0] = w[0];
current block[1l] = w[1l];
current block[2] = w[2];
current block[3] = w[3];

}

/* Rotate a 64-bit variable left by i bits */
ULL RotLeft (ULL n, int 1) {

return (n << i) | (n >> (64 - 1)),
}

/* Rotate a 64-bit variable 32 bits. Left or Right makes no difference. */
ULL Rot32(ULL n) {

return (n << 32) | (n >> (32));
}
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/* F(x) used in round function */
ULL F(ULL x) {
ULL y, z, f res;

y = x >> 32;

z = x & LOWORD MASK;
f res = y*y + z*z;
return f res;

}

/* F(x) used in message schedule */
ULL G(ULL x) {
ULL y, z, g res;

\% x >> 32;

Z x & LOWORD MASK;

g res = (y*y + z*z + Rot32(((y + RCONST) & Oxffffffff)*((z + SCONST) & Oxffffffff)));
r

eturn g res;

}

/* Choose function, used in both round function and message schedule */
ULL Ch(ULL a, ULL b, ULL c) {
return (a & b) ©~ (~a & c);

}

/* SB(x), used in both round function and message schedule. Replaces low byte with member of AES sbox
array. */
ULL SB(ULL x) {

return (x ~ fsbox[ (unsigned char) (x & Oxff)]);

}

/* This is the main message schedule function */
ULL Msg M(int 1) {

return RotLeft (SB(MS[i-8]+c const[i-8]+G(MS[i-1])+Ch(MS[i-1],MS[i-2],MS[i-3])+MS[i-4]),MS ROT BITS);
}
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Appendix B Source Code for SANDstorm-512

// 512 bit hash function

// uses arithmetic on 128-bit quantities
typedef unsigned long long u64;

typedef struct { u64 hi; u64 lo; } ul2s8;

// make a 128 bit constant from two 64 bit constants
ul28 k128 (u64 hi, uo64d4 lo) { ul28 hl; hl.hi = hi; hl.lo = lo; return hl;

// add two 128 bit numbers, dropping any carry

ul28 al28(ul28 x, ul28 vy)

{ ul28 sum; sum.hi = x.hi + y.hi; sum.lo = x.lo + y.lo;
if (sum.lo<x.lo) sum.hi++; return sum; }

// xor two 128 bit numbers
ul28 x128(ul28 x, ul28 vy)

{ ul28 xor; xor.hi = x.hi »~ y.hi; xor.lo = x.lo * y.lo; return xor; }
// complement a 128 bit number

ul28 cl28(ul28 x)

{ ul28 comp; comp.hi = ~ x.hi; comp.lo = ~ x.lo; return comp; }

// and two 128 bit numbers
ul28 bl28(ul28 x, ul28 vy)
{ ul28 and; and.hi = x.hi & y.hi; and.lo = x.lo & y.lo; return and; }

// rotate left a 128 bit number
ul28 rl28(ul28 x, int sh)
{ ul28 rot; sh &= 127;

if (sh==0) { rot.hi = x.hi; rot.lo = x.lo; }

else 1f (sh<64) { rot.hi = (x.hi << sh) | (x.lo >> (64-sh));
rot.lo = (x.lo << sh) | (x.hi >> (64-sh)); }

else if (sh==64) { rot.hi = x.lo; rot.lo = x.hi; }

else { rot.hi = (x.lo << (sh-64)) | (x.hi >> (128-sh));
rot.lo = (x.hi << (sh-64)) | (x.lo >> (128-sh)); };

return rot; }
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#define msk32 OxFFFFFFFFul
#define b32 0x100000000ull

// multiply two 64 bit numbers, producing a 128 bit product
ul28 ml28 (u64 x, ub4d y)
{ ul28 prod;
u64 xhi = x>>32, xlo = x&msk32, yhi = y>>32, ylo = y&msk32;
u64d tmp, tmp2;
prod.hi = xhi*yhi; prod.lo = xlo*ylo; tmp = xlo*yhi; tmp2 = xhi*ylo;
tmp += tmp2; if (tmp<tmp2) prod.hi += b32;
prod.hi += tmp>>32;
tmp <<= 32;
prod.lo += tmp; if (prod.lo<tmp) prod.hi++;
return prod; }

ul28 sandwf (ul28 x)
{ return al28 (ml28(x.hi,x.hi),ml28(x.lo,x.10)); }

u64 sandwga = 0xbl23456789%abcdedull, sandwgb = 0xa21436587a9cbeddull;

ul28 sandwg(ul28 x)
{ return al28(ml28(x.hi,x.hi),
al28 (ml128(x.lo,x.10),rl28(ml28 (x.hi+sandwga,x.lo+sandwgb), 64))); }

/* SB(x) = x ~ AES sbox[x] */

static const unsigned char fsbox[256] =

{ 99, 125, 117, 120, 246, 110, 105, 194, 56, 8, 109, 32, 242, 218, 165, 121,
218, 147, 219, 110, 238, 76, 81, 231, 181, 205, 184, 180, 128, 185, 108, 223,
151, 220, 177, 5, 18, 26, 209, 235, 28, 140, 207, 218, 93, 245, 31, 58,
52, 246, 17, 240, 44, 163, 51, 173, 63, 43, 186, 217, 215, 26, 140, 74,
73, 194, 110, 89, 95, 43, 28, 231, 26, 114, 156, 248, 101, 174, 97, 203,
3, 128, 82, 190, 116, 169, 231, 12, 50, 146, 228, 98, 22, 17, 6, 144,
176, 142, 200, 152, 39, 40, 85, 226, 45, 144, 104, 20, 60, 81, 241, 199,
33, 210, 50, 252, 230, 232, 78, 130, 196, 207, 160, 90, 108, 130, 141, 173,
77, 141, 145, 111, 219, 18, 194, 144, 76, 46, 244, 182, 232, 208, 151, 252,
240, 16, 221, 79, 182, 191, o6, 31, 222, 119, 34, 143, 66, 195, 149, 68,
o4, 147, 152, 169, 237, 163, 130, 251, 106, 122, 6, 201, 61, 56, 74, 214,
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87, 121, 133, 222, 57, 96, 248, 30, 212, 239, 78, 81, 217, 199, 16, 183,
122, 185, 231, 237, 216, 99, 114, 1, 32, 20, 190, 212, 135, 112, 69, 69,
160, 239, 103, 181, 156, 214, 32, 217, 185, 236, 141, 98, 90, 28, 195, 65,
1, 25, 122, 242, 141, 60, 104, 115, 115, 247, 109, 2, 34, 184, 198, 48,
124, 80, 123, 254, 75, 19, 180, 159, 185, 96, 215, 244, 76, 169, 69, 233};

// apply the AES sbox to the low byte of X
ul28 sbl28 (ul28 x)
{ ul28 val; val.hi = x.hi; val.lo = x.lo » fsbox[x.lo & 255]; return val; }

// constants for message schedule & round constants

// these are a subset of the SHA2 round constants for SHA-512

// fractional part (in hex) of the cube roots of the first fifty primes
// the leading digits aren't completely random, but it's good enough
ul28 sandwmsc[] = {

0x428a2f98d728ae22ull, 0x7137449123ef65cdull, O0xb5cO0fbcfecdd3b2full, 0xe9b5dba58189dbbcull,
0x3956c25bf348b538ull, 0x59f111f1b605d019%ull, 0x923f82a4afl194f9%ull, Oxablcb5ed5da6d8118ull,
0xd807aa98a3030242ull, 0x12835b0145706fbeull, 0x243185bedeedb28cull, 0x550c7dc3d5ffbde2ull,
0x72beb5d74£f27b896full, 0x80deblfe3bl696blull, 0x9%bdc06a725¢c71235ull, 0xcl9f174cf692694ull,
0xed9b69cl9efldad2ull, Oxefbed786384f25e3ull, 0x0fcl9dc68b8cdbbbull, 0x240calcc77ac9c65ull,
0x2de92c6£592b0275ull, 0x4a7484aabeatbed83ull, 0x5cb0a9dcbd4lfbd4ull, 0x76£988da831153b5ull,
0x983e5152ee66dfabull, 0xa831c66d2db43210ull, 0xb00327c898fb213full, 0xbf597fc7beefleedull,
Oxc6e00bf33da88fc2ull, 0xd5a79147930aa725ull, 0x06ca6351e003826full, 0x142929670a0e6be70ull,
0x27b70a8546d22ffcull, 0x2elb21385c26c9206ull, 0x4d2c6dfcbacd42aedull, 0x53380d139d95b3dfull,
0x650a73548baf63deull, 0x766alabb3c77b2a8ull, 0x8lc2c92ed7edaeceobull, 0x92722¢851482353bull,
Oxa2bfeB8ald4cfl10364ull, 0xa8la664bbc423001ull, 0xc24b8b70d4d0f89791ull, 0xc76c51a30654be30ull,
0xd192e819d6ef5218ull, 0xd69906245565a910ull, 0xf40e35855771202aull, 0x106aa07032bbdlb8ull,

0x19a4clleb8d2d0c8ull, 0xle376c085141lab53ull };

// where to start picking in Message Schedule
int sandwmspick[] = { 4, 14, 19, 24, 29 };

void mscpr (ul28 *ms)

{ int i; printf("ms ");
for (i=0;i<33;i++) { printf (" %0161llx %01611x",ms[i].hi,ms[i].1l0);
if (i&l) printf("\n "); } printf("\n"); }
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// Compute the message schedule

// Assumes the message is present in the first 8 words (128 bits each)
// Begin by xoring the first 4 words (rotated) into the second 4 words.
// Then apply the mixing function to compute words after the first 8.
void sandwmsgsch (ul28 *MS)

{ int 1i;
for (1i=8;1i<33;1i++)
MS[i] = rl1l28(sbl28(al28( MS[i-87,

al28( sandwmsc [1-8],
alz28( sandwg(MS[i-11),
al28( x128 (b128(MS[1i-1]1,MS[1i-21), // Ch(i-1,i-2,1-3)
b128(cl28 (MS[1i-1]),MS[1i-31)),
MS[1i-41))))),
57 /* was sandwmsr[i-8] */ );
for (i=0;i<4;i++) MS[i+4] = x128(r128 (MS[1],37),MS[i+4]); // mscpr (MS);
}

const ul28 ym8
const ul28 ym4
const ul28 ym2
const ul28 yml =

0x8888888888888888ull, 0x8888888888888888ull};
0x4444444444444444ull, Ox4444444444444444ull};
0x2222222222222222ull, 0x2222222222222222ull};
0x1111111111111117ull, Ox1111111111111111ull};

I
— e e -

// Run the compression function
// message (in *msg) is 8 128-bit words;
// prior block output is in prev[20*level+4*round+word]; result goes here too.
// inner state 1is w[0-3], 4 128-bit words
void sandwcmprs (ul28 msg[], ul28 prev([], int level, int xrnds)
{ int i,3j,rnd; ul28 MS[33], w[4]; ul28 ym[4]; // yellowmix
for (i=0;i<8;i++) MS[i] = msgl[i]; sandwmsgsch (MS) ;
for (i=0;i<4;i++) w[i] = prev[20*level+4+i];
for (rnd=0;rnd<=4;rnd++)
{ for (i=0;i<4;i++) w[i] = x128(w[i],MS[sandwmspick[rnd]+i]);
for (3=0;3<=((rnd<4)?0:xrnds) ;Jj++)
{for (i=0;1i<4;i++)
w[i] = rl28(sbl28(al28( wli],
al28( sandwf (w[ (i+3)&3]1),
al28( x128 (b128 (w[ (i+3)&3],w[i"2]),
128 (cl28 (w[ (i+3)&3]),w[ (1i+1)&3])),
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sandwmsc [19-1-(rnd<<2)1)))),
57);
// bitmix
for (i=0;i<4;i++) ym[i] = x128(b128(w[i],ym8),
%128 (b128 (w[ (1+1)&3],ymd),
%128 (b128 (w[i"2],ym2),
bl28 (w[ (i+3)&3],yml))));
for (i=0;i<4;i++) w[i] = ym[i]; }
if (rnd<4) for (i=0;i<4;i++) w[i] = x128(w[i],prev[20*level+4*rnd+4+i]);
for (i=0;i<4;i++) prev[20*level+4*rnd+i] = w[i]; };
}

typedef struct
{ unsigned char msgbytes[128]; // data bytes of the message

int mbcnt; // number of message bytes in the buffer

ul28 msgl[8]; // message repacked into 8 words of 128 bits

ul28 msglen; // message length in bits

ul28 blknl, blkn2; // block numbers for level 1 and 2

int 1lvl0flag; // level 0 has been processed;

int 1lvllcnt, 1lvl2cnt; // number of blocks in current level 1 & 2 superblocks

int 1lv13flag; // level 3 has been used

ul28 prev[5*5*%4]; // result of hash round function at each level
// 5 levels, 5 rounds, 4 128-bit words

int outsize; // output size in bits; must be 384 or 512.

ul28 *1lvlc; // pointer to level starting constants

} sandwstate;

// constants for initializing (super)blocks at various levels

// based on the SHA-384/512 initial-value constants, which are

// derived from the fractional part (in hex) of the square roots

// of the primes 2-19 (for SHA-512) and 23-53 (for SHA-384).

ul28 sandwlvl1c384[20] =

{ Oxcbbb9d5dc1059ed8ull, 0x629a292a367cd507ull,
0x9159015a3070dd17ull, 0x152fecd8f70e5939ull,
0x67332667ffc00b31ull, 0x8eb44a8768581511ull,
Oxdb0c2e0d64f98fa7ull, 0x47b5481ldbefadfadull,

0x629a292a367cd507ull,
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0x9159015a3070dd17ull, 0x152fecd8£f70e5939ull,
0x67332667££c00b31ull, O0x8eb44a8768581511ull,
0xdb0c2e0d64£98fa7ull, 0x47b5481ldbefadfadull,
Oxcbbb9d5dcl1059ed8ull,

0x9159015a3070dd17ull, 0x152fecd8£f70e5939%ull,
0x67332667££c00b31ull, 0x8eb44a8768581511ull,
0xdb0c2e0d64£98fa7ull, 0x47b5481ldbefadfadull,
0xcbbb9d5dcl059%ed8ull, 0x629a292a367cd507ull,

0x152fecd8£70e5939%ull,
0x67332667££c00b31ull, 0x8eb44a8768581511ull,
0xdb0c2e0d64£98fa7ull, 0x47b5481ldbefadfadull,
0xcbbb9d5dcl05%ed8ull, 0x629a292a367cd507ull,
0x9159015a3070dd17ull,

0x67332667££c00b31ull, O0x8eb44a8768581511ull,
0xdb0c2e0d64£98fa7ull, 0x47b5481ldbefadfadull,
0xcbbb9d5dcl059%ed8ull, 0x629a292a367cd507ull,
0x9159015a3070dd17ull, 0x152fecd8£f70e593%ull };

ul28 sandwlv1lc512[20] =

{ 0x6a09%9e667f3bcc908ull, Oxbb67ae8584caa773bull,
0x3c6ef372fe94£82bull, 0xab4ff53a5f1d36flull,
0x510e527fade682dlull, 0x9005688c2b3e6clfull,
0x1£f83d9%abfb4lbdébull, 0x5be0cdl19137e2179ull,

Oxbb67ae8584caa’73bull,
0x3c6ef372fe94£82bull, 0xab4ff53a5f1d36flull,
0x510e527fade682dlull, 0x9005688c2b3e6clfull,
0x1£f83d9%abfb4lbdébull, 0x5be0cdl19137e2179ull,
0x6a09%e667f3bcc908ull,

0x3c6ef372fe94£82bull, 0xab4ff53a5f1d36flull,
0x510e527fade682dlull, 0x9005688c2b3e6clfull,
0x1£f83d9%abfb4lbdébull, 0x5be0cdl19137e2179ull,
0x6a09%e667f3bcc908ull, Oxbb67ae8584caa773bull,
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Oxab54ff53a5f1d36flull,
0x510e527fade682dlull, 0x9005688c2b3e6clfull,
0x1£f83d9%abfb4lbdébull, 0x5be0cdl19137e2179ull,
0x6a09%9e667f3bcc908ull, Oxbb67ae8584caa773bull,
0x3c6ef372fe%94£82bull,

0x510e527fade682dlull, 0x9005688c2b3e6clfull,
0x1£f83d9%abfb4lbdébull, 0x5be0cdl19137e2179ull,
0x6a09%9e667f3bcc908ull, Oxbb67ae8584caa773bull,
0x3c6ef372fe94£f82bull, 0xab4ff53a5f1d36flull };

// process a block of message
// may trigger processing of higher levels if necessary
void sandwdoit ( sandwstate *hstate )
{ int i; ul28 w;
// check if there's higher level work to do
if (hstate->1lvllcnt==10)
{ if (hstate->1v1l2cnt==100)
{ for (i=0;i<8;i++) hstate->msg[i] = x128 (hstate->prev[44+i],hstate->prev[52+1i]);
if (!'hstate->1vl13flag) // setup level 3 starting round constants
for (i=0;i<20;i++) hstate->prev[60+i] = x128( (hstate->1vlc) [i],hstate->prev([i]);
sandwcmprs (hstate->msqg, hstate->prev, 3, xtrnds) ;
hstate->1vl2cnt=0; hstate->blkn2 = al28 (hstate->blkn2,k128(0,1));
hstate->1v13flag=1; }
if ('hstate->1vl2cnt) // setup level2 superblock starting round constants

{ for (i=0;i<20;i++) hstate->prev[40+i] = x128(cl28((hstate->1vlc) [i]),hstate->prev([i]);

for (i=0;i<20;i+=4) hstate->prev[40+i] = x128 (hstate->prev[40+i], hstate->blkn2); }
for (i=0;i<8;i++) hstate->msg[i] = x128 (hstate->prev[24+i],hstate->prev[32+i]);
sandwcmprs (hstate->msg, hstate->prev, 2, xtrnds) ;
hstate->1vllcnt=0; hstate->blknl = al28 (hstate->blknl,k128(0,1));
hstate->1vl2cnt++; }
for (i=0;i<8;i++) hstate->msg[i] = k128(0,0);
for (i=0;1<128;i++) // pack 128 message bytes into eight 128-bit words
{ w= k128(0,hstate->msgbytes[i]);
hstate->msg[i>>4] = x128 (hstate->msg[i>>4], r128(w,120-((1&15)<<3))); }
hstate->mbcnt = 0; // reset byte count to 0.
// if 1vl10flag = 0, we're doing level 0
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if (hstate->1v10flag==0)

{ sandwcmprs (hstate->msg, hstate->prev,0,xtrnds); hstate->1vl0flag = 1; }
else

{ if (!'hstate->1vllcnt) // setup levell superblock starting round constants

{ for (i=0;1i<20;i++) hstate->prev[20+i] = x128((hstate->1vlc) [i],hstate->prev[i]);
for (i=0;i<20;i+=4) hstate->prev[20+i] = x128 (hstate->prev[20+i], hstate->blknl);

sandwcmprs (hstate->msg, hstate->prev, 1, xtrnds); hstate->lvllcnt++; };

}

// hashsize must be either 384 or 512
void sandwinit ( sandwstate *hstate, int hashsize )
{ int i; ul28 *rndc;

// for (i=0;1<128;i++) hstate->msgbytes[i] = 0; // not actually needed
hstate->mbcnt = 0;
// for (i=0;i<8;i++) hstate->msg[i] = k128(0,0); // not actually needed

hstate->msglen = k128(0,0);

hstate->blknl = k128 (0,0); hstate->blkn2 = k128(0,0);

hstate->1v10flag = 0;

hstate->1vllcnt = 0; hstate->1lvl2cnt = 0;

hstate->1v13flag = 0;

hstate->outsize = hashsize;

if (hashsize==384) hstate->1lvlc = sandwlv1lc384; else hstate->1lvlc = sandwlvlc512;
// setup level 0 constants

for (i=0;i<20;i++) hstate->prev[i] = (hstate->1vlc) [i]; }

// bits of data must be a multiple of 8, except for last partial byte
// update is responsible for zeroing unused low order bits in last byte
// mbcnt points to first unused byte, including after any partial byte
void sandwupdate( sandwstate *hstate, int bitsofdata, unsigned char *data )
{ int 3,

for (j=0;j<bitsofdata;)

{ 1f (hstate->mbcnt>=128) sandwdoit (hstate); // we've got a full message block to process

hstate->msgbytes[hstate->mbcnt] = *data; data++; j+=8;
if (j>bitsofdata) // handle partial byte
hstate->msgbytes[hstate->mbcnt] &= 0xFF<<(j-bitsofdata);
hstate->mbcnt++; }
hstate->msglen = al28 (hstate->msglen, k128 (0,bitsofdata)); }
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// do padding, process any partial block, propagate up levels
void sandwfinish( sandwstate *hstate )
{ int i, padbitpos;
// process message buffer if full
if (hstate->mbcnt>=128 && ! (hstate->msglen.lo & 7)) sandwdoit (hstate);
for (i=hstate->mbcnt;i<128;i++) hstate->msgbytes[i]=0; // zero out unused message bytes
padbitpos = hstate->msglen.lo & 7;
if (!padbitpos) hstate->mbcnt++;
hstate->msgbytes[hstate->mbcnt-1] |= 0x80 >> padbitpos;
sandwdoit (hstate) ;
// setup leveld round constants
for (i=0;i<20;i++) hstate->prev[80+i] = c128( (hstate->1vlic) [i]);
for (i=0;i<20;i+=4) hstate->prev[80+i] = x128 (hstate->prev[80+i], hstate->msglen);
// see if we've only used level 0
if (hstate->1vllcnt==0 && hstate->blknl.hi==0 && hstate->blknl.lo==0)
for (i=0;i<8;i++) hstate->msg[i] = x128 (hstate->prev[4+i],hstate->prev[12+i]);
// or if we've only used level 1
else 1if (hstate->1v12cnt==0 && hstate->blkn2.hi==0 && hstate->blkn2.lo==0)
for (i=0;i<8;i++) hstate->msg[i] = x128 (hstate->prev[24+i],hstate->prev[32+i]);
// or if we've only used level 2
else 1if (hstate->1v13flag==0)
for (i=0;i<8;i++) hstate->msg[i]
else // we've used level 3
for (i=0;i<8;i++) hstate->msg[i] x128 (hstate->prev[64+i],hstate->prev[72+i]);
sandwcmprs (hstate->msqg, hstate->prev, 4, xtrnds) ;
// final hash in prev[96-99]

x128 (hstate->prev[44+i],hstate->prev[52+i]);

Appendix C Test Vectors

SANDstorm-224 Test Vectors

512-bit Test Message:
1111111122222222333333334444444455555555666666667777777788888888
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Level 0:

Data:

d0=3131313131313131
dl =3232323232323232
d2 =3333333333333333
d3 =3434343434343434
d4 =3535353535353535
d5 =3636363636363636
d6 =3737373737373737
d7 =3838383838383838

Message Schedule:
d0=3131313131313131

dl =3232323232323232

d2 =3333333333333333

d3 =3434343434343434

d4 = 0404040404040404

d5 = 0404040404040404

d6 = 0404040404040404

d7 = 0C0COCOCOCOCOCOC
d8 =4BDC9850A0353DF8
d9 =20EA7C9FE27DOFE9
d10 = 18D489624D625048
d11 =D5D3999E28BB32ED
d12 = 690BA6200C78C149
d13 = 15COEB16A87446A7
d14 = 608C99700F4F587B
d15=C1844321240D5A9C
d16 = 915E29DFD4F8F6A2
d17=5DBA7280B61294D5
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d18 = 648A0176ED183441
d19 = 1F8O0E7F83C787462
d20 = A2B4369645143CC2
d21 =D921A411EFAODABA
d22 = BC5B533D3B3ACFE7
d23 = D1A0D40D90B73760
d24 = 916BB765DB952B25
d25 = C7665A85E005DB1E
d26 = 33A40D668640540A
d27 = 0A38256244D79DA4F
d28 = 446F1ESA3B54F1A4
d29 = 059D86DB28CFD962
d30 = A71581CDEEAF4B9C
d31 =3D00D34CAD62B7BF

Input Constants:

c0 = CI059ED8367CD507 3070DD17F70E5939 FFC00B3168581511 64F98FA7BEFA4FA4
cl =367CD5073070DD17 F70E5939FFC00B31 6858151164F98FA7 BEFA4FA4C1059EDS
c2 =3070DD17F70E5939 FFC00B3168581511 64F98FA7BEFA4FA4 C1059ED8367CD507
c3 =F70E5939FFC00B31 6858151164F98FA7 BEFA4FA4C1059EDS 367CD5073070DD17
c4 =FFC00B3168581511 64F98FA7TBEFA4FA4 C1059ED8367CD507 3070DD17F70E5939

State Outputs:

sl = E4CF35D9A384CO0DE 30940B2061B63E74 27A8E24D8A18AFEC D92399D1CB5A33FB
s2 =2589B540E0961804 2E85DE9E32669AB9 ED2127C17A18ABD1 00A213587A15CF77
$3 =1078CD89C3018649 823E9B43A1A77736 59F959B16A 104986 FCE2A784B5640F60

s4 = A841F50C071399D0 72880A355B248 AES 10B941345EF2236E 9AE887480CAA0148
Level 1:

Data:
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d0 = 0000000000000080
d1 =0000000000000000
d2 =0000000000000000
d3 =0000000000000000
d4 = 0000000000000000
d5 =0000000000000000
d6 = 0000000000000000
d7 =0000000000000000

Message Schedule:

d0 = 0000000000000080

d1 =0000000000000000

d2 =0000000000000000

d3 =0000000000000000

d4 = 0000000000000080

d5 =0000000000000000

d6 = 0000000000000000

d7 = 0000000000000000

d8 =06A8323C783B359E
d9 = F776DC4EE455E471
d10 =5737990323C687FB
d11 = BBOF4AEF595DDFES
d12 =4843ADADDDB6FOAE
d13 = 64BDAC06062D7C1F
d14 =8A910A912625980C
d15=1FCD1D9FAF9BC591
d16 =436C5FA217111F65
d17 = D8065E9D789F3852
d18 = F066850BCBCDF9B6
d19 =D8D7A8EED411BDA3
d20 = A8494C384CEE2513
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d21 =8C5761D3908EE&48
d22 = 0266B7EEA3977211
d23 =427A4E1106E23A08
d24 =799C0425C17C3A6D
d25 = 99A87D0328EDEAC4
d26 = 57D7FD8D2SEABC1D
d27 = 0B356E19F4AC4171
d28 = D70A5B5898CA17CC
d29 =97569A2C98A2DCTE
d30 = 8CCOF7F5C3D11ADF
d31 = 1704D769EF7D6681

Input Constants:

c0 = 69446BD4316F4CD7 42F8D722AC2AD3D1 EF794A0536AA367F FE1108EFB2504EEC
cl = D2B3EODE93F41DC9 C79A52199E763545 4FFOF75CEEE1204B 67D9D6750A5FAD23
c2 =15F968571798413D D145D5AF5A3ESFA8 89D8AR66CAE2E475 C1A78D804C691A70
c3 =E77694B03CC18D78 EA668E52C55EF891 E7031615AB15D75E CA9E72838514D277
c4 = 5781FE3D6F4B8CC1 16718592ESDEC54C DIBCDFEC688EF669 AA985ASFFBA45871

State Outputs:

sl =78A16FB6195442CA 5F73F45215A31C53 32E71690EECT7DEAC 57D7046BA52A98E7
s2 =242B21138DA27AF7 0DACFB13504C6D23 E6C3B333F94809F9 578FEES1B6ESE79F
s3 = 7BD3ABE949247649 CA0A36529321E984 5A6A880040C9F970 4A9E619AF6531909
s4 = EFBB50C76A033203 660E19A95E9E663A FO460EBA30C35E80 7BA67B0923A2DE97

Level 4:
Data:
d0 = 0372C45F50703483

dl =9579C2008682F5D7
d2 = 688D9E90AEOE27DC
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d3 = 1D4965F1537981EE
d4 = CB9071D4E7A148F4
d5 = 6BA2E2BAOED20B19
d6 = 1F85BD89C98B5779
d7 =2C29955895473908

Message Schedule:

d0 = 0372C45F50703483

d1 =9579C2008682F5D7

d2 = 688DI9E9OAEOE27DC
d3 = 1D4965F1537981EE
d4 = C8E2B58BB7D17C77
d5 = FEDB20BASS50FECE
d6 =77082319678570A5

d7 =3160FOA9C63EBSE6
d8 =9607F1888E0BOOBA
d9 = DF092757CB31D737
d10 = 18FF09330717BF62
d11 =950BB9656921B1CB
d12 =0B02894DD4BF2FD8
d13 = 544058 A94AE23ACC
d14 = C2A233418EC8B559
d15 = DSBOEE6B7A9336AC
d16 = A994C035FEC2BODE
d17=AE9C6D1DA14612EE
d18 = 7DCD0962C782E1BC
d19 = B6029CF671EE7592
d20 = 04F5A60071F8998B
d21 = E30542F06F002065
d22 = 6CAD2445F99C2326
d23 = 6DA7EF1930EF608D
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d24 = 96BE66791B19014E
d25 =4551CC1844139E3F
d26 = E74FD132F6C005C1
d27 = 453B8C8AAB6C7E9B
d28 = 14575C796415626A
d29 = C8710B7165730910
d30=433177016272D525
d31 =452B0C329BA07BFB

Input Constants:

c0 =3EFA6127C98328F8 CF8F22E808F1A4C6 003FF4CE97A7ESEE 9B0670584105B25B
cl = C9832AF8CF8F20E8 08F1A6C6003FF6CE 97ATEAEEIB067258 4105BOSB3EFA6327
c2 = CF8F22E808F1A4C6 003FF4CE97ATESEE 9B0670584105B25B 3EFA6127C98328F8
c3 = 08F1A6C6003FF6CE 97ATEAEE9B067258 4105B05SB3EFA6327 C9832AF8CF8F20E8
c4 = 003FF4CE97A7ESEE 9B0670584105B25B 3EFA6127C98328F8 CF8F22E808F1A4C6

State Outputs:

sl = 53D409A03A58F75F 82375626B5C4C31C BSOF55BE38C08874 820CF2FE10F9E6CS8
s2 = B733F3781BEC47D2 EE1C6214F4CF79AS5 1960C27EFATEFBSA 6F02344941E19A1C
s3 = 8D2BF541DFCC4EBY 34229367EE2B42FE 88887A39C8494F99 40029CC9FAC9BBB9
s4 =3863B976947B4264 69ACCA283851F4C4 SFC7TFODC25DD602F 69CD6855193563B9

SANDstorm-256 Test Vectors

512-bit Test Message:
1111111122222222333333334444444455555555666666667777777788888888

Level 0:

Data:
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d0=3131313131313131
dl =3232323232323232
d2 =3333333333333333
d3 =3434343434343434
d4 =3535353535353535
d5 =3636363636363636
d6 =3737373737373737
d7 =3838383838383838

Message Schedule:
d0=3131313131313131

dl =3232323232323232

d2 =3333333333333333

d3 =3434343434343434

d4 = 0404040404040404

d5 = 0404040404040404

d6 = 0404040404040404

d7 = 0C0COCOCOCOCOCOC
d8 =4BDC9850A0353DF8
d9 =20EA7C9FE27DOFE9
d10 = 18D489624D625048
d11 =D5D3999E28BB32ED
d12 = 690BA6200C78C149
d13 = 15COEB16A87446A7
d14 = 608C99700F4F587B
d15=C1844321240D5A9C
d16 = 915E29DFD4F8F6A2
d17=5DBA7280B61294D5
d18 = 648A0176ED183441
d19 = 1F80E7F83C787462
d20 = A2B4369645143CC2
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d21 =D921A411EFAODABA
d22 = BC5B533D3B3ACFE7
d23 = D1A0D40D90B73760
d24 = 916BB765DB952B25
d25 = C7665A85E005DB1E
d26 = 33A40D668640540A
d27 = 0A38256244D79DA4F
d28 = 446F1 ESA3B54F1A4
d29 = 059D86DB28CFD962
d30 = A71581CDEEAF4B9C
d31 =3D00D34CAD62B7BF

Input Constants:

c0 =6A09E667BB67AE85 3C6EF372A54FF53A 510E527F9B05688C 1F83D9ABSBEOCD19
cl =BB67AE853C6EF372 A54FF53A510E527F 9B05688C1F83D9AB SBEOCDI196A09E667
c2 =3C6EF372A54FF53A 510E527F9B05688C 1F83D9ABSBEOCD19 6A09E667BB67AER&S
c3 = A54FF53A510E527F 9B05688C1F83D9AB SBEOCD196A09E667 BB67AE853C6EF372
c4 = 510E527F9B05688C 1F83DY9ABSBEOCDI19 6A09E667BB67AE85 3C6EF372A54FF53A

State Outputs:

sl = B22F978A3BCCI10EE 7FDD30C32C63C56E 626C25283356C4E9 FFBF10622106381C

s2 =00906C3BD392F370 CO7TFAA5124D35370 D2F79AABDFFFEF97 45SDAD8DB5D64383E
s3 = DFBC9A38851FD03C 8A20A18B2724A280 B9797CA20D54C958 12A7838729688E11
s4 = 2EF815C396C20A84 462F43E653D6834B FADD9D6B6081CE91 SE7TA7IEES688AD9A

Level 1:
Data:
d0 = 0000000000000080

d1 =0000000000000000
d2 =0000000000000000
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d3 =0000000000000000
d4 = 0000000000000000
d5 =0000000000000000
d6 = 0000000000000000
d7 =0000000000000000

Message Schedule:

d0 = 0000000000000080

d1 =0000000000000000

d2 = 0000000000000000

d3 =0000000000000000

d4 = 0000000000000080

d5 =0000000000000000

d6 = 0000000000000000

d7 = 0000000000000000

d8 =06A8323C783B359E
d9 = F776DC4EE455E471
d10 =5737990323C687FB
d11 = BBOF4AEF595DDFES
d12 =4843ADADDDB6FOAE
d13 = 64BDAC06062D7C1F
d14 =8A910A912625980C
d15=1FCD1D9FAF9BC591
d16 =436C5FA217111F65
d17 = D8065E9D789F3852
d18 = F066850BCBCDF9B6
d19 =D8D7A8EED411BDA3
d20 = A8494C384CEE2513
d21 =8C5761D3908EE848
d22 =0266B7EEA3977211
d23 =427A4E1106E23A08
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d24 =799C0425C17C3A6D
d25 = 99A87D0328EDEAC4
d26 = 57D7FD8D2SEABC1D
d27 = 0B356E19F4AC4171
d28 = D70A5B5898CA17CC
d29 =97569A2C98A2DCTE
d30 = 8CCOF7F5C3D11ADF
d31 = 1704D769EF7D6681

Input Constants:

c0 =44F1F3A42DA5A401 7A41B094F6997671 ABD3CF14FB84A61D 41F9A8450D686083
cl =0948390F07A2E39C DA92C5F97D6D9711 F9694DA42CD51D42 A45FDD7B4BOFDE7B
c2 =3CFE9F4976DD064A 9171F82EBFD63BFC CD744300841F228E 2FD33EBCE60396BB
c3 =7AF36F02D4118243 1125C90738A77B2B E299B1BB675D2F3F A9C02D0215067D63

c4 =TFF647BCODC76208 59AC9A4D08364E52 90D47BOCDBE66014 6214829CF3C758A0

State Outputs:

sl = A26B38082775FDOE B699B80CO0F2F296 381311CDFD2967D8 E164241A0B7A078A
s2 = CA366E1322197604 7TA8CA74D6B233766 F17186994230B966 34EF4F5SES4D27E9C

s3 = ECF30909F973BF57 61FA5SD21B062F63F AE7AE448B842A2A8 C7771329ADBAS85D2
s4 =5211203F5B39A3AD 4B19406A9E44DF08 9CCB663BC1B73F96 403C8630824DD4FB

Level 4:

Data:

d0 =4E983101DE064259
d1 =D763E52DB09004A9
d2 =9669F585456BC570
d3 =26133733A6C08258
d4 =98274E2C7920D5A9
d5 =3195E727F567E86E
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d6 = 6DBAE0A2838786F0
d7 = 74D3C96ED69FAA67

Message Schedule:

d0 =4E983101DE064259

d1 =D763E52DB09004A9
d2 =9669F585456BC570

d3 =26133733A6C08258

d4 = D6BF7F2DA72697F0
d5 = E6F6020A45F7ECC7
d6 = FBD31527C6EC4380
d7 = 52COFE5D705F283F
d8 =25D7F004BBC5068D
d9 = 12298626ED464E99
d10 = 928E146219FF08CO0
d11 =FB7A8DBFE0C54DF2
d12 = 68A3587019416B20
d13 = BOAF510290D05293
d14 = FFE7DC5412B0F4E3
d15 = D585CD25E08432A8
d16 = 644COCCFCAA1098D
d17 =4A55F7E99E225FAD
d18 =8947BE6ACIDI15C12
d19 = DA642E9545AD7E28
d20 = F9BC734435D2EF05
d21 =1C99AA4163959524
d22 =3AEED6DC86A62643
d23 = AB807F7A62DE2268
d24 =39C1B808106E5818
d25 = 0ACFF08B7528D334
d26 =4A13327D877B7C44
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d27 = F3BE6BBD6AF6EA035
d28 = 8DOCE9C36223A9AB
d29 = ODFEAF26248DC5SAA
d30 = E8F8065B431B0124
d31 =881FABC305789ESA

Input Constants:

c0 =95F619984498537A C3910C8D5AB008CS5 AEF1AD8064FA9573 E07C2654A41F30E6
cl =4498517AC3910E8D 5ABO0ACSAEF1AF80 64FA9773E07C2454 A41F32E695F61B98
c2 =C3910C8D5AB008C5 AEF1AD8064FA9573 E07C2654A41F30E6 95F619984498537A
c3 =5ABO0AC5AEF1AF80 64FA9773E07C2454 A41F32E695F61B98 4498517AC3910E8D
c4 = AEF1AD8064FA9573 E07C2654A41F30E6 95F619984498537A C3910C8D5AB008CS

State Outputs:

sl = 7FAF77AB7EF2B3DF 679CF5C7E9E23E35 C365ADAC6F64CDC6 DC33438251CDC54E
s2 =2C7AEA05DAF433E6 DBE6EOFBD43505A2 E2025DF96602DDDC FOFA6F92D127E90D
s3 =0B7425987B3AFES52 D889193E260C515A D9B570101739DBYC 134BD17BC3C7BABO
s4 =DI1D3EC6372732C3 0CA684DA52A467FA 04FD67AES9CC0551 027F7FB21BB36FES
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