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Study Introduction

Objective: A “valid” means of

modeling material localization in
finite element analyses.

Goals:

Q

applicable to cohesive zone
modeling => strong discontinuity

arbitrary orientation of
discontinuity relative to mesh

“continuous discontinuity”

Approach: Develop an
extended FEM (XFEM) that
allows the displacement field
to be enriched in the
neighborhood of a strong
discontinuity.

o can represent a discontinuity
without mesh refinement

o can potentially represent the
gradients near a surface of
localization without mesh
refinement
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Background

Initial related studies:
o Melenk and Babuska (1996)
theory for Partition of Unity FEM (PUFEM)

o Belytschko and Black (1999)
developed PUFEM for LEFM — XFEM

used asymptotic displacement fields near a crack
tip for enrichment
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Some Recent Related Studies

XFEM/PUFEM-Cohesive Zone Studies

o Wells and Sluys (2001)

0 Moes and Belytschko (2002)

0 71 and Belytschko (2003) -- tip function addresses tip
position but not the field

o Xiao and Karthaloo (2006) -- asymptotic fields

Q...

GFEM

o Strouboulis, Copps, Zhang, and Babuska (2000, 2001, 2003)
numerical enrichment functions -- handbook functions
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History of Study

o ARL (2000-2001) -- localization in armor and penetrators

.| general formulation and algorithms
= = Past Work

a0 SNL
= HDBT/CSRF

-| enrichment functions and algorithms

= ESRF -- assessment of PUFEM/XFEM for fracture

- |analytical enrichment functions, enrichment schemes, and mixed-mode

- partial implementation in Tahoe

- LDRD -- fatigue cracking

stress smoothing

= ESRF -- ductile fracture

and

limits of enrichment functions

. | formulation for finite deformations Future Work

- implementation in Tahoe

G
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PUFEM Displacement Field Enrichment

o Standard FEM o PUFEM/XFEM

Global displacement approximations

Solh =S

Element displacement approximations

= ZE]:Ni(X)ui u(x) = gNi(X)

fNA N, )
+EEA

] =1 j=1 y
fNA v, )
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| ]
enrichment functions

—,_enriched elements

cohesive zone @
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“My Path to Enrichment”

“I am not discouraged, because every wrong attempt discarded is another step forward.

I have not failed. I’ve found 10,000 ways that won’t work.” — Thomas Edison
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Formulated simple series that incorporated w
a discontinuity.

Formulated simple functions that had key
features of accurate numerical results.

-

Analytically derived enrichment functions
based upon the Muskhelishvili formalism.
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Enrichment Functions: An Analytical Source

Muskhelishvili formalism
Hong & Kim (2003) obtained a series solution to the inverse problem
Zhang & Deng (2007) obtained “asymptotic solutions”™
— both assumed linear elastic isotropic material (except for cohesive zone)
Additional analysis was used to:
verify the proposed solutions
extend them for field variables required by the XFEM

d  Displacements

0 + ity = i{’“’)(*”) @) - ()}

where @ and 1 are analytic functions, and z = x+iy.

 Another set of analytic functions simplify «; ; and o;; expressions
!

D(z) = ¢'(2) Qz) =[20/'(z) +y(2)]
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Enrichment Functions: An Analytical Source

Qualitative comparison of 0,, with fine-scale FEA
= Analytical ~ First terms in series for Hong & Kim solution
" “Fine-scale” FEA ~ results for finely meshed FEA with interface el.

Note: problems differ and CZ sizes are not to the same scale.

Analytical

Fine-scale FEA

40

30

20

10

Cohesive zone length = 2¢ @ Notions
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Enrichment Functions: An Analytical Source

Zhang & Deng (2007) solve the problems in terms of
elliptic coordinates (w)

z=ccosh(w)

Symbolically the inverse map is give by
w = cosh™ (z/c)

complex analysis leads to more
forms for both of these.

They adopt a Westergard stress function where
Dz)=2Z(z)  Qz)=Z(2)

They are argue that A=-1/2
MB[( A—=2)e*t) - )Le("k‘z)“’(z)] Eigenvalue -> asymptotic

Z(Z) = solution.
)
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Mode-I Enrichment Functions
cn

0 Based upon the asymptotic solutions of Zhang &
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Neighborhood Enrichment

Aka the Mr. Roger’s modification

Enriches additional nodes within a user-

o2
:‘:"'Z;:’.‘- F

defined neighborhood of the tip.

Done each time the tip enters a new element.
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Numerical Formulation Issues

o Element Integration

opposite edge adjacent edge node-edge opposite node
intersect intersect intersect intersect

S\ g\d

o Key solver issue: new DOFs that result from adding

enrichment to nodes do not have a good initial values
=> nonlinear solver can have problems.

Solution: Penalty relaxation in a multi-level solver
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Numerical Formulation Issues

Assignh equation numbers; Determine storage for K:

Repeat (* time increment loop *)

I Repeat (* outer level solver loop -- aka localization loop *)

I Update K & R

Reset penalty number to large value when entering a new element, else 0

Repeat (* penalty reduction loop *)

Relax the penalty number

Reset line search

Repeat (* nonlinear iteration loop *)
|

1ter

I

I

I Search line for duU.
I .

I

|
Until IIRII<R;, ;..
ntil penalty number is reduced to zero

I
I
I
I
I
I
I
I
I
I
I
U

nti{ localization is complete

|
|
|
|
|
|
|
|
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|
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step? step * =
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ntil time stepping is complete
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Preview of Results

0 Mode-I Model Problems -- emphasis on

reproducing the cracking history A

= Results for aligned meshes

= Results for skewed meshes > quasibrittle

0 Extensions for “mixed mode”

0 Mixed mode examples
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Initial Simple Test Problems

] Concrete test problems

relevant to HDBT

domain I mx 1 m

process-zone size ~ O(250 mm)
representative concrete tensile properties
(except for simplified linear softening) g
mode I quasistatic crack propagation

w

G, =0.1 mJ/mm? =100 J/m?

o o (MPa)

Problem geometry
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Spacial Discretizations

Fine FEM meshes — accurate reference solution
41x40 ~ 3444 dofs 61x60 ~ 7564 dofs 81x80 ~ 13,284 dofs

XFEM — Aligned Meshes
5x5 ~ 72+36 dofs 9x9 ~ 200+52 dofs 17x17 ~ 648+88 dofs
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Extremes Histories
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Extremes Histories and Crack Profiles
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XFEM Skewed Mesh Tests
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Extremes and Crack Profiles
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Extremes Histories
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Crack Propagation and Direction Calculations

“Stress smoothing” used when a crack enters a new element

o Deviation between a polynomial approximation and the FEM approximation
d(x)=0"(x)=0’"(X)=c, +c,x + ¢,y +...— 07" (x)

o  Weighting function

27 1 =0

r

Q(x) = exp| -] —

(x)=exp a)(Lw) i
o Residual measure” i

2

R’ =f[Q(X)d(X)] dA 0 o :

A w

o Using the Gauss point values — weighted least squares solution

i -




Cohesive Zone Insertion

o In theory insertion occurs when o, >0,

0 Issue: residual error between continuum and
cohesive zone

2c

o Numerical criterion: o, >0,,, >0..
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Model Problem with Arbitrary Intersects
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Model Problem with Stress Smoothing

17x17 Aligned mesh
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Mode Il Enrichment Functions

Based on Zhang & Deng (2007)
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Mixed Mode Fracture Problem

Double edge-notched specimen (Nooru-Mohamed 1992)
and experimental crack paths
Concrete square, 50 mm thick

Load Path 4b: E 4w,
F, = 10 kN A
) front face
I
S
S
notches 5x25 mm <
N
back face
Y
Fixed
< 200 mm ,
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Mixed Mode Fracture Problem

XFEM simulation results for test give crack
paths within the experimental scatter.

20 [ T T 7 T 17 T T P exp. 246-05;
i ----e--=- exp. (47-01
15:— xfem
20 < |
2100 ; ~ @\ .
n c C 'é. y ."*\.‘.:.~ \:
e B e . il
] 1 SR
]
!i.\ I | I | | I | | I I | ‘ I I | ‘ I | ]
0O 0.01 0.02 0.03 0.04 0.05 0.06
relative displacement (mm)

ro~20 mm ~ 2h, n=3, w=0, full-disk, o./0,=0.8
[46] Meschke & Dumstortf (2007)
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Mixed Mode Fracture Problem

XFEM simulation results varying several parameters.
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Single Edge-Notched Beam Specimen

Experimental work of Schlangen (1993)
units ~ mm, thickness = 100 mm

20
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_ | 1
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Y r,\ »
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Single Edge-Notched Beam Specimen

lﬂPN1
'P/11

N o o o g
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1 41

Finer meshes have been used (e.g., Wells & Sluys, 2001)
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Observations & Conclusions
a No free-lunch -- algorithm complexity | with
analytical enrichment

o Analytically enriched XFEM for cohesive zone
modeling of localization has potential.

2 Not the best approach for every application

0 Several open 1ssues, e.g.:

Value of ¢ and its possible adjustment
Can the accuracy be improved?
How useful 1s analytical enrichment for materials that are:
- anisotropic?
- Inhomogeneous?
- 1nelastic?
- amenable to finite deformations?
Could the method facilitate stochastic FEA of fracture?

How difficult it this to incorporate into a production code?

Sandia
National
Laboratories



Questions?






