

# An Extended Finite Element Method with Analytical Enrichment for Cohesive Crack Modeling

First Annual Sandia National Laboratories Fracture Forum  
November 2008

Jim Cox  
*Applied Mechanics Development (1526)*

An Extended Finite Element Method  
with Analytical Enrichment  
for Cohesive Crack Modeling

# Fracture Pott-pourri Forum

November 2008

Jim Cox

*Applied Mechanics Development (1526)*

# Preview

- Introduction
- PUFEM/XFEM Displacement Field Enrichment
- Numerical Formulation Issues
- Results for a Model Problem
- Extensions for Mixed mode problems
- Mixed mode Examples
- Observations and Conclusions

# Study Introduction

**Objective:** A “valid” means of modeling material localization in finite element analyses.

## Goals:

- applicable to cohesive zone modeling => strong discontinuity
- arbitrary orientation of discontinuity relative to mesh
- “continuous discontinuity”

**Approach:** Develop an **extended FEM** (XFEM) that allows the displacement field to be enriched in the neighborhood of a strong discontinuity.

- can represent a discontinuity without mesh refinement
- can potentially represent the gradients near a surface of localization without mesh refinement

## Background

### **Initial related studies:**

- Melenk and Babuska (1996)
  - theory for Partition of Unity FEM (PUFEM)
- Belytschko and Black (1999)
  - developed PUFEM for LEFM → XFEM
  - used asymptotic displacement fields near a crack tip for enrichment

## Some Recent Related Studies

### **XFEM/PUFEM-Cohesive Zone Studies**

- Wells and Sluys (2001)
- Moes and Belytschko (2002)
- Zi and Belytschko (2003) -- tip function addresses tip position but not the field
- Xiao and Karihaloo (2006) -- asymptotic fields
- ...

### **GFEM**

- Strouboulis, Copps, Zhang, and Babuska (2000, 2001, 2003) numerical enrichment functions -- handbook functions

# History of Study

- ARL (2000-2001) -- localization in armor and penetrators
  - general formulation and algorithms
- SNL
  - HDBT/CSRF
    - enrichment functions and algorithms
  - ESRF -- assessment of PUFEM/XFEM for fracture
    - analytical enrichment functions, enrichment schemes, and mixed-mode
    - partial implementation in Tahoe
  - LDRD -- fatigue cracking
    - stress smoothing and limits of enrichment functions
  - ESRF -- ductile fracture
    - formulation for finite deformations
    - implementation in Tahoe

*Past Work*

*Future Work*

# PUFEM Displacement Field Enrichment

□ Standard FEM

□ PUFEM/XFEM

Global displacement approximations

$$u(x) = \sum_{i=1}^{N_\Phi} \Phi_i(x) u_i$$

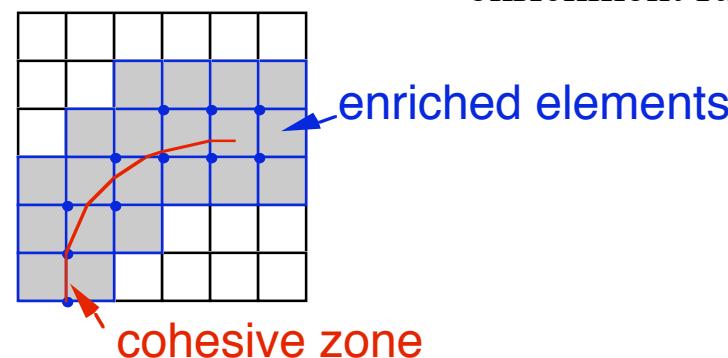
$$u(x) = \sum_{i=1}^{N_\Phi} \Phi_i(x) u_i + \sum_{j=1}^{N_\Lambda} \sum_{i=1}^{N_\Phi} \Lambda_j(x) \Phi_i(x) \alpha_{ij}$$

Element displacement approximations

$$u(x) = \sum_{i=1}^{N_N} \mathbf{N}_i(x) u_i$$

$$u(x) = \sum_{i=1}^{N_N} \mathbf{N}_i(x) u_i + \sum_{j=1}^{N_\Lambda} \sum_{i=1}^{N_N} \Lambda_j(x) \mathbf{N}_i(x) \alpha_{ij}$$

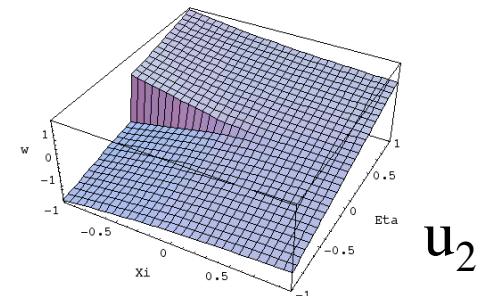
enrichment functions



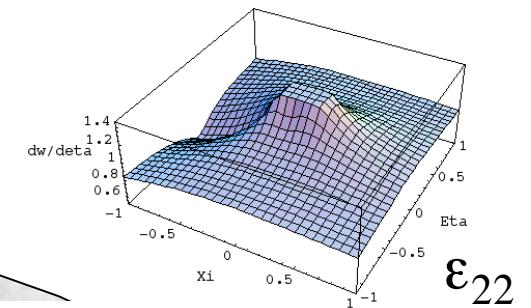
## “My Path to Enrichment”

“I am not discouraged, because every wrong attempt discarded is another step forward. I have not failed. I’ve found 10,000 ways that won’t work.” – Thomas Edison

Formulated simple series that incorporated a discontinuity.



Formulated simple functions that had key features of accurate numerical results.



**Analytically derived enrichment functions based upon the Muskhelishvili formalism.**

## Enrichment Functions: An Analytical Source

### Muskhetishvili formalism

Hong & Kim (2003) obtained a series solution to the inverse problem

Zhang & Deng (2007) obtained “asymptotic solutions”

– both assumed linear elastic isotropic material (except for cohesive zone)

Additional analysis was used to:

verify the proposed solutions

extend them for field variables required by the XFEM

- Displacements

$$u_1 + iu_2 = \frac{1}{2\mu} \left\{ \kappa \varphi(z) - z \overline{\varphi'(z)} - \overline{\psi(z)} \right\}$$

where  $\varphi$  and  $\psi$  are analytic functions, and  $z = x+iy$ .

- Another set of analytic functions simplify  $u_{i,j}$  and  $\sigma_{ij}$  expressions

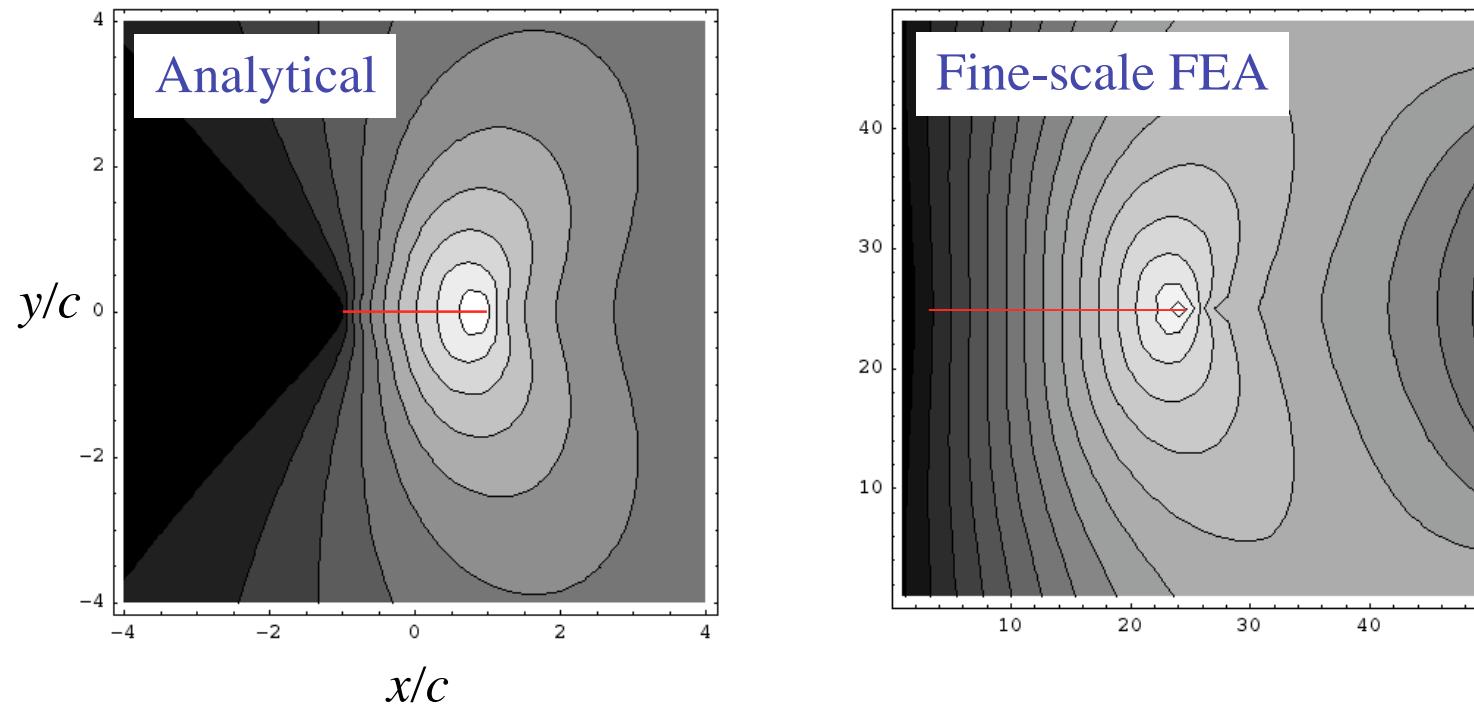
$$\Phi(z) = \varphi'(z) \quad \Omega(z) = [z\varphi'(z) + \psi(z)]'$$

## Enrichment Functions: An Analytical Source

Qualitative comparison of  $\sigma_{22}$  with fine-scale FEA

- Analytical  $\sim$  First terms in series for Hong & Kim solution
- “Fine-scale” FEA  $\sim$  results for finely meshed FEA with interface el.

*Note: problems differ and CZ sizes are not to the same scale.*



Cohesive zone length =  $2c$

# Enrichment Functions: An Analytical Source

Zhang & Deng (2007) solve the problems in terms of elliptic coordinates ( $\omega$ )

$$z = c \cosh(\omega)$$

Symbolically the inverse map is give by

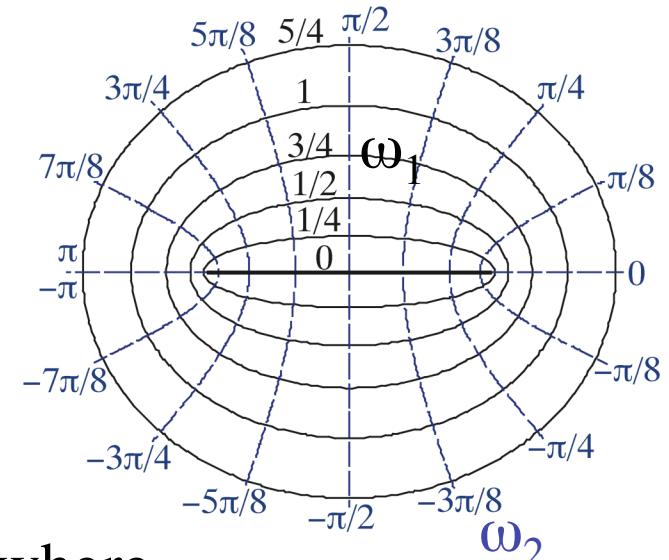
$$\omega = \cosh^{-1}(z/c)$$

complex analysis leads to more forms for both of these.

They adopt a Westergaard stress function where

$$\Phi(z) = Z(z) \quad \Omega(z) = Z(z)$$

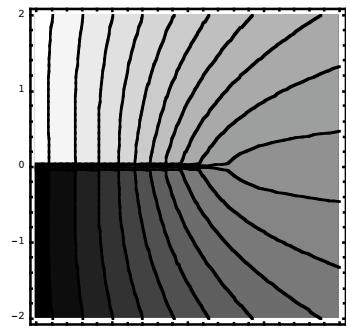
$$Z(z) = -\frac{\mu B \left[ (\lambda - 2)e^{\lambda \omega(z)} - \lambda e^{(\lambda - 2)\omega(z)} \right]}{2\lambda(\lambda - 2)}$$



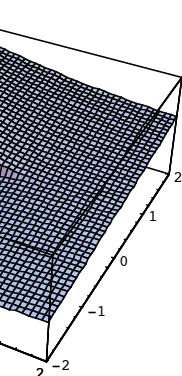
They argue that  $\lambda = -1/2$  Eigenvalue  $\rightarrow$  asymptotic solution.

# Mode-I Enrichment Functions

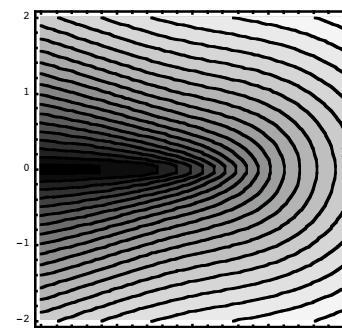
- Based upon the asymptotic solutions of Zhang & Deng



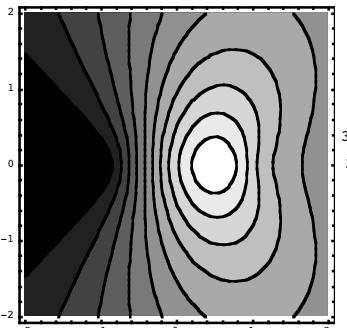
$u_2$



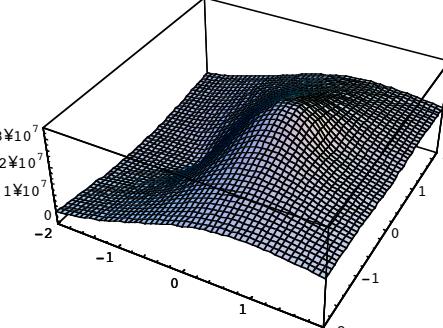
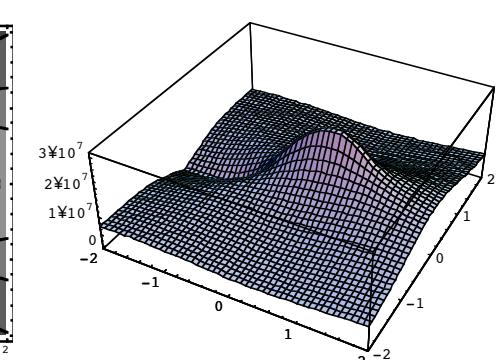
$u_1$



$u_1$



$\sigma_{22}$



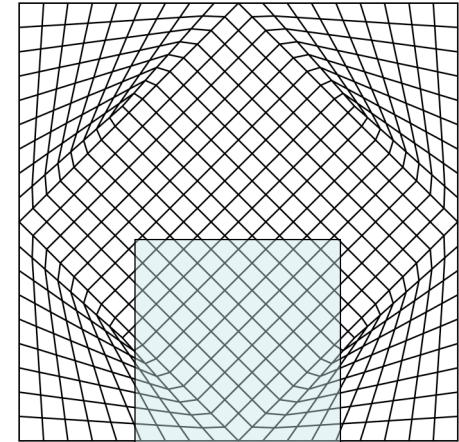
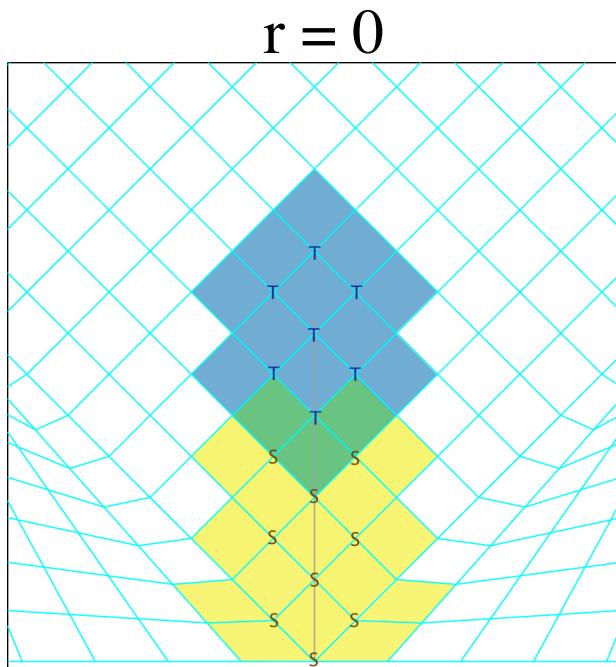
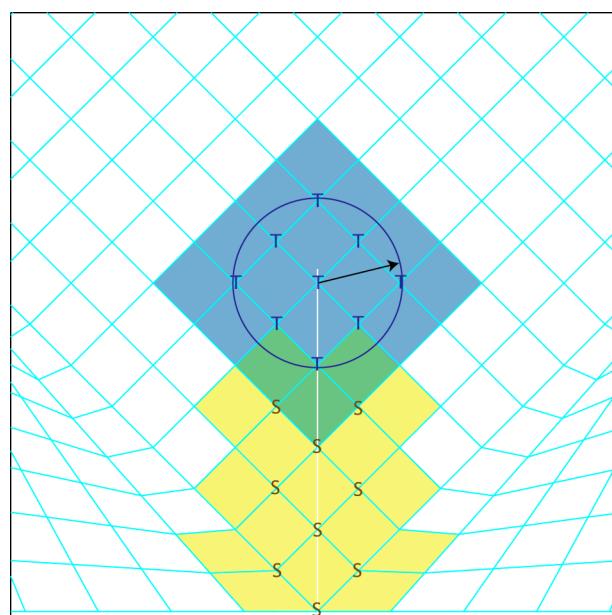
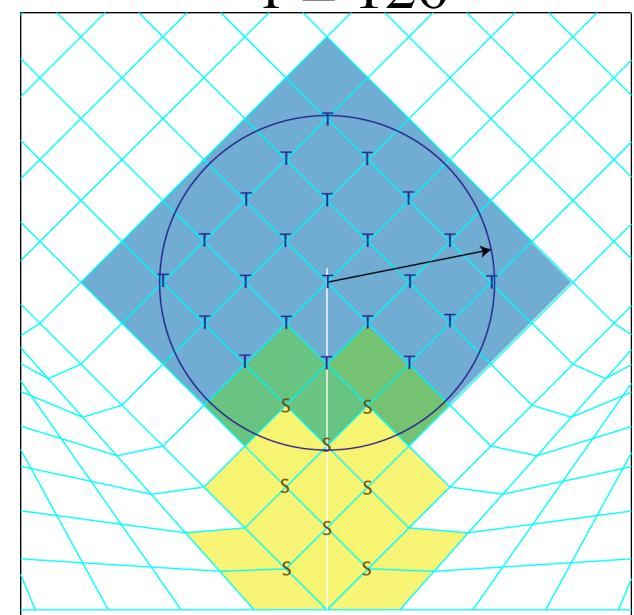
$\sigma_{11}$

# Neighborhood Enrichment

Aka the Mr. Roger's modification

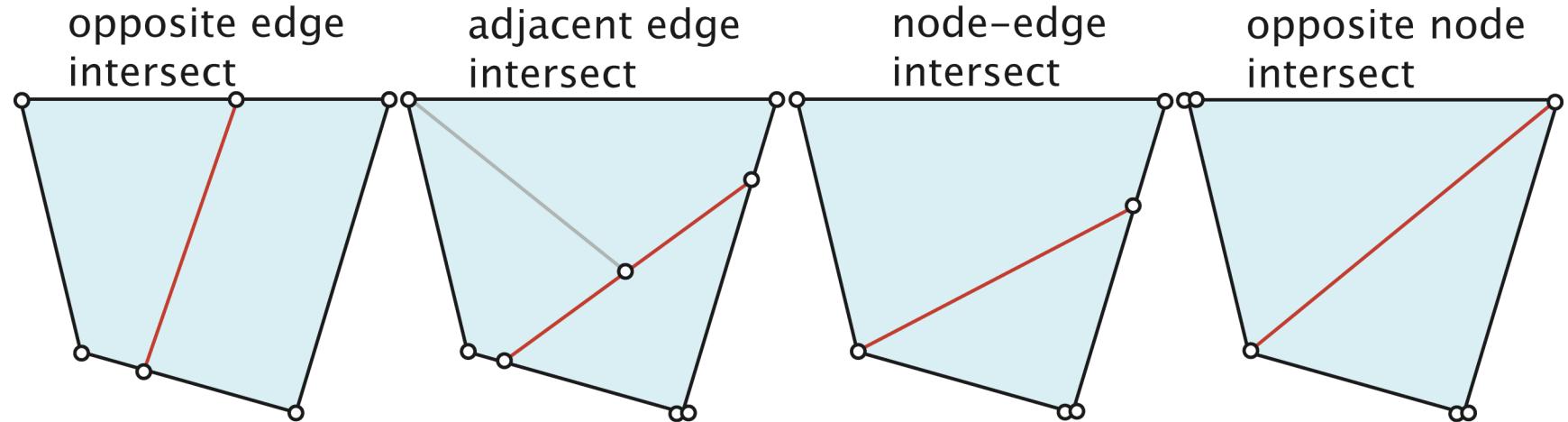
Enriches additional nodes within a user-defined neighborhood of the tip.

Done each time the tip enters a new element.



# Numerical Formulation Issues

- Element Integration



- Key solver issue: new DOFs that result from adding enrichment to nodes do not have a good initial values  
⇒ nonlinear solver can have problems.

Solution: Penalty relaxation in a multi-level solver

# Numerical Formulation Issues

Assign equation numbers; Determine storage for K;

Repeat (\* time increment loop \*)

| Repeat (\* outer level solver loop -- aka localization loop \*)

| | Update K & R

| | Reset penalty number to large value when entering a new element, else 0

| | ...

| | Repeat (\* penalty reduction loop \*)

| | | Relax the penalty number

| | | Reset line search

| | | Repeat (\* nonlinear iteration loop \*)

| | | | Factor K

| | | | Forward eliminate & back substitute to obtain  $dU_{iter}$

| | | | Repeat (\* line search loop \*)

| | | | | Search line for  $dU_{iter}$

| | | | | ...

| | | | | Until  $\|R\| < R_{toler}$  OR  $\|R\| < \|R_{old}\|$

| | | | ...

| | | | Until  $\|R\| < R_{toler}$

| | | Until penalty number is reduced to zero

| | ...

| | Until localization is complete

| |  $U := U + dU_{step}; \quad dU_{step} := 0; \quad U_{old} := U$

| ...

Until time stepping is complete

## Preview of Results

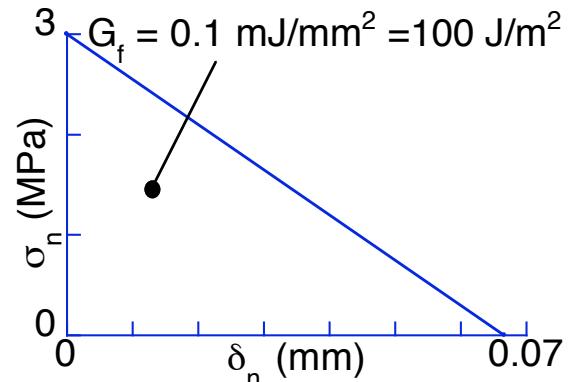
- Mode-I Model Problems -- emphasis on reproducing the cracking history
  - Results for aligned meshes
  - Results for skewed meshes
- Extensions for “mixed mode”
- Mixed mode examples

quasibrittle

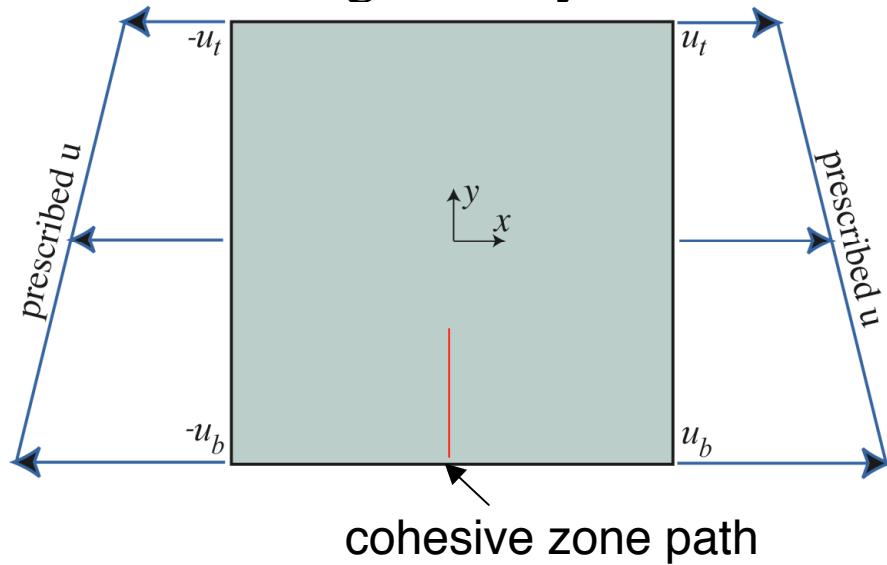
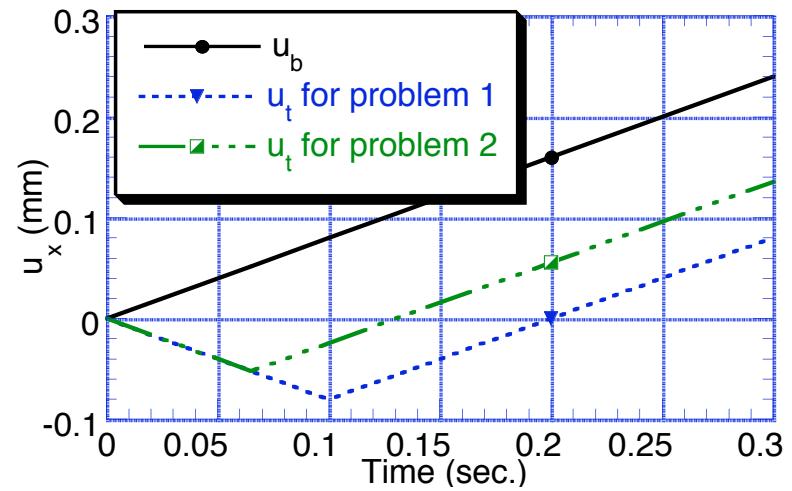
# Initial Simple Test Problems

## □ Concrete test problems

- relevant to HDBT
- domain 1 m x 1 m
- process-zone size  $\sim O(250 \text{ mm})$
- representative concrete tensile properties  
(except for simplified linear softening)
- mode I quasistatic crack propagation



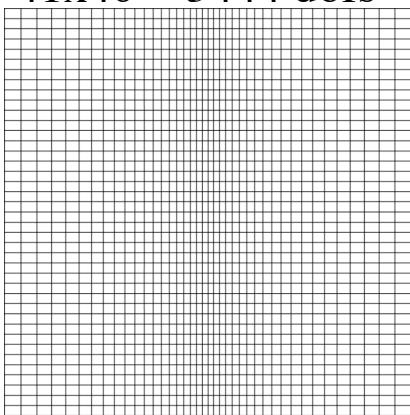
## Problem geometry



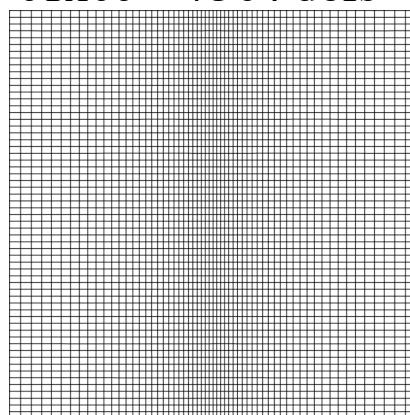
# Spacial Discretizations

- Fine FEM meshes – accurate reference solution

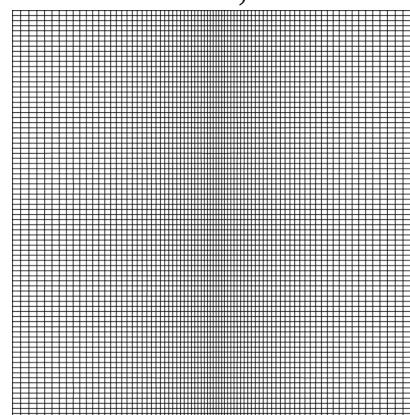
41x40 ~ 3444 dofs



61x60 ~ 7564 dofs

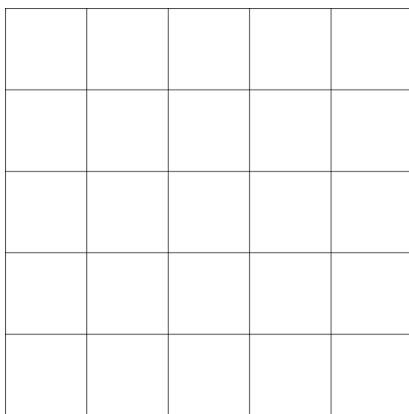


81x80 ~ 13,284 dofs

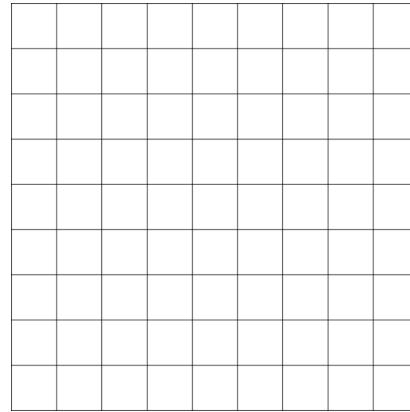


- XFEM – Aligned Meshes

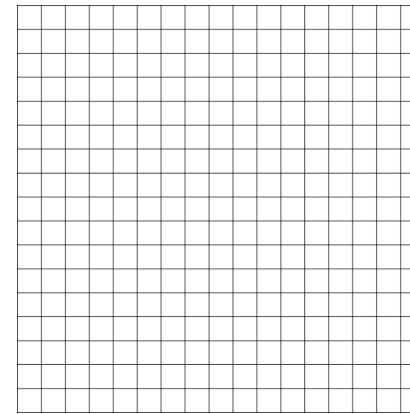
5x5 ~ 72+36 dofs



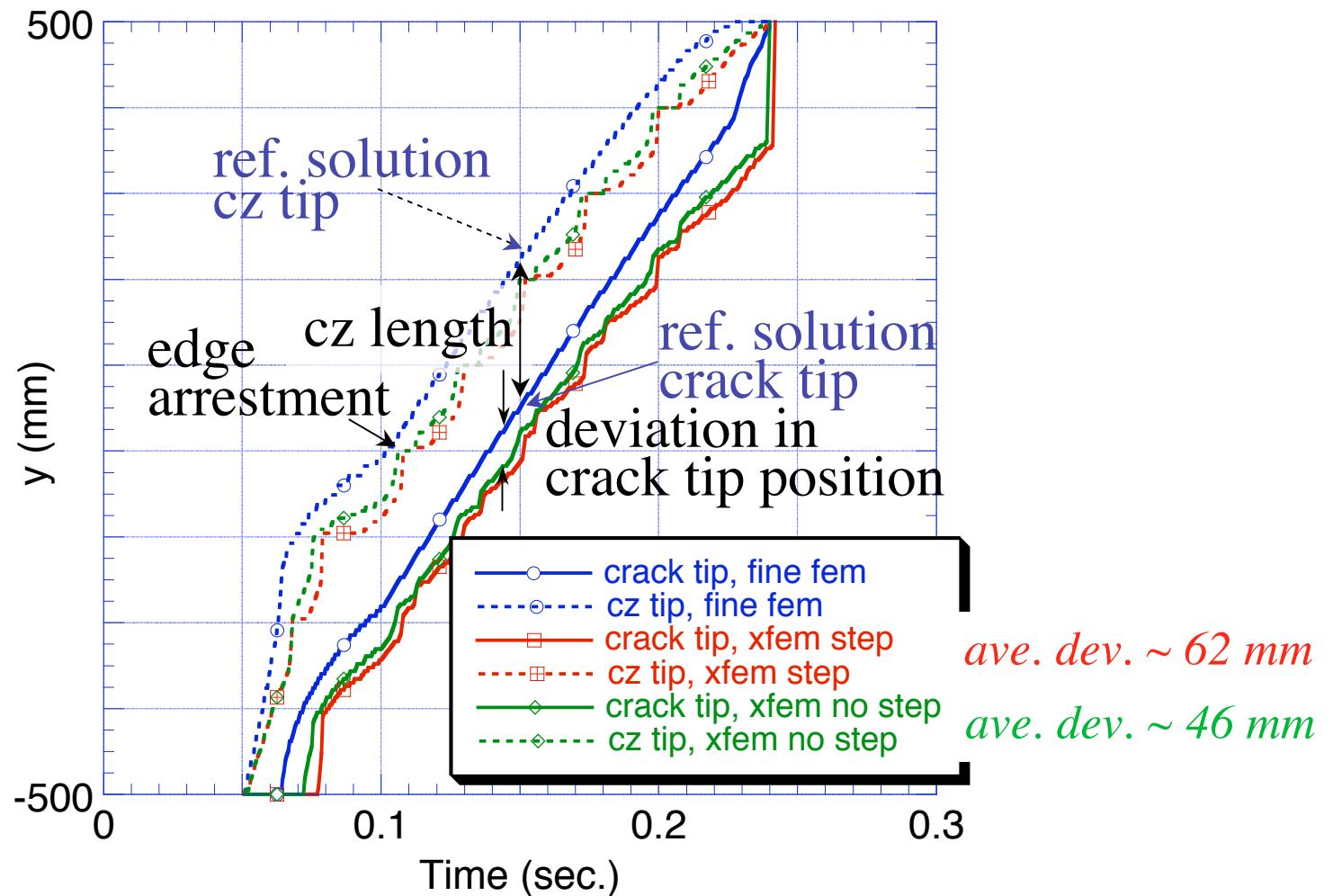
9x9 ~ 200+52 dofs



17x17 ~ 648+88 dofs



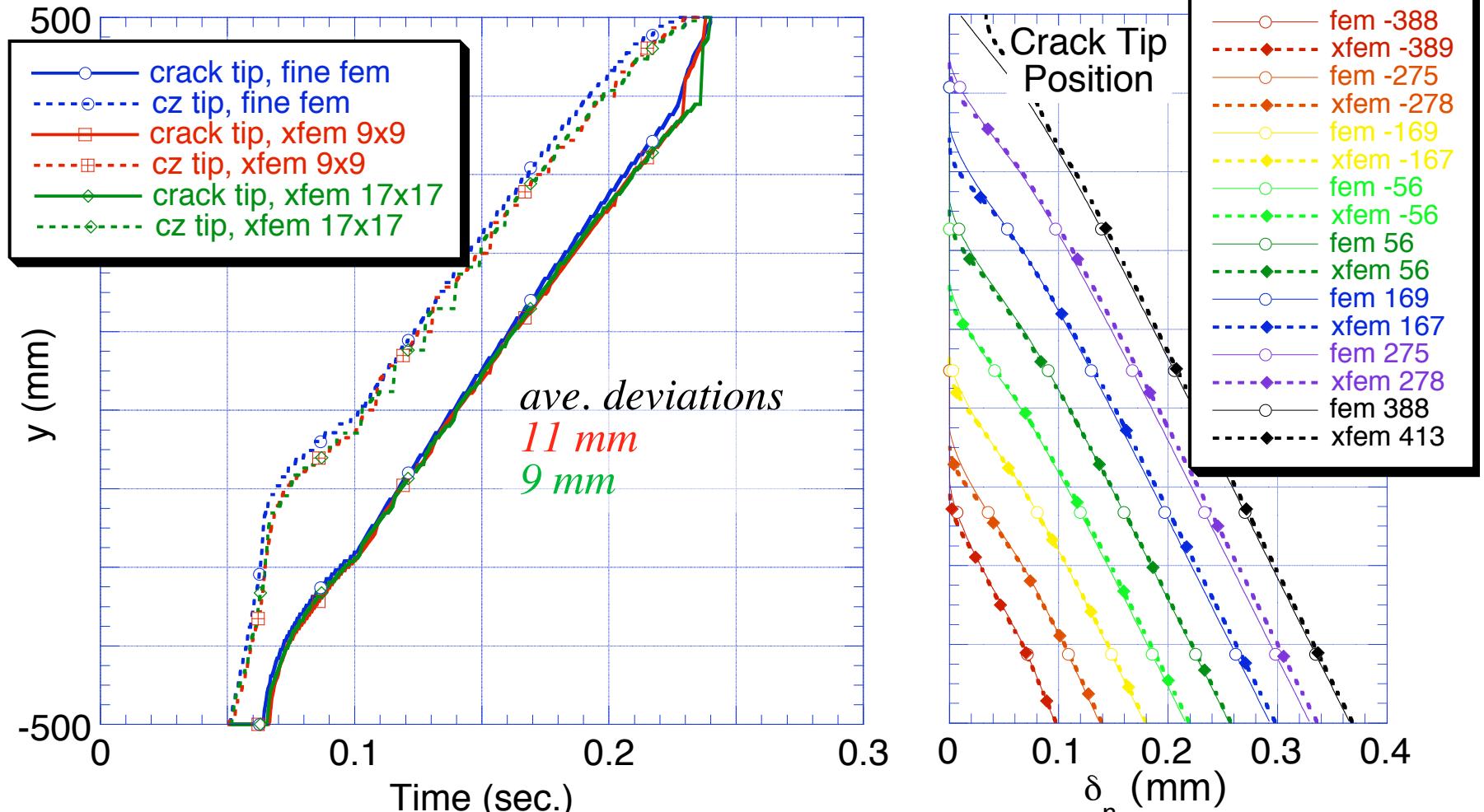
## Extremes Histories



$9 \times 9$  mesh,  $c = 125$  mm

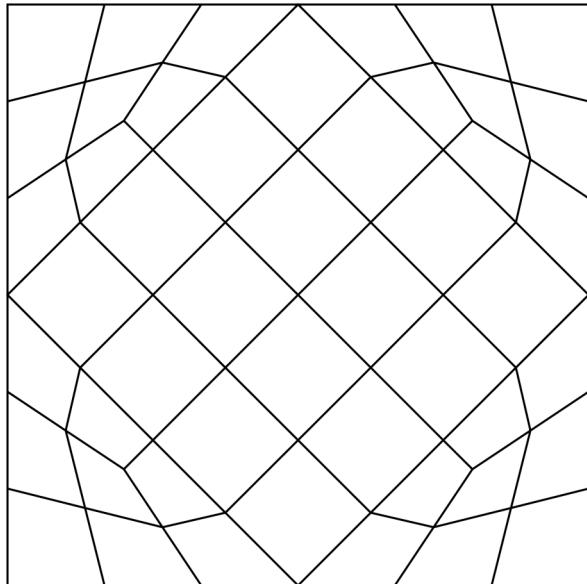
Transition to step is not necessary.

# Extremes Histories and Crack Profiles

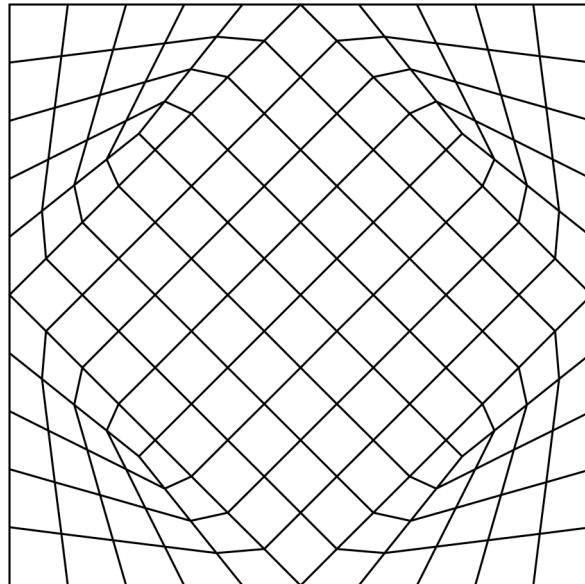


$$c = 50 \text{ mm}$$

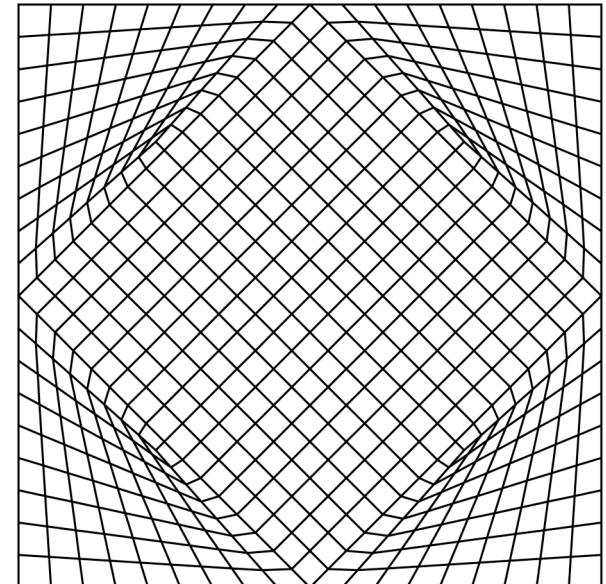
## XFEM Skewed Mesh Tests



4x4 @ 45°

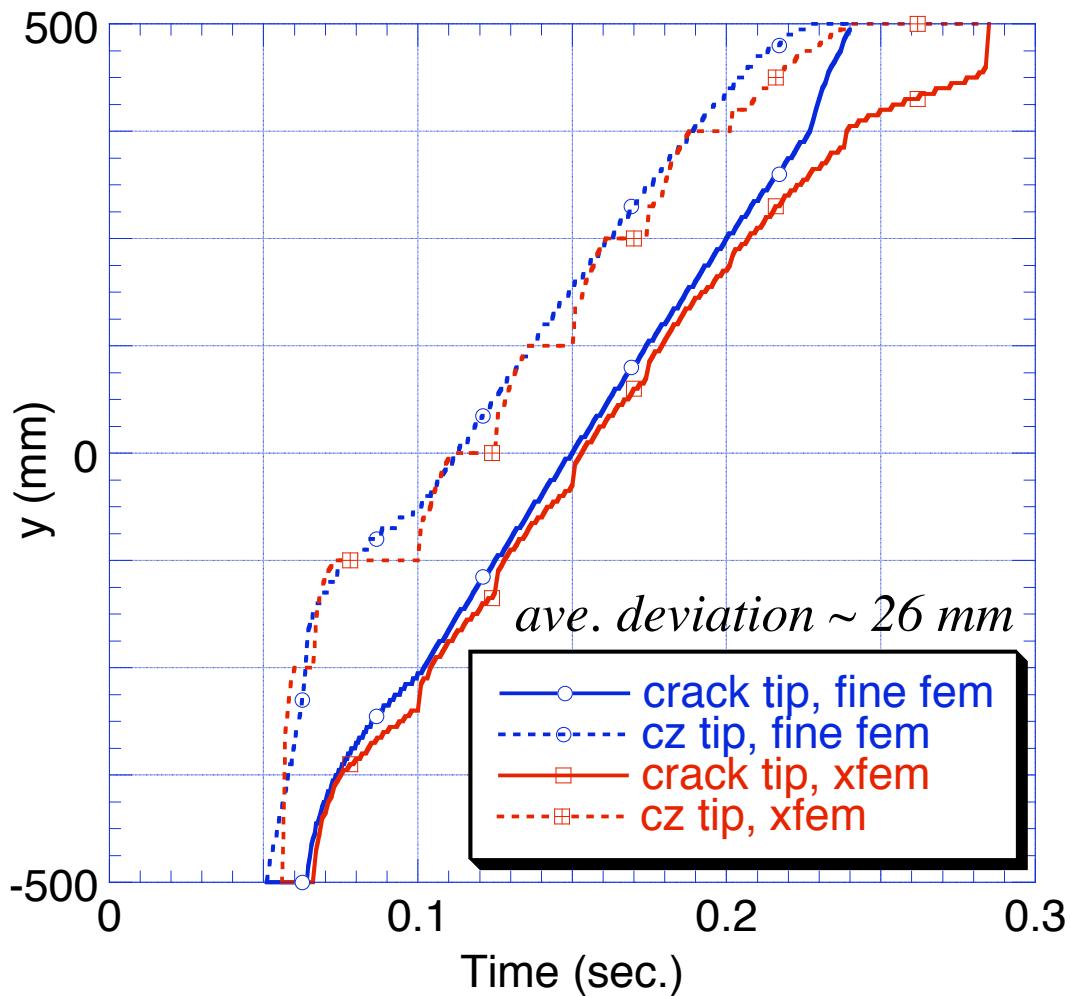
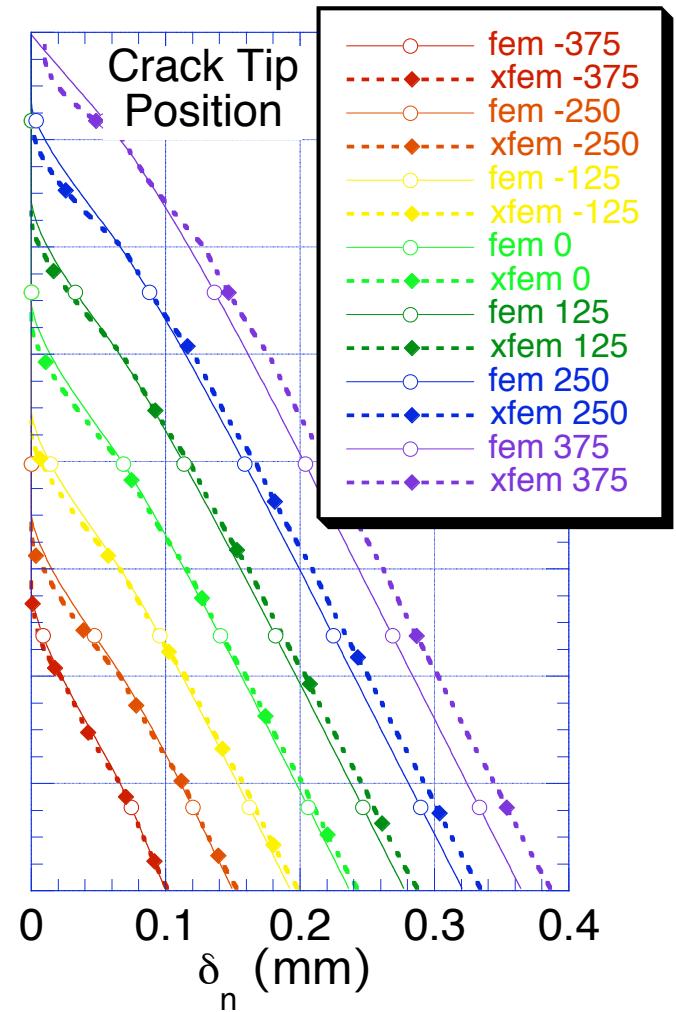


8x8 @ 45°



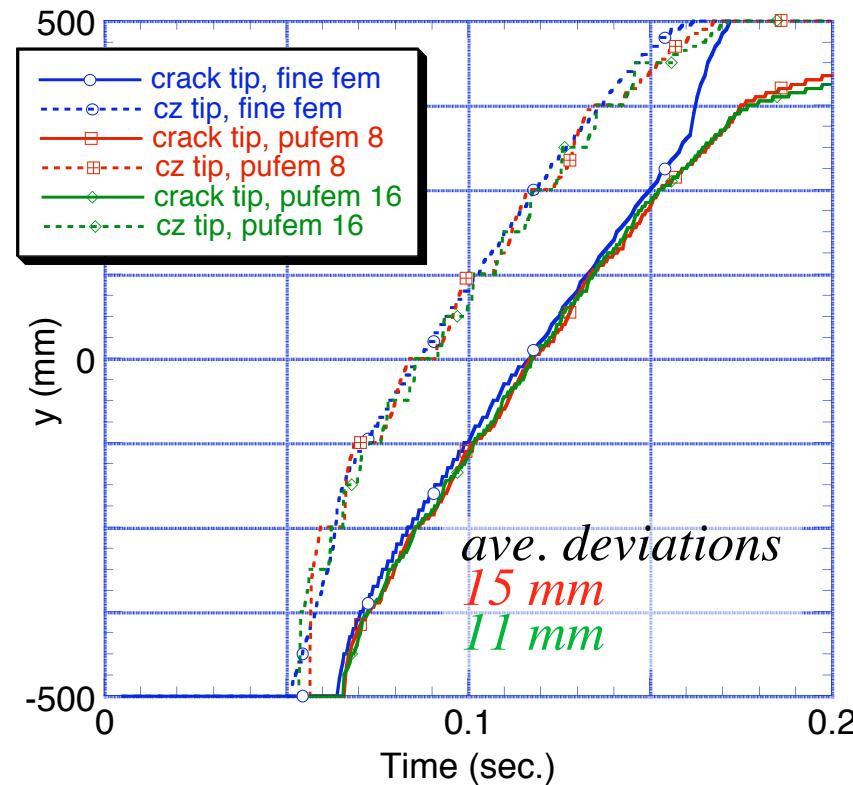
16x16 @ 45°

# Extremes and Crack Profiles



*8x8 mesh,  $c = 75$  mm*

## Extremes Histories



*Problem 2*  
 $c = 75 \text{ mm}$

# Crack Propagation and Direction Calculations

“Stress smoothing” used when a crack enters a new element

- Deviation between a polynomial approximation and the FEM approximation

$$d(x) = \sigma^p(x) - \sigma^{fem}(x) = c_0 + c_1 x + c_2 y + \dots - \sigma^{fem}(x)$$

- Weighting function

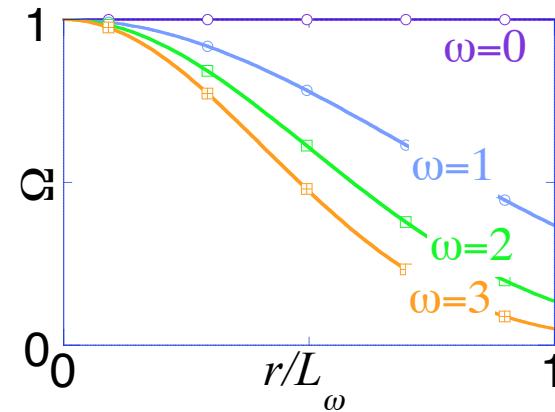
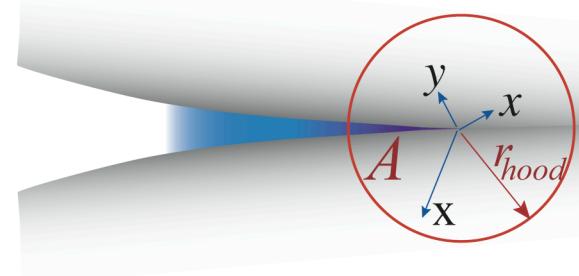
$$\Omega(x) = \exp\left[-\omega\left(\frac{r}{L_\omega}\right)^2\right]$$

- Residual measure

$$R^2 = \int_A [\Omega(x) d(x)]^2 dA$$

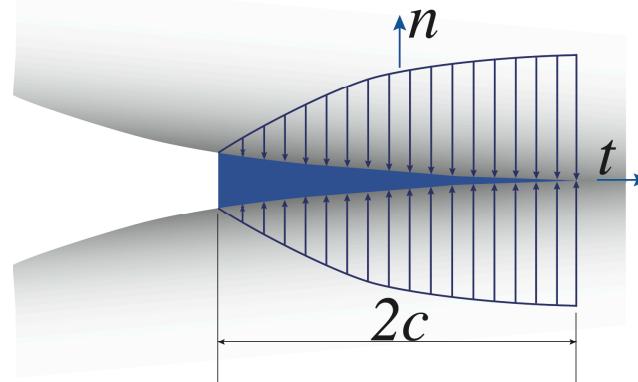
- Using the Gauss point values  $\rightarrow$  weighted least squares solution

$$R^2 \approx \sum_{i=1}^n [\Omega(x_i) d(x_i)]^2 |J_i| w_i^{gauss}$$



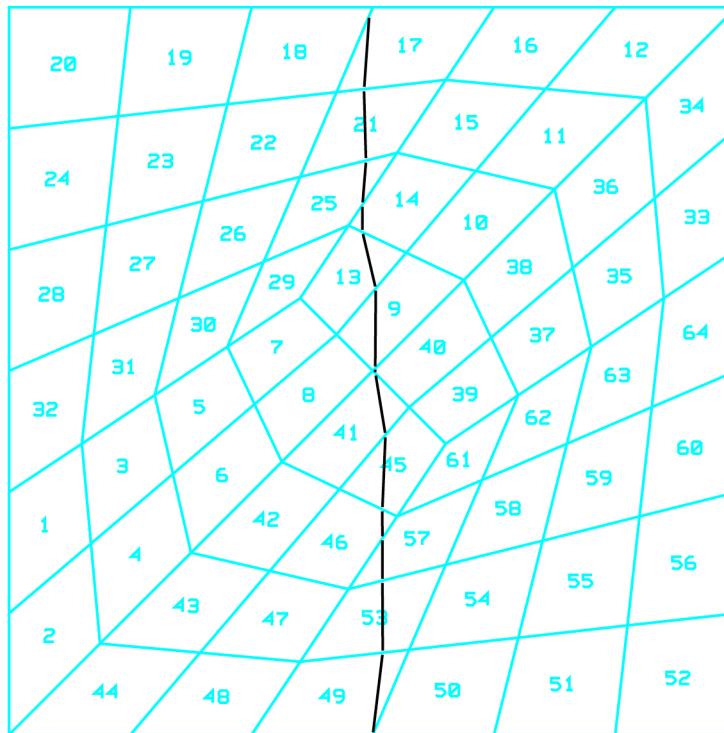
## Cohesive Zone Insertion

- In theory insertion occurs when  $\sigma_{max} > \sigma_t$
- Issue: residual error between continuum and cohesive zone



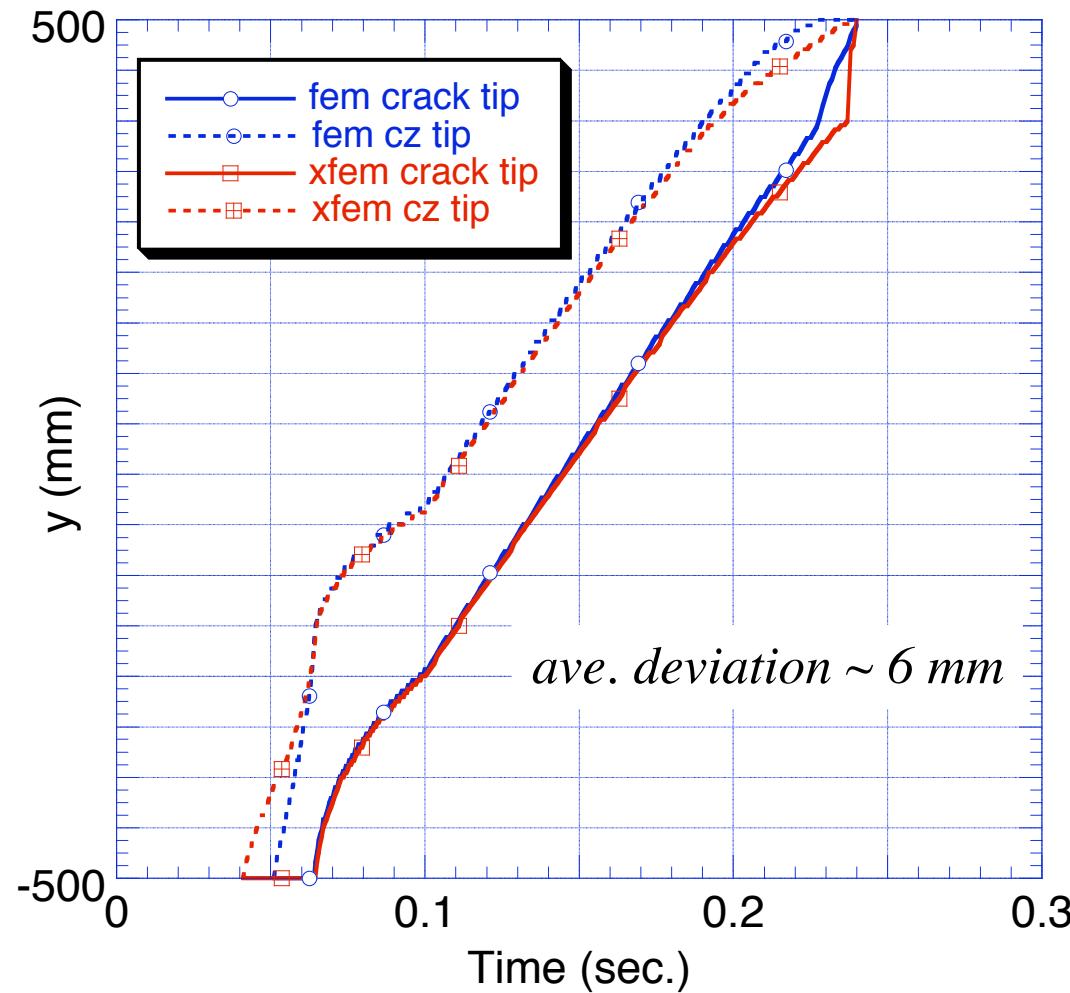
- Numerical criterion:  $\sigma_t > \sigma_{max} > \sigma_{cz}$

# Model Problem with Arbitrary Intersects



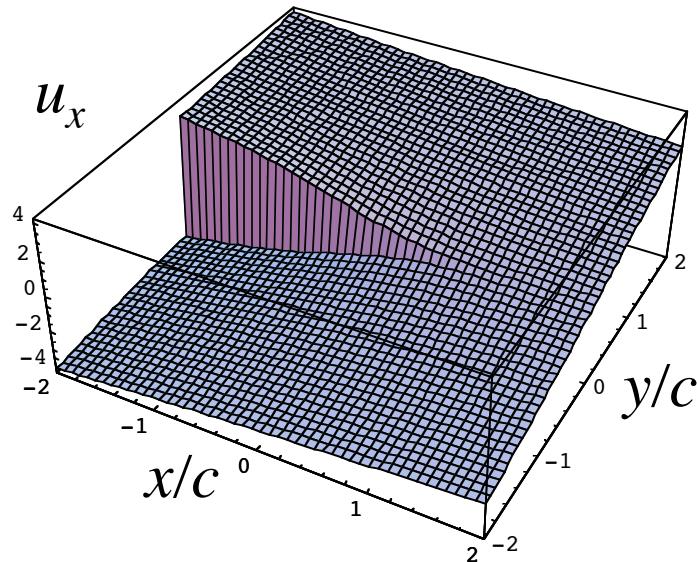
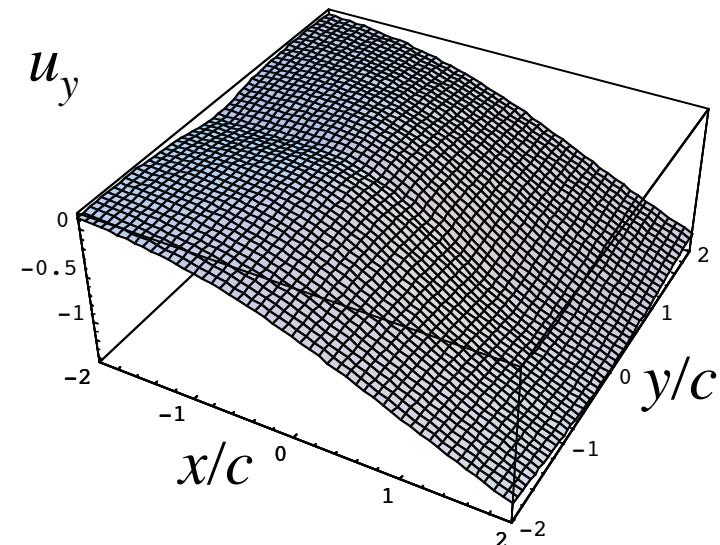
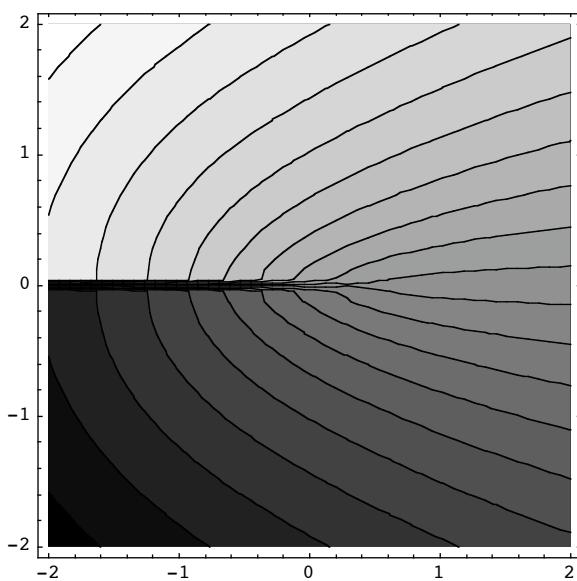
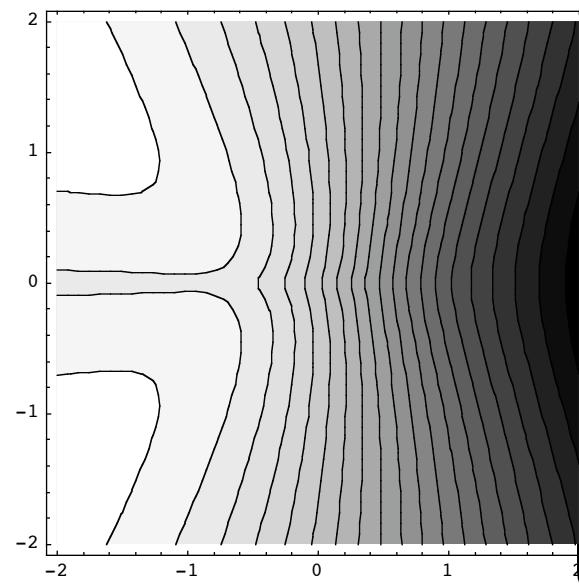
# Model Problem with Stress Smoothing

17x17 Aligned mesh



# Mode II Enrichment Functions

Based on Zhang & Deng (2007)

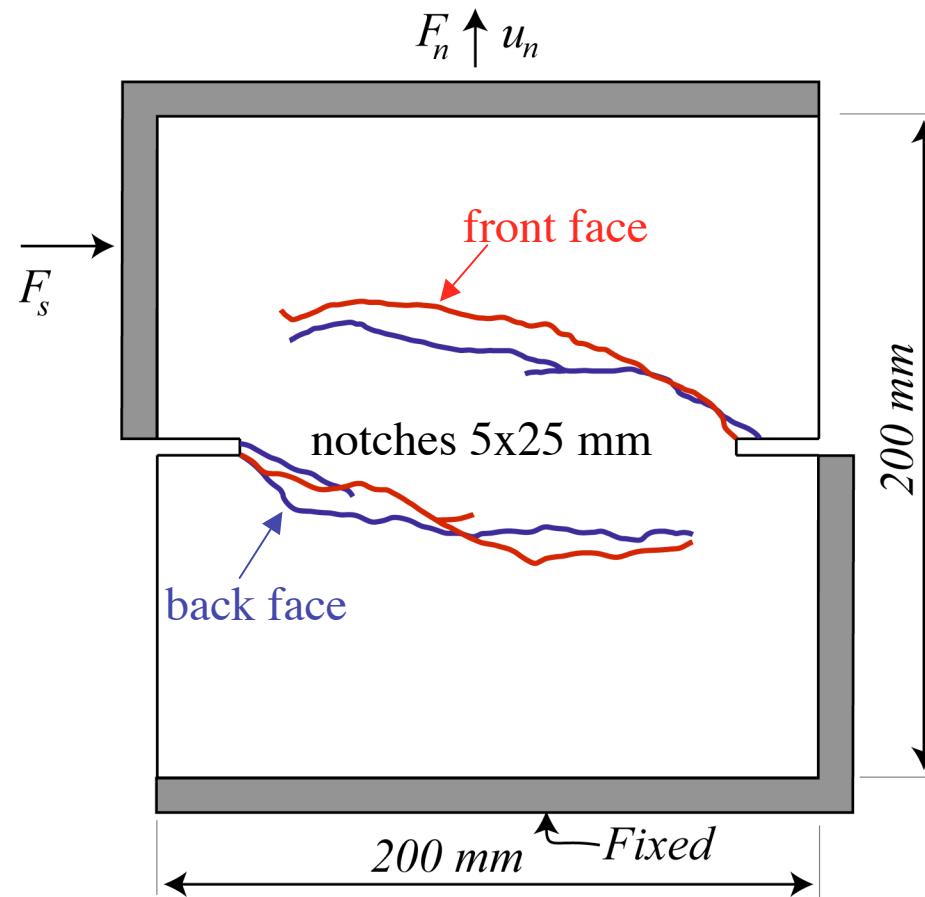


# Mixed Mode Fracture Problem

Double edge-notched specimen (Nooru-Mohamed 1992)  
and experimental crack paths  
Concrete square, 50 mm thick

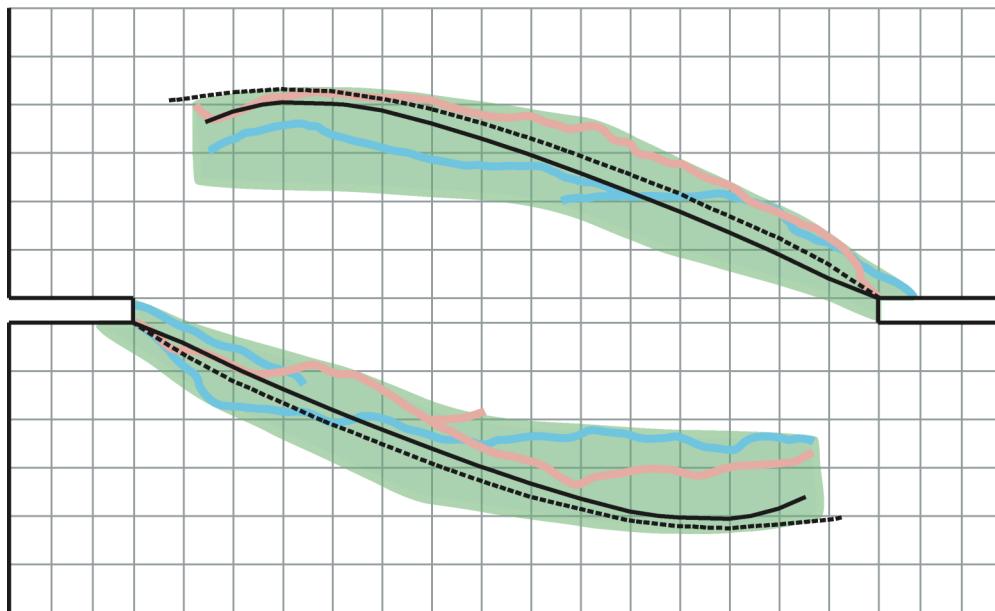
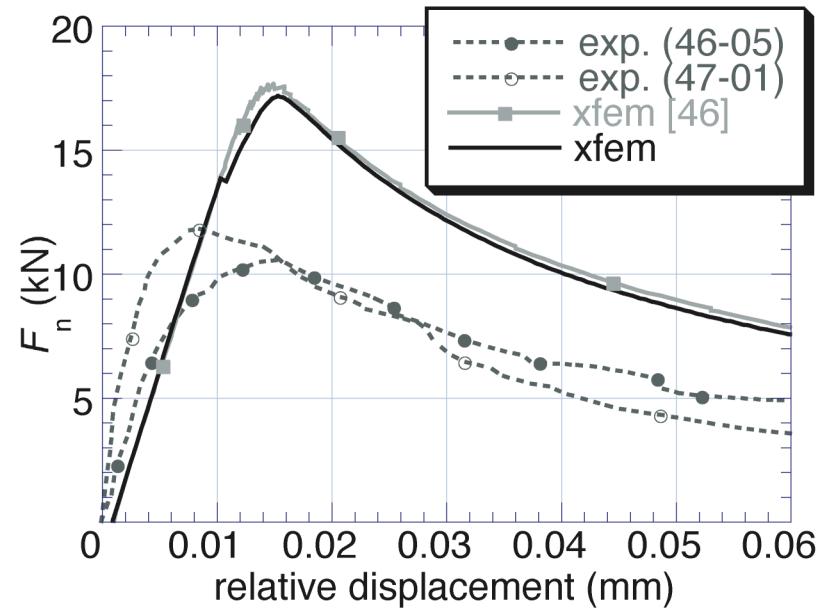
Load Path 4b:

$$F_s = 10 \text{ kN}$$



# Mixed Mode Fracture Problem

XFEM simulation results for test give crack paths within the experimental scatter.

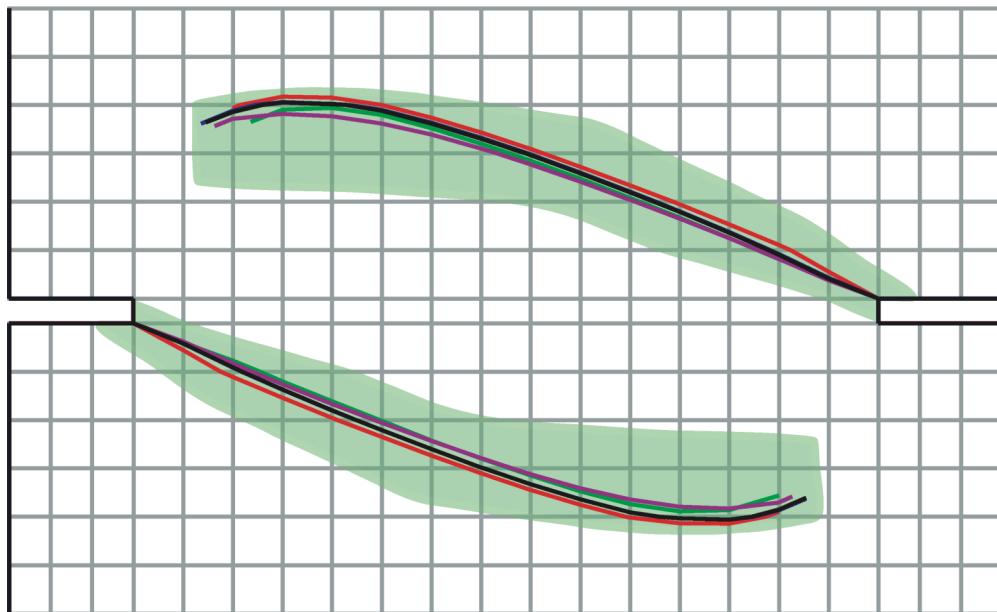
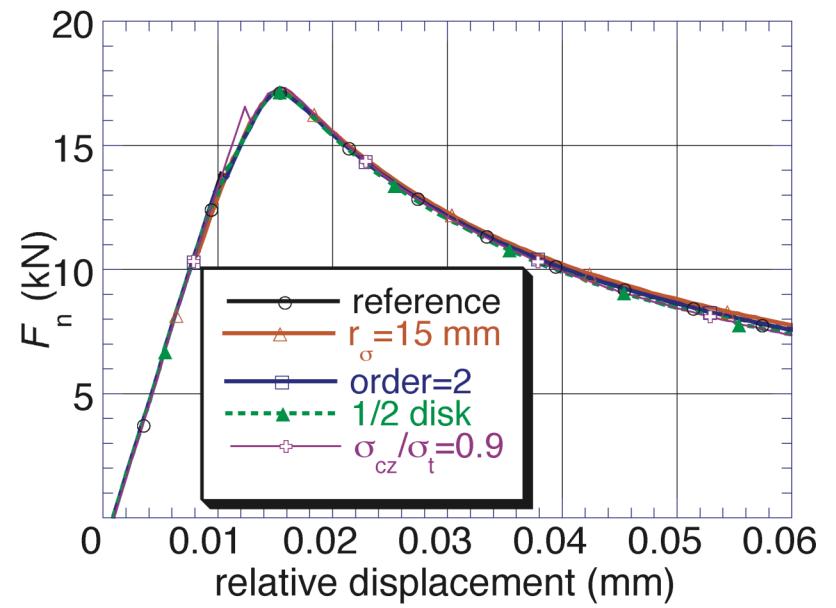


$r_\sigma = 20$  mm  $\sim 2h$ ,  $n=3$ ,  $\omega=0$ , full-disk,  $\sigma_{cz}/\sigma_t = 0.8$

[46] Meschke & Dumstorff (2007)

# Mixed Mode Fracture Problem

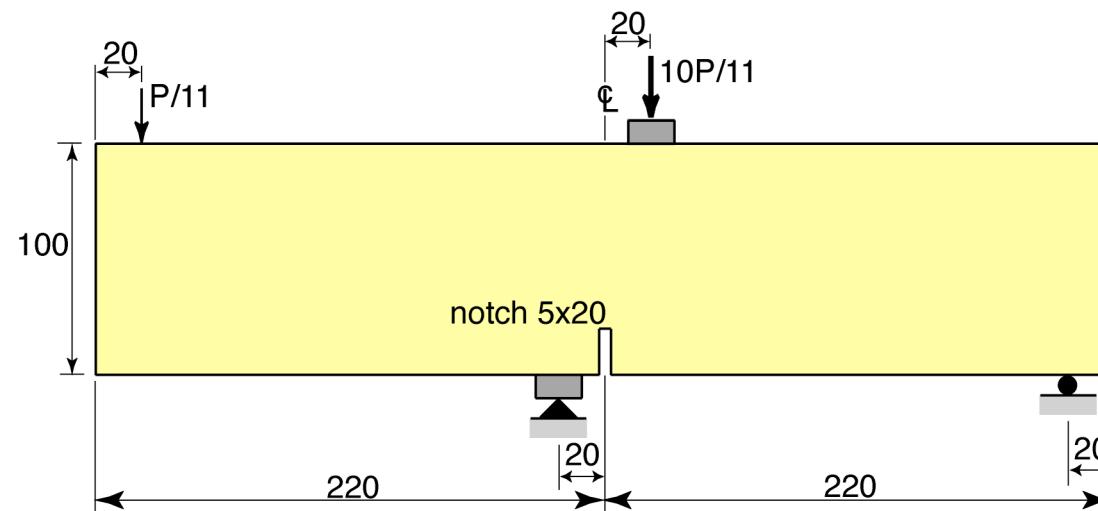
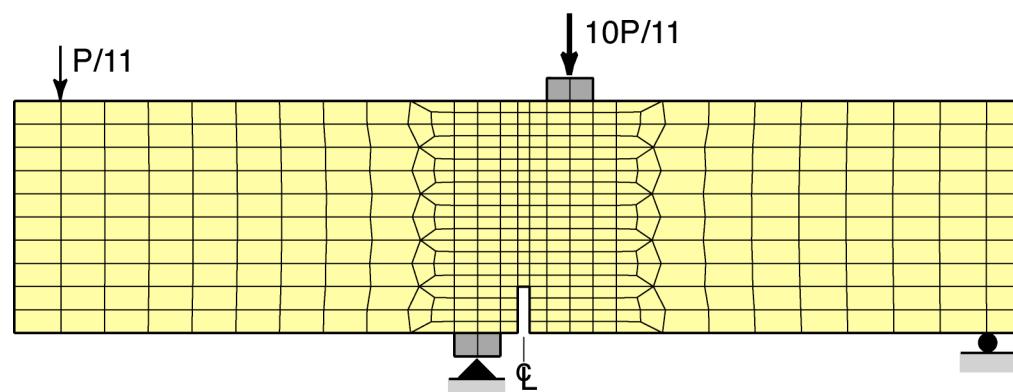
XFEM simulation results varying several parameters.



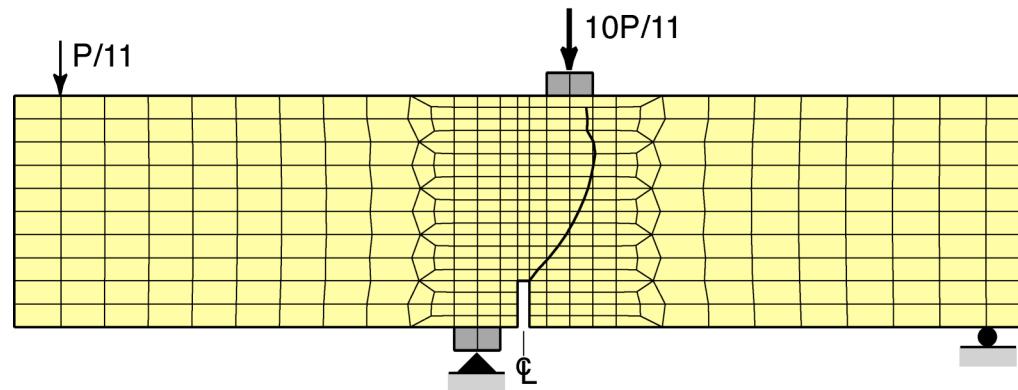
# Single Edge-Notched Beam Specimen

Experimental work of Schlangen (1993)

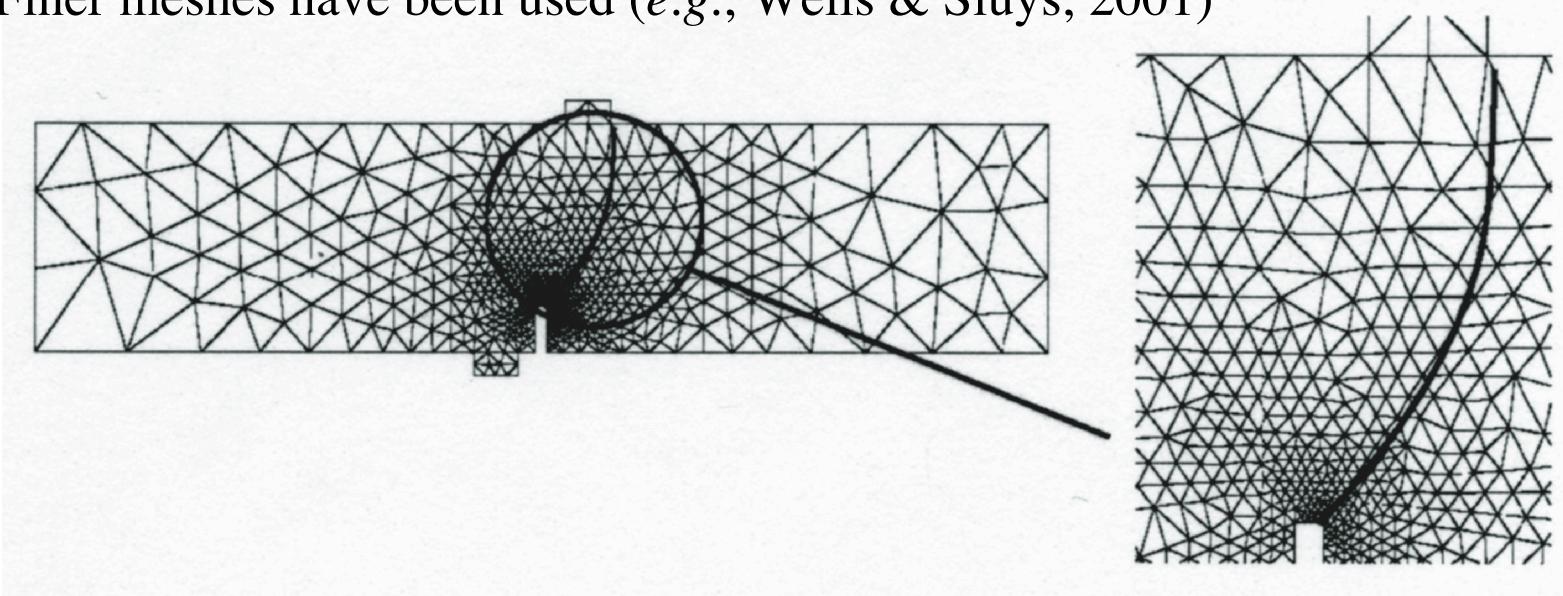
units ~ mm, thickness = 100 mm



# Single Edge-Notched Beam Specimen



Finer meshes have been used (*e.g.*, Wells & Sluys, 2001)



## Observations & Conclusions

- No free-lunch -- algorithm complexity  $\uparrow$  with analytical enrichment
- Analytically enriched XFEM for cohesive zone modeling of localization has potential.
- Not the best approach for every application
- Several open issues, *e.g.:*
  - Value of  $c$  and its possible adjustment
  - Can the accuracy be improved?
  - How useful is analytical enrichment for materials that are:
    - anisotropic?
    - Inhomogeneous?
    - inelastic?
    - amenable to finite deformations?
  - Could the method facilitate stochastic FEA of fracture?
  - How difficult is this to incorporate into a production code?

# Questions?

A large shark, likely a tiger shark, is swimming gracefully over a sandy ocean floor. In the background, several coral reefs with long, thin, greenish-brown branches are visible. The water is a clear, light blue.

Questions?