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Study Introduction

Objective: A “valid” means of
modeling material localization in
finite element analyses.

Goals:
 applicable to cohesive zone

modeling => strong discontinuity
 arbitrary orientation of

discontinuity relative to mesh
 “continuous discontinuity”

Approach: Develop an
extended FEM (XFEM) that
allows the displacement field
to be enriched in the
neighborhood of a strong
discontinuity.

 can represent a discontinuity
without mesh refinement

 can potentially represent the
gradients near a surface of
localization without mesh
refinement



Background

Initial related studies:
 Melenk and Babuska (1996)

• theory for Partition of Unity FEM (PUFEM)

 Belytschko and Black (1999)
• developed PUFEM for LEFM →  XFEM
• used asymptotic displacement fields near a crack

tip for enrichment



Some Recent Related Studies
XFEM/PUFEM-Cohesive Zone Studies
 Wells and Sluys (2001)
 Moes and Belytschko (2002)
 Zi and Belytschko (2003) -- tip function addresses tip
   position but not the field
 Xiao and Karihaloo (2006) -- asymptotic fields
 …

 GFEM
 Strouboulis, Copps, Zhang, and Babuska (2000, 2001, 2003)
   numerical enrichment functions -- handbook functions



Future Work

Past WorkPast Work

History of Study
 ARL (2000-2001) -- localization in armor and penetrators

• general formulation and algorithms

 SNL
 HDBT/CSRF

• enrichment functions and algorithms
 ESRF -- assessment of PUFEM/XFEM for fracture

• analytical enrichment functions, enrichment schemes, and mixed-mode
• partial implementation in Tahoe

 LDRD -- fatigue cracking
• stress smoothing and limits of enrichment functions

 ESRF -- ductile fracture
• formulation for finite deformations
• implementation in Tahoe



PUFEM Displacement Field Enrichment

 Standard FEM

cohesive zone

enriched elements

Global displacement approximations

Element displacement approximations
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“My Path to Enrichment”
“I am not discouraged, because every wrong attempt discarded is another step forward.
I have not failed.  I’ve found 10,000 ways that won’t work.”       – Thomas Edison

Formulated simple series that incorporated
a discontinuity.

Formulated simple functions that had key
features of accurate numerical results.

Analytically derived enrichment functions
based upon the Muskhelishvili formalism.

u2

ε22



Enrichment Functions: An Analytical Source
Muskhelishvili formalism

Hong & Kim (2003) obtained a series solution to the inverse problem
Zhang & Deng (2007) obtained “asymptotic solutions”
– both assumed linear elastic isotropic material (except for cohesive zone)

Additional analysis was used to:
verify the proposed solutions
extend them for field variables required by the XFEM
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  Another set of analytic functions simplify ui,j and σij expressions
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 Displacements



Enrichment Functions: An Analytical Source

x/c

Qualitative comparison of σ22 with fine-scale FEA
 Analytical ~ First terms in series for Hong & Kim solution
 “Fine-scale” FEA ~ results for finely meshed FEA with interface el.

y/c

Analytical Fine-scale FEA

Note: problems differ and CZ sizes are not to the same scale.

Cohesive zone length = 2c



Enrichment Functions: An Analytical Source

Zhang & Deng (2007) solve the problems in terms of
elliptic coordinates (ω)

! 
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ω1

ω2

Symbolically the inverse map is give by

! 

" = cosh#1 z c( )

complex analysis leads to more
forms for both of these.
They adopt a Westergard stress function where

! 

" z( ) = Z z( )

! 

" z( ) = Z z( )

! 

Z z( ) = "
µB # " 2( )e#$ z( ) " #e

#"2( )$ z( )[ ]
2# # " 2( )

They are argue that λ=-1/2
Eigenvalue -> asymptotic
solution.



Mode-I Enrichment Functions
 Based upon the asymptotic solutions of Zhang & Deng
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Neighborhood Enrichment
Aka the Mr. Roger’s modification

Enriches additional nodes within a user-
defined neighborhood of the tip.

Done each time the tip enters a new element.

r = 0 r = 63 r = 126



Numerical Formulation Issues

 Key solver issue: new DOFs that result from adding
enrichment to nodes do not have a good initial values
⇒ nonlinear solver can have problems.

 Solution: Penalty relaxation in a multi-level solver

 Element Integration



Numerical Formulation Issues
Assign equation numbers;   Determine storage for K;
Repeat (* time increment loop *)
|   Repeat (* outer level solver loop -- aka localization loop *)
|   |   Update K & R
|   |   Reset penalty number to large value when entering a new element, else 0
|   |   …
|   |   Repeat (* penalty reduction loop *)
|   |   |   Relax the penalty number
|   |   |   Reset line search
|   |   |   Repeat (* nonlinear iteration loop *)
|   |   |   |   Factor K
|   |   |   |   Forward eliminate & back substitute to obtain dUiter
|   |   |   |   Repeat (* line search loop *)
|   |   |   |   |   Search line for dUiter
|   |   |   |   |   …
|   |   |   |   Until (||R||<Rtoler) OR (||R||<||Rold||)
|   |   |   |   …
|   |   |   Until ||R||<Rtoler
|   |   Until penalty number is reduced to zero
|   |   …
|   Until localization is complete
|   U:= U + dUstep;   dUstep:= 0;   Uold:= U
|   …
Until time stepping is complete



Preview of Results

 Mode-I Model Problems -- emphasis on
reproducing the cracking history
 Results for aligned meshes
 Results for skewed meshes

 Extensions for “mixed mode”
 Mixed mode examples

quasibrittle



Initial Simple Test Problems
 Concrete test problems

• relevant to HDBT
• domain 1 m x 1 m
• process-zone size ~ O(250 mm)
• representative concrete tensile properties
  (except for simplified linear softening)
• mode I quasistatic crack propagation

cohesive zone path

Problem geometry

0

3

0 0.07

sigma-n

!
n
 (

M
P

a
)

"
n
 (mm)

G
f
 = 0.1 mJ/mm2 =100 J/m2

 
-0.1

0

0.1

0.2

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

u
b

u
t
 for problem 1

u
t
 for problem 2

 u
x
 (

m
m

)

Time (sec.)  



Spacial Discretizations
 Fine FEM meshes – accurate reference solution

5x5 ~ 72+36 dofs 9x9 ~ 200+52 dofs 17x17 ~ 648+88 dofs
 XFEM – Aligned Meshes

41x40 ~ 3444 dofs 81x80 ~ 13,284 dofs61x60 ~ 7564 dofs



Extremes Histories

9x9 mesh, c = 125 mm
Transition to step is not necessary.
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Extremes Histories and Crack Profiles

c = 50 mm
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XFEM Skewed Mesh Tests

8x8 @ 45° 16x16 @ 45°4x4 @ 45°



Extremes and Crack Profiles

8x8 mesh, c = 75 mm
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Extremes Histories

Problem 2
c = 75 mm
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 Deviation between a polynomial approximation and the FEM approximation

 Weighting function

 Residual measure

 Using the Gauss point values → weighted least squares solution

Crack Propagation and Direction Calculations
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“Stress smoothing” used when a crack enters a new element



 

Cohesive Zone Insertion

 In theory insertion occurs when σmax>σt

 Issue: residual error between continuum and
cohesive zone

 Numerical criterion: σt >σmax>σcz



Model Problem with Arbitrary Intersects



Model Problem with Stress Smoothing
17x17 Aligned mesh
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Mixed Mode Fracture Problem
Double edge-notched specimen (Nooru-Mohamed 1992)
and experimental crack paths
Concrete square, 50 mm thick

front face

back face

Load Path 4b:
     Fs = 10 kN

notches 5x25 mm



Mixed Mode Fracture Problem
XFEM simulation results for test give crack
paths within the experimental scatter.

rσ= 20 mm ~ 2h, n=3, ω=0, full-disk, σcz/σt = 0.8

[46] Meschke & Dumstorff (2007)



Mixed Mode Fracture Problem

XFEM simulation results varying several parameters.



Single Edge-Notched Beam Specimen
Experimental work of Schlangen (1993)
units ~ mm,  thickness = 100 mm



Single Edge-Notched Beam Specimen

Finer meshes have been used (e.g., Wells & Sluys, 2001)



Observations & Conclusions
 No free-lunch -- algorithm complexity ↑ with

analytical enrichment
 Analytically enriched XFEM for cohesive zone

modeling of localization has potential.
 Not the best approach for every application
 Several open issues, e.g.:

 Value of c and its possible adjustment
 Can the accuracy be improved?
 How useful is analytical enrichment for materials that are:

• anisotropic?
• Inhomogeneous?
• inelastic?
• amenable to finite deformations?

 Could the method facilitate stochastic FEA of fracture?
 How difficult it this to incorporate into a production code?



Questions?



Questions?


