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Introduction

* No two devices / parts / components behave identically.
* Uncertainty in component behavior has several sources.
* Most components are made of materials.
* Most materials have internal (micro-)structures.
* Processing imparts microstructure variations.

- Processing is not truly repeatable.

- Process conditions are not uniform (in space / time).

- Most materials naturally form inhomogeneously.
* Microstructures evolve with time (i.e. “age”).
* Microstructure variations produce property variations.
* Materials property variations lead to component

property variations.

* No two devices / parts / components behave identically.
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Outline

* Example of ongoing “component QMU” research
* Examples of microstructure-induced variability:
- Inhomogeneity in materials microstructures
- Variability in materials properties
* Examples of “toy” simulation problems:
- Polycrystalline elastic Si cantilever
- Two-phase conductor
* Generalized simulation procedure

* Summary



QMU in Component Performance

Density variations in EF-AR20 epoxy foam:
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Variability in Failure Strength of PolySi

Surface flaws produce variability in failure behavior:
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Microstructure Variations in Tool Steels

How To Tell
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Pure Aluminum Ingots

Nonuniform solidification produces large inter- and intra-
ingot microstructure (and composmonal) varlatlons
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Forged Copper Bar

More microstructure variations within a single part:

L.N. Brewer, B.L. Boyce, and A.C. Kilgo, private communication.



HAZ* in Molybdenum Welds

Impurities dramatically affect weld microstructures:

Pure Mo w/ Oxide Particles

C.V.Robino and E.A. Holm, private communication. * Heat-Affected Zone



Hall-Petch Effect in Metals

The yield strength of a metal depends on its grain size:
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Wear of Nickel Single Crystals
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Friction of Nickel Single Crystals

Crystallographically-sensitive wear leads to lubrication:
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Example | A: Elastic Polycrystal
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Example |IB: Elastic Cantilever
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Example 2: Two-Phase Conductor
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Generalized Analysis Procedure
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Challenges

* Translating microstructural statistics to the continuum
scale is not usually so straightforward:

- Microscale Cond. @ Macroscale Cond. = trivial

- Microscale Plasticity — Fatigue Life = hard
* Microstructural length scale must correspond to
continuum domain resolution:

- Statistics are scale- (i.e. population-) dependent.

- Potential source of computational limitation.
* Microstructural features can act in two ways:

- Collectively (e.g. texture — deformation).

- Critically (e.g. flaws — failure, percolation — cond.).




Summary

* No two devices / parts / components behave identically.
* Most materials have internal (micro-)structures.
* Processing and aging impart microstructure variations.
* Microstructure variations produce property variations.
* Materials property variations lead to
significant uncertainty in component performance
(depending on scales and population sizes).
* Materials property statistics (measured or modeled)

are needed to inform robust “performance QMU.”



Thanks for Your Attention

From “Metallurgy of the RMS Titanic,” NIST Internal Report 6118, by Tim Foecke:

Conclusions
* The steel used to construct the RMS Titanic’s hull, though adequate in

strength, possessed a very low fracture toughness at ice water temperatures
* The low toughness was likely due to a complex combination of factors, including

low Mn content,a low Mn/C ratio, a large ferrite grain size and large
and coarse pearlite colonies.

* There is evidently a large variation in properties among the 2000 plates that
made up the hull of Titanic. This conclusion is based on the very different
microstructures and fracture behavior observed in the two plate samples
recovered to date. This is a normal result of the variability of feedstock
and rolling conditions in turn-of-the-century ironworks.

* The microstructure of the rivets that evolved during their being driven into place,
with the slag stringers oriented perpendicular to the tensile axis, may have been a
direct contributor to the type and distribution of damage to the hull. This aspect is
under further investigation.

* Given the knowledge base available to engineers at the time of the ship’s
construction, it is the author’s opinion that no apparent metallurgical §
mistakes were made in the construction of the RMS Titanic. e




