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Previous generations of scientists would make tremendous efforts to simplify
non-tractable problems and generate simpler models that preserved the fundamental
physics. This process involved applying assumptions and simplifications to reduce
the complexity of the problem until it reached a solvable form. Each assumption and
simplification was chosen and applied with the intent to preserve the essential physics
of the problem, since, if the core physics of the problem were eliminated, the simplified
model served no purpose. Moreover, if done correctly, solutions to the reduced model
would serve as useful approximations to the original problem. In a sense, solving the
simple models laid the ground-work for and provided insight into the more complex
problem. Today, however, the affordability of high performance computing has essentially
replaced the process for analyzing complex problems. Rather than “building up” a
problem by understanding smaller, simpler models, a user generally relies on powerful
computational tools to directly arrive at solutions to complex problems. As computational
resources grow, users continue trying to simulate new, more complex, or more detailed
problems, resulting in continual stress on both the code and computational resources.
When these resources are limited, the user will have to make concessions by simplifying
the problem while trying to preserve important details. In the context of the Monte Carlo
N-Particle radiation transport simulation tool, simplifications typically come as reductions

in geometry, or by using variance reduction techniques. Both approaches can influence the
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physics of the problem, leading to potentially inaccurate or non-physical results. Errors
can also be introduced as a result of faulty input into a computational tool: something as
simple as transposing numbers in a tally input can result in incorrect answers.

In this paradigm, reduced complexity computational and analytical models still have
an important purpose. The explicit form of an analytic solution is arguably the best way
to understand the qualitative properties of simple models [1]. In contrast to “building
up” a complex problem through understanding simpler problems, results from detailed
computational scenarios can be better explained by “building down” the complex model
through simple models rooted in the fundamental or essential phenomenology. Simplified
analytic and computational models can be used to 1) increase a user’s confidence in the
computational solution of a complex model, 2) confirm there are no user input errors, and
3) ensure essential assumptions of the simulation tool are preserved.

This process of using analytic models to develop a more valuable analysis of
simulation results is named the results assessment methodology. The utility of the
results assessment methodology and a complimentary sensitivity analysis is exemplified
through the analysis of the neutron flux in a dry used fuel storage cask. This application

was chosen due to current scientific interest in used nuclear fuel storage.
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CHAPTER 1
INTRODUCTION AND MOTIVATION

1.1 Motivation

America is the largest producer of nuclear power in the world, with 98 reactors
producing approximately 805 billion killowatt-hours of power in 2017 [2]. Despite being
the largest producer of nuclear energy, the United States has not established a permanent
used nuclear fuel storage facility. Instead, nuclear power plants store used fuel on site,
many using storage casks or canisters. A Savanah River National Laboratory report states
nearly 100,000 fuel assemblies are stored in more than 2,000 casks at 75 storage sites [3].

Fuel casks are designed to store and protect spent nuclear fuel while shielding power
plant workers and others from harmful radiation generated by unstable radioisotopes
created through the fission process. There does not exist a singular design of a spent fuel
cask due to multiple companies designing fuel casks and various types of spent nuclear
fuel which need to be stored. While each design is varied, there exist certain components
which are found across many spent fuel cask designs. Spent fuel casks typically have
a right cylindrical shape with layers of high atomic number and low atomic number
materials, such as steel alloys and concrete respectively. Layering materials with different
compositions and atomic numbers provides radiation shielding for both gamma rays and
neutrons, which are the two most penetrating types of radiation emitted by radioisotopes
present in the fuel (e.g., O-17, Cm-242, and Sr-90). High atomic number materials are
used to mainly shield gamma rays, whereas low atomic number materials are used to
mainly shield neutrons. For this reason, most spent fuel casks have an inner region where
spent fuel is stored, an outer region made of low atomic number materials (i.e., concrete)
and high atomic number materials (e.g., steel alloys). Layered materials are also utilized in
baseplates and lids.

Materials in a spent fuel cask are specifically chosen to be multi-functional. Spent

fuel casks must conduct heat away from spent fuel rods, protect fuel from damage, prevent
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proliferation of radioactive materials, as well as shield radiation. Heat conduction is
achieved by using materials with high thermal conductivities to draw heat away from
spent fuel rods to the environment. Thick layers of materials, such as steel and concrete,
protect the cask contents from environmental or other sources of damage (e.g., a hurricane
or a cask being dropped during transportation). Casks are also designed to prevent
proliferation by, for example, featuring welded lids or the addition of security tags to
discourage unauthorized access to spent fuel. Finally, spent fuel casks are designed

to shield employees and the public from the harmful radiation produced by decaying
radioisotopes created in the fuel during the power making process.

If a cask inadequately performs any of the above functions, it may become necessary
to open the cask for a visual inspection. This is a costly and time consuming endeavor.
Greulich et. al. state the cost to re-open a cask could be in the millions of dollars and
require man-months of time [4]. The process of opening a cask to visually inspect the
contents also carries an increased risk of exposing workers to radiation. The high costs
associated with opening a cask would certainly make visual inspection an unappealing
option. Simulation based and experimental research has been motivated by the desire to
develop a non-destructive assay techniques to verify cask contents.

Analyzing the capabilities of technology to ensure the contents of a spent fuel cask
has motivated many scientific investigations, with a large reliance on computational
simulations [4-6]. Simulation results can then be correlated to experimental observations
in order to identify promising techniques to inspect the interior of a cask without opening
the cask. Neutron flux and dose are common measurable quantities sought after in the
simulation and experimental works surrounding radiation shielding investigations of spent
fuel casks. In reality, these two quantities are the same with the latter being a scalar
multiple of the former. These works tend to be concerned with the neutron flux at or
beyond the surface of the cask, since the radiation environment exterior to the spent

fuel cask is potentially harmful to worker safety. Understanding the interior neutron flux
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is useful in any simulation studying the exterior neutron flux. The neutron flux at the
surface of the spent fuel cask is directly dependent on the physics occurring interior to
the spent fuel cask. Ultimately, the behavior of the interior neutron flux is controlled by
the configuration and choice of materials inside the fuel cask. The relationship between
interior structure and exterior neutron flux has prompted many simulation investigations
using radiation transport codes. Further, simulation tools are not only used to design
non-destructive assay techniques, but are also used to validate radiation transport codes as
applied to spent fuel casks.

Ideally, simulation results should be compared to a series of identical or similar
experiments and numerous results from other computational and numerical tools,
and analogous analytical models. Computational, numerical and analytical tools act
complimentary to experiments, in that the former tend not to be limited by physical
restraints such as, but not limited to, detector placement, experimental design challenges,
personnel safety, and costs. Nonetheless, experimental data is highly sought after since
analytical models only provide exact solutions for the most simplistic non-physical
problems and computational and numerical tools only approximate solutions, albeit these
approximations can be quite accurate. Unfortunately, limited amounts of experimental
data result in an increased reliance on computational and numerical tools. To further
exacerbate the issue, it is of utmost importance that conclusions can be confidently drawn
from simulation results. In the case of spent fuel casks, human lives and livelihood depend
on the correctness of simulation results.

A discussion motivating the use of analogs is, therefore, useful. Fickett describes
analogs as a qualitative representation of the original, constructed, not derived, in
order to maximize simplicity while minimizing loss important properties [7]. Further,
analogs have the following benefits 1) exact solutions are simpler to find and more likely
to exist, 2) mathematical rigor in determining analytical solutions is reduced, and 3)

salient physics is more readily observable after the removal of extraneous features. The
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simplified computational and analytical models used in this work are developed as analogs.
Before further description of the analytical models acting as analogs in this work, it is
important to discuss the processes of validation, verification, uncertainty quantification
and sensitivity analysis as applied to general computational tools and to simulations of
used fuel casks.
1.2 Practices for Code Reliability, Confidence, and Predictive Capability

The behavior of physical systems is commonly described using complex mathematical
expressions, typically consisting of differential equations. Exact solutions of these
equations (also variously known as analytical or closed-form solutions) tend to be limited
to only the simplest scenarios. Indeed, the cost of exactly solving these equations often
involves the extensive use of simplifying assumptions to reduce the complexity of an
equation to a form where an analytical solution is possible. Approximating a differential
equation as a series of coupled linear equations has become an alternative to finding
direct analytical solutions as access to high performance computing has become more
widespread. Unfortunately, discretizing spatial, direction, energy or other continuous
variables introduces a degree of error into the solution proportional to the fidelity to which
a problem was discretized. Further, discretization requires a high degree of computational
rigor and, therefore, was not a realistic technique for solving differential equations
until adequate advancements in computation had occurred. However, the modern-day
advancement of computational power has motivated the development of tools which
approximate the solutions of complex differential equations in broad sets of circumstances
via approximation techniques, as opposed to simplifying assumption techniques that may
yield closed-form solutions only in special cases.

These simulation tools, or simulation codes, often rely on algebraic calculations to
approximate solutions of the complex differential equations which describe real-world
physics. The accuracy of these codes needs to be investigated since approximate solutions

introduce error. The processes of verification and validation, shown in Fig. 1-1 generate
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Figure 1-1. A flow chart showing the processes of verification and validation [10].

evidence “that computer [codes| have adequate accuracy and level of detail for their
intended use” [8]. Verification assesses “the numerical accuracy of the solution to a
computational model,” and validation “addresses the physical modeling accuracy of a
computational simulation by comparing the computational results with experimental data”
[9]. For the scope of this effort, model qualification will not be discussed. Stated another
way, verification studies if a code solves equations correctly, and validation investigates the
utility of a code through comparison with experimental data.

Like verification and validation, uncertainty quantification evaluates the adequacy of
models. However, uncertainty quantification does not “tell you that your model is ‘right’
..., but only that, ¢f you accept the validity of the model ..., then you must logically
accept the validity of certain conclusion (to some quantified degree)” [11]. Further,
sensitivity analysis can be considered a type of uncertainty quantification which stratifies
input parameters based on degree of impact to the error of simulation results. A short

description of verification, validation, and sensitivity analysis is discussed below.
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Figure 1-2. A flow chart showing the process of verification [10]. Verification compares the
results of computation solutions with exact analytic and benchmarking
solutions to quantify the accuracy of the computational solutions.

Verification is aimed to quantitatively demonstrate that the approximate equations
in the code are being solved in a manner consistent with known solutions of its governing
equations [12]. Figure 1-2 is a graphical representation of the process of verifying
computational solutions. There are two general types of verification activities in
computational modeling: 1) code verification and 2) solution verification [10]. Code
verification consists of numerical algorithm verification and software quality assurance.
Numerical algorithm verification focuses on the correctness with which algorithms
are programed into the code, as well as, the accuracy and reliability of implemented
algorithms. Software quality assurance treats the computational software as a product
and ensures that computational results are repeatable. Solution verification ensures the
numerical algorithms converge to a solution. Then, solution verification is concerned with
quantifying the errors of numerical approximation techniques.

In contrast to verification, validation ensures a simulation tool approximately solves
a representative set of equations consistent with the applications of the code. Validation

relies on comparing experimental, analytical or numerical results against simulation results
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Figure 1-3. A flow chart showing the process of validation [10]. The computational
solution is compared against experimental data based on the application of the
intended computational tool

and is conducted on an application specific situations. Fig. 1-3 is a flowchart showing how
validation compares computational results with experimental data. Simulation tools are
validated for different applications on a case-by-case basis. Validation commonly requires
experimental data for a given application. Unfortunately, sometimes experimental data is
limited or non-existent since experiments can be financially burdensome, potentially risky
to public and worker health, or difficult to conduct due to proprietary reasons. Difficulties
in obtaining experimental data necessitate alternative methods for validation.

Uncertainty quantification and sensitivity analysis aid in determining the error of
computational tools and the importance of input parameters respectively. However,
instead of investigating the numerical methods and equations which are used to develop
computational tools (as in verification and validation methods), uncertainty quantification
and sensitivity analysis investigate the effects error in parameter data has on numerical

solutions. Simulation tools require parameters, or data provided by the user, such as

20



physical properties measured through experiments (e.g., cross section data, viscosity,
or thermal conductivity. These values have associated error; measurement error is an
example. Uncertainty quantification is concerned with quantifying the error in the
simulation output due to the error of input parameters.

Sensitivity analysis act complementarily to uncertainty quantification by identifying
which parameters most influence the result. A typical approach to computational
sensitivity analysis requires performing many simulations where a change is made in
each computation - an approach called the direct method [13]. Running many simulations
where a single change in make in each computation is s process that requires extensive
computational resources.

The history of sensitivity analysis as applied to differential equations is broad and
extensive, therefore, only previous research that pertains to this work will be discussed.
The first methodology for sensitivity analysis was developed on linear electrical circuits
by Bode in 1945 [14]. At that time, sensitivity analysis motivated the use of feedback in
circuit design. From its origins in circuit control, sensitivity analysis permeated many
others fields of science, including nuclear engineering, and many methods were developed.
McKay provides an introduction into basic definitions and concepts related to sensitivity
analysis [15]. Cacuci unified and generalized the direct method and the perturbation
methods of sensitivity analysis in 1980 based on Frechet-derivatives [13]. A year later,
Cacuci further generalized his methodology to analyze systems of response along arbitrary
directions using the Gateaux-derivative (G-derivative). This linear operator determines
system responses to multiple perturbations in input parameters simultaneously. In doing
so, Cacuci developed the Forward Sensitivity Analysis Procedure (FSAP) and Adjoint
Sensitivity Analysis Procedure. The FSAP is used to find sensitivities of the linear
differential equations in this work.

The overall purpose of performing verification, validation, uncertainty quantification,

and sensitivity analysis procedures is to identify the accuracy, credibility, and predictive
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capabilities of a particular code for given scenarios. Ultimately, a code user must decide
if a code adequately simulates the problem and if the user can have confidence that the
simulated results are an accurate portrayal of the real-world problem. While the processes
of verification, validation, uncertainty quantification, and sensitivity analysis have been
and continue to be extensively developed, there exists a limitation - how can a code be
validated if there is no experimental data for comparison? The purpose of this document
is to introduce a methodology aimed at answering this question.

1.3 State of Current Used Fuel Cask Research

Interest in experimental and simulation work stems from the need to ensure the safety
and security of spent fuel casks; since there is currently no long term, national storage
plan. Even though there is motivation for investigating radiation transport in spent fuel
casks, the breadth of experimental data publicly available is limited. In the limited body
of experimental work measuring the radiation dose at or near the surface of various used
fuel casks, experimental data on the HI-STORM 100 spent fuel casks is not available.
Hence, discussion of past experiments will include radiation measurements performed on
any spent fuel cask, including but not limited to experiments compared to any radiation
transport code.

Thiele et. al. provide a comparison between experimental results and the results
from two radiation transport simulation tools (comparing Monaco/MARVIC with
SAS4/MORSE) [16]. Both simulation tools are developed as part of the Standardized
Computer Analysis for Licensing Evaluation (SCALE) packages by Oak Ridge National
Laboratory [17]. Since these radiation transport codes are not used in this work, no
further explanation of the codes will be given. Thiele et. al. conclude that simulation tools
can be applied for the assessment of dry storage casks. While experimental validation of
simulation results is arguably the best way to corroborate simulation results, it is still
important to not treat experimental data as sacrosanct, as experimental results still

include sources of error [18].
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Experiments still include measurement and procedural errors, and without the
validation of multiple experiments of the same cask, the result of a lone experiment
should not be considered to validate or invalidate simulation results. Ziock et. al.
measure the thermal neutron and gamma ray radiation signatures from six different
spent fuel cask designs; the HI-STORM 100 was not one of the six. Ziock et. al. posit the
radiation signature can be used as an identifier for individual casks. Their experiments
proved inconclusive resulting from limitations of the imaging devices used. That is, the
measurement tools introduce error into the thermal neutron and gamma ray measurements
which prevent using the radiation spectra as an identification tool.

Wharton et. al. use the Monte Carlo N-Particle (MCNP) radiation transport code
to determine the fraction of gamma rays which would be detected by a high purity
germanium detector placed at the top surface of two spent fuel cask designs [19]. These
simulations are used to determine the feasibility of a system designed to use passive
gamma radiation to determine if a fuel bundle was present or absent from a spent fuel
cask. The authors conclude that the thick shielding of the spent fuel casks sufficiently
scattered radiation and the system is not capable of resolving discrete gamma ray peaks.
This resulted in the measurements being stopped without fully testing the capabilities
of the system. It should be noted, the MCNP results suggest the system was capable of
performing the measurements and distinguishing between empty and filled fuel storage
positions. This work serves as an example for the importance of corroborating simulation
results with further investigations.

Simulation studies of the HI-STORM 100 spent fuel cask using MCNP are more
numerous than experimental studies. Before further discussing how simulations have been
used to study spent fuel casks, it is important to take an aside and discuss the verification
and validation of a commonly used radiation transport simulation code, the MCNP

simulation code [20].
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MCNP has been extensively verified and includes a series of benchmark problems.
Further, Mosteller compiled a list of documents which discuss verification efforts on
MCNP [21]. Analytical models have also been used in validation efforts [22, 23]. analytical
models provide an exact solutions against which simulation tools can be compared.
However, exact analytical solutions are often only available for heavily simplified problems
which do not represent physical systems. Nonetheless, excellent agreement has been
achieved between simple MCNP models and analytical solutions. Verification is considered
an activity in mathematics where a successful test demonstrates that the governing
equations of a simulation tool are solved correctly [18]. Further, validation of a simulation
code is undertaken after verification.

MCNP has also undergone general validation in multiple disciplines within nuclear
science and engineering; including but not limited to radiation shielding [24], criticality
[25], and intermediate and high-energy physics [26] where MCNP results are compared
to simple experiments. In order to validate computational tools as applied to spent fuel
casks, scientists have turned to a comparative method where results from other radiation
transport codes are compared with MCNP [27, 28]. However, discrepancies between results
from different simulation tools are attributed to different physics being included in each
tool. While this may be the driving factor leading to the apparent disagreement, this
conclusion would benefit from identifying the physics seen in one simulation tool and
neglected in the other. Comparison with experiments and other simulation tools is a valid,
imperative, and important technique for validating simulation results, but more analysis
should be done in order to increase confidence that simulation results can be trusted.
After discussing the verification and validation of MCNP, it is beneficial to summarize the
extent of computational research pertaining to the radiation transport in spent fuel casks
using MCNP.

Priest conducted an in-depth investigation of neutron and gamma flux and dose rates

interior to a HI-STORM 100 spent fuel cask with the purpose of identifying an imaging
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system capable of withstanding the harsh environment inside the multi-purpose canister
(MPC) [29]. Priest performed simulations using multiple MPC configurations with used
nuclear fuel from both pressurized water and boiling water reactors.

Harkness et. al. used MCNP to investigate the validity using helium-4 fast neutron
detectors to determine if fuel had been removed from a HI-STORM 100 spent fuel cask
[6]. This work describes a methodology to generate a source definition for MCNP based
on data provided in the Next Generation Safeguards Initiative. This fuel rod composition
data was aged using ORIGEN-S, a material irradiation and decay calculation code, to
create an MCNP compatible source definition. A further description of this process will
be provided later in this work. The neutron flux and energy spectrum at the surface of
the cask were tallied as part of this investigation. From the results of MCNP simulations,
the authors concluded that neutron spectroscopy was feasible using helium-4 detectors,
however, confidently determining if all fuel was present in a sealed spent fuel cask required
further investigation.

Kelly et. al. performed an uncertainty analysis in radiation dose exterior to a
HI-STORM 100S (a variant of the HI-STORM 100 cask) spent fuel cask based on
variabilities in concrete composition and density using MCNP [30]. The authors state
that density variations in the concrete have the largest effect on radiation shielding
capabilities. Varying concrete composition mostly affected neutron and associated capture
gamma ray dose rates. These simulation results motivated the design requirements of a
robotic camera system to perform visual inspection of the fuel elements in the MPC.

Because of the interest in modeling radiation transport in spent fuel casks, research
is not limited to using MCNP as a simulation tool nor is it limited to a single cask
design. Gao et. al. use the radiation transport code MAVRIC (a radiation transport
code developed by Oak Ridge National Laboratory and distributed in with the SCALE
code package) to simulate neutron and gamma transport through a TN-32 spent fuel

cask [31]. In this work, Gao et. al. explore the effect of two geometries and two sets of
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cross section data on the neutron and gamma fluxes at the surface of the cask. Gao et.

al. use a detailed model, which include details of individual fuel rods, and a homogenous
model, where a homogenous fuel definition is determined and the model uses a simplified
geometry in each fuel cell. The authors also use two sets of cross section data. The first
set is continuous energy cross section data and the second set is of multigroup cross
sections. The authors conclude that changes to the geometry of the problem have a larger
effect on the result that changing how the cross section data is handled.

Interest in verifying cask contents has led to simulations investigating methods for
tomographic imaging. These investigations rely on simulation tools as a proof of concept
and to aid experimental design. Liao and Yang use cosmic-ray muon simulations to aid in
experimental design choices for a spent fuel cask tomography system [32, 33]. The authors
use Geant4 (another radiation transport code) and MCNP to simulate cosmic-ray muon
transport through a spent fuel cask, as well as through a test setup to guide experimental
design [34]. The authors then conduct experiments using the prototype muon imaging
systems. Liao and Yang concluded they are able to detect a quarter of a missing fuel
bundle located anywhere in the cask.

Greulich et. al. also investigate the possibly of tomographic imaging techniques in
verifying the contents of a spent fuel cask [4]. Greulich et. al. simulate neutron transport
through a TN-32 spent fuel cask using MCNP. Using a beam source of neutrons incident
at the surface of the cask, the uncollided flux of neutrons leaving the cask provides
information which can be used to reconstruct an image of the interior of the cask.

Miller et. al. determine the feasibility of using a monoenergetic photon source to
verify the contents of a sealed HI-STORM 100 spent fuel cask using MCNP [35]. Miller et.
al. simulate photon transport through the spent fuel cask and found a 1000-fold reduction
in the transmitted flux when a fuel assembly is present as compared to a reduction of
two in the transmitted flux when there is no assembly present. Miller et. al. further

corroborate their work using analytical calculations to predict the scale of the uncollided
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flux for when a fuel assembly is present and when there is no fuel assembly. The results
from their analytical modeling agree with corresponding MCNP simulations. The results
from Miller et. al. motivate using analytic modeling as a tool to guide MCNP simulation
development.

The previously described works are all interested in either radiation dose or radiation
flux values at the surface or exterior to the surface of the cask. Since dose is directly
proportional to flux, and since the exterior neutron flux is a direct result of how interior
cask structure affects the interior flux, the aim of this work is to investigate the interior
neutron flux, so as to have the most general relevance to existing work. The neutron flux
is chosen over other types of radiation as gamma ray shielding on the casks is generally
more effective than neutron shielding, motivating further investigation of the neutron flux.

The body of work focusing on simulations of spent fuel cask is quite large, which
demonstrates scientific interest in simulating spent fuel casks. However, experimental
data to validate simulated results is limited. Further, the final safety analysis report
delivered by Holtec when licensing the HI-STROM 100 spent fuel canister system did
not include any experimental data pertaining to the radiation shielding capabilities of
this design [36]. Instead, MCNP is used to demonstrate the cask design is capable of
attenuating radiation to an adequate level. Maintaining a safe environment for power
plant workers and members of the public is of utmost importance and an alternate method
for validating the accuracy of simulation results is needed if simulation results are to be
relied upon in the absence of experimental data. The discrepancy between the amount
of simulated results and experimental data identifies the need to validate or otherwise
reinforce confidence in simulation results without relying on experimental data.

1.4 General Description of the Work

This work includes high-fidelity MNCP simulations of the interior neutron flux from

a Holtec Hi-STORM 100 spent fuel cask, and the attendant analytical analysis of the

simulation results in the absence of significant experimental validation data. A detailed
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model of the HI-STORM 100 spent fuel cask is simulated in MCNP to investigate the
neutron flux interior to the fuel cask. Owing to a lack of validation data against which
to compare these simulation results, an analytical analysis framework called ”simulation
results assessment” (or, henceforth, ”results assessment”) is developed and applied to
provide an alternative (but not replacement) means for enhancing confidence in the
computational model. The accuracy of the model is assessed by first developing simplified
analytical and MCNP computational models. The design of these analogous models is
made to retain essential physics while reducing geometric complexities. Since the essential
physics is preserved, the neutron flux found using the analogous models will approximate
the neutron flux interior to the cask of the detailed model. Developing analogous models
is an iterative process where the initial simplified models are overly simplified and lose
essential physics. Essential physics is identified from locations where disagreements
between the results of the detailed model and the analogous models occur. More detailed
analogs are developed in order to rectify differences observed between the two sets of
results until a final set of analogous models are found. This process identified physical
details that must be preserved in the detailed model in order for the detailed model to
accurately simulate reality. A sensitivity analysis is also conducted on the final analogous
model in each material region as well as on the detailed model as an extension of the
results assessment methodology through sensitivity analysis. The results assessment
and sensitivity analysis methods presented in this work act complimentary to existing
techniques - verification, validation, uncertainty analysis, and sensitivity analysis- in order
to develop a more valuable analysis.
1.4.1 Results Assessment

The results assessment methodology provides a way to ensure the appropriateness
and inerrancy of computational and numerical tools. This methodology formulates analogs
which are designed to share phenomenological physics with its more detailed counterpart.

The purpose of using tractable analytic models is develop closed form solutions, as the
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salient physics is more readily available in closed form solutions. Figure 1-4 shows how
the results assessment methodology is developed to act in the absence of experimental
data, and complimentary to existing validation techniques, to enhance analysis, identify
salient physics, and further ensure a computational model is appropriately constructed.
To exemplify the process, a detailed model of this cask is developed in the MCNP code
to predict the neutron flux in its interior. In an attempt to isolate essential physics,
1) five other MCNP simulations are developed to model various analogous problems,
and 2) analytical models are developed to explain key characteristics of the flux seen
in these analogous problems. The results of the simplified calculations are then used to
reveal the fundamental physics controlling the shape and other characteristics of the flux
distribution resulting from the complex model. This procedure is phenomenological in
nature, and is thus intended to capture elemental physical processes that are occurring
within sub-regions of the full-scale system. Therefore, while no single analytical solution
is expected to be available for the full-scale system, any understanding gained in the
sub-regions reinforces confidence that the integrated scales are being simulated in
accordance with physical intuition. This outcome is valuable in cases where experimental
data is sparse or nonexistent. A complimentary investigation of sensitivity structures
produces a quantitative basis for comparison of analytical and computational models.
1.4.2 Sensitivity Analysis

The procedure of quantifying comparisons between analytical models, reduced
geometry computational models, and the full model is demonstrated through the inclusion
of sensitivity analysis procedures. The previously developed models used in the results
assessment methodology lend themselves to analytic sensitivity analysis. Through the
use of an analytic sensitivity analysis, the results assessment methodology can compare
sensitivity information between the computational and analytic models. Forward modeling
of sensitivity structures is conceptually simple but computationally expensive for large

problems, as it involves sampling a space of possible parameter values and executing a new
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Figure 1-4. A flow chart showing the complimentary addition of the results assessment
methodology. The purpose of results assessment is not to replace validation,
but to act complimentary to existing validation techniques.

simulation for each value. Applying sensitivity analysis techniques to analytical models
allows for the identification of sensitivities without requiring as much computational
resources, a strength of analytical sensitivity analysis. Further, if an equation yields an
analytical solution, the sensitivities of an equation to its parameters can be found with
minimal computational resources and requires solving sensitivity equations only once.
Sensitivity structures can be computed in closed-form using a generalized notion of the
directional derivative. The comparison of these two methods forms the final component
of this work. In addition to basic physics phenomenology, the sensitivity structure arising
from analytical models can be compared to that found from forward sensitivity modeling
of full-scale simulations. When these structures compare favorably, confidence in the
full-scale simulations is once again reinforced.
1.5 General Overview of Chapters

This document discusses the rigorous analysis of a HI-STORM 100 used fuel cask
using the results assessment methodology and a sensitivity analysis procedure. The results
assessment methodology is discussed in chapters 2, 3, and 4, and chapters 5, 6 and 7

describe the process of adding a complimentary sensitivity analysis.
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The second chapter of this document introduces the detailed MCNP model of the
HI-STORM 100 used fuel cask. This model is used to demonstrate the results analysis
methodology. The results of the simulated interior neutron flux are shown and features are
identified in this chapter. A feature is defined in more depth in chapter 2.

Chapter 3 introduces the various analytical models used in this work. The neutron
transport equation is derived and then reduced through application of assumptions and
simplifications. From a reduced form of the neutron transport equation, the multigroup
discrete ordinates equation and diffusion approximation are developed. The two equations
form the basis of the analytical modeling used in this work.

The results assessment methodology is demonstrated in chapter 4. This chapter
discusses why each analytical model is chosen as well as how each reduced complexity
computational model is developed. After describing how the models are determined,
each previously identified feature of the interior neutron flux is analyzed using the results
assessment methodology.

Chapter 5 introduces the method for conducting a sensitivity study using MCNP.
Further, this chapter provides the results of the sensitivity analysis on the detailed MCNP
model of the HI-STORM 100 spent fuel cask. Finally, the results of the sensitivity analysis
of the detailed HI-STORM 100 cask are discussed.

Chapter 6 provides foundational theory of sensitivity analysis of the analytic models
using Cacuci’s FSAP [13]. In this chapter, the process of the FSAP is applied to both
the analytic representation of the neutron flux, as well as a set of governing ordinary
differential equations with corresponding boundary conditions. This chapter also discusses
the method for determining sensitivity values from the analytic models which can be
compared to the sensitivity results from the detailed MCNP model of the HI-STORM 100
cask.

Chpt. 7 discusses the results of the sensitivity analysis as applied to the analytic

models. Further, comparisons between the FSAP analysis on analytical models and
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MCNP results are discussed, introducing the results assessment methodology through
sensitivity analysis. Discussions comparing the two model’s sensitivity coefficients also
include identifying the physical and mathematical reasons for any discrepancies.

The last chapter includes final thoughts and conclusion regarding the work.

Recommendations for future work are also provided in chapter 8.
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CHAPTER 2
DISCUSSION OF MAIN PROBLEM

Dry storage casks provide protection, shielding, security, and cooling for used
nuclear fuel which has spent at least one year in a spent fuel pool [37]. Shielding is
especially important as used nuclear fuel is highly radioactive after being removed from
a reactor and shielding is required to protect civilians, radiation plant workers, and the
environment. The storage of used nuclear fuel has become a challenge in the United
States since there is no long-term storage location. Instead, used nuclear fuel is stored in
dry storage casks at the facility where it was generated. These casks are designed to 1)
shield harmful radiation generated by the used nuclear fuel, 2) conduct decay heat away
from fuel rods to prevent damage to the fuel and cladding, 3) protect spent nuclear fuel
from environmental damage and other hazards, and 4) prevent proliferation of nuclear
materials. Large efforts have been made in studying and designing casks to accomplish
these challenges. While each function is imperative in analyzing the efficacy of a spent
fuel cask, this work is only concerned with the radiation shielding capabilities of a Holtec
International HI-STORM 100 spent fuel canister system [36].

Figure 2-1 is a diagram of the HI-STORM 100 spent fuel canister system partially
loaded into an overpack of the same name. These two components together, the canister
and overpack, will be referred to as a spent fuel cask. The HI-STORM 100 canister
system is chosen as it is the most common used fuel storage system in the United States
(750 canisters have been loaded before 2017) [3]. The overpack consists of two parts: a
cylindrical dual material structure welded to a baseplate and a dual material removable
lid. Both parts of the overpack use a combination of concrete and carbon steel to shield
radiation, protect fuel, and prevent proliferation of nuclear material. Four vents are
located at both the top and bottom of the overpack. These vents allow air to circulate
between the overpack and MPC, removing heat caused by decaying isotopes in the spent

fuel. Spent fuel rods are stored in the MPC, the central cylinder in Fig. 2-1. Figure 2-2 is
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Figure 2-1. The Holtec HI-STORM 100 spent fuel cask system is designed to protect fuel,
transfer decay heat to the environment, prevent proliferation of nuclear
material, and attenuate radiation [36]. The MPC is seen partially inserted into
the steel and concrete overpack. Current designs of the HI-STORM 100 do not
use the inner shell and, therefore, the inner shield is not modeled in MCNP.
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Figure 2-2. A cross section view of the multi-purpose canister. While there are multiple
designs which accommodate different amounts of fuel, the MPC-32 is chosen
for this work [36]. The MPC-32 is capable of holding 32 fuel bundles, one
bundle in each square lattice element. The fuel basket and cylindrical wall of
the MPC are made using stainless steel 304 and the canister is sealed by
welding a baseplate to the bottom and a lid and closure ring to the top of the

cylinder respectively.

the top-down cross section view of the MPC. Each cell in the honeycomb structure houses
a single fuel bundle.

Power plant workers must be protected from the radiation produced by spent nuclear
fuel rods, hence opening a sealed MPC is an expensive and potentially dangerous task.
Therefore, alternative methods are being explored to ensure the content and integrity
of fuel components which do not require opening a cask. A sample of these techniques
includes neutron spectroscopy, deduction of interior structure based on exterior dose

rates, and neutron based computer tomography which were previously discussed in detail
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in Section 1.3. Each of these techniques relies on simulations using various radiation
source definitions, virtual detectors, and simulated cask designs to determine specific
quantities related to the neutron flux within the spent fuel cask. The key metric of this
work is the interior neutron flux spatial distribution of the HI-STORM 100 spent fuel
cask, as this quantity is shared among research in spent fuel casks. Clearly, simulation
tools have become an important part of investigating the efficacy of a nondestructive
evaluation technique, and ensuring the accuracy of these results is even more important
since experimental data associated with the techniques is limited.
2.1 Description of Detailed Model

The MPC and overpack are modeled using the MCNP simulation code to determine
the simulated interior neutron flux spatial distribution as a function of radial distance
from the centerline, averaged over the height of the cask. Figures 2-3 and 2-4 show,
respectively, a side view and cross section of the cask geometry simulated in MCNP. This
model is called the “detailed model” throughout this work and models the geometry of the
cask down to the individual fuel rod level. Each fuel rod acts as a source term for neutrons
produced from spontaneous fission and («, n) reactions.

Figure 2-5 shows a single fuel cell cross section from the detailed model. The fuel
cell contains two neutron absorbing pads composed of boron-carbide and aluminum, 264
fuel rods with zircalloy cladding and 25 water rods representing instrumentation. Fuel
rod composition is determined using data from the Next Generation Safeguards Initiative
which analyzed the composition of Westinghouse 17x17 fuel bundles with various degrees
of initial ?*U enrichment and burn-up values [38]. This work investigates fuel with an
initial enrichment of 3% ?3*U and a burn-up value of 30 GWd/MTU. The composition
of each individual fuel rod is unique, since fission fragment distribution is probabilistic,
which introduces variance in the local neutron flux. Each fuel bundle is assumed to have
the same fuel burn-up and composition. These variations in fuel rod composition could

influence the flux and potentially hide salient physics. Identifying and explaining salient
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Figure 2-3. The side view of the HI.STORM 100 spent fuel cask (canister and overpack)
modeled in MCNP. This is referred to as the detailed model.

physics is a goal of this work. Therefore, an average fuel rod composition is determined
based on the mass of each isotope present in a single spent fuel bundle in order to more
clearly investigate the effects of geometry, detail, and non-fuel materials without influence
from loading patterns of specific fuel rods. Table 2-1 and Tab. 2-2 provide a summary of
the isotpes, source strengths, and weight fractions of neutron producing isotopes in the
fuel.

The associated intrinsic neutron source is included via an MCNP neutron source
definition. This definition is found using the ORIGEN-S 0-dimensional irradiation and
decay code supplied with the SCALE package from Oak Ridge National Laboratory [17].
The neutron energy spectrum associated with the intrinsic source is shown in Fig. 2-6.

The source spectrum results from spontaneous fission of isotopes in the fuel (such as 22Cf)
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Figure 2-4. The top view of the HI-STORM 100 spent fuel cask modeled in MCNP. This
view shows the fuel arrangement of the detailed model. This image shows the
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extent of geometric details which range from millimeters to meters.

Table 2-1. Summary of fuel source materials caused by («,n) reactions.

Source Weight
Isotope strength Frac-

S tion
By 5.307E-05 1.087E-03
B8 Py, 1.743E-01 8.338E-05
BIPy, 2.512E-02 0.004
20y, 4.072E-02 0.002
M py, 1.222E-04 0.001
H2py, 1.201E-04 3.829E-03
M Am 1.797E-01  2.081E-05
M3 Am 1.400E-03 6.823E-05
M20m 1.671E-07 7.585E-06
M30Om 7.315E-04 1.281E-07
HOm 1.350E-01 1.738E-05
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Figure 2-5. The zoomed in image of a single fuel cell cross section in the detailed model.
There are neutron absorbing pads (orange rectangles) placed along the interior
left and upper faces of the fuel basket (pink regions). Fuel rods (small white
circles) include a fuel region, helium gap, and cladding, the helium gap and
cladding are not visible in the figure. The larger red circles are the cross
sectional view of water cylinders which represent instruments used for
monitoring the safety of the HI-STORM 100 spent fuel cask system.

and («,n) reactions occurring in the irradiated fuel. The maximum neutron intensity
occurs at 2.71 MeV. The flux intensity has reduced to nearly 1% of the maximum intensity
by 51.4 keV.

Fig. 2-7 depicts the height-averaged scalar neutron flux as a function of radial
position within the HI-STORM 100 spent fuel cask predicted using MCNP. The color
of the line is related to the material through which the neutron flux is being simulated:
fuel is green (the entire area interior to the MPC is considered the fuel region), MPC is
blue, air is yellow, concrete is red, and carbon steel is black. The vertical lines designate
interfaces between material boundaries; green is the interface between the fuel region and
MPC, blue is the interface between the MPC and dry air, yellow is the interface between

air and the concrete annulus, red is the interface between concrete and carbon steel,
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Table 2-2. Summary of fuel source materials featuring spontaneous fission reactions.

Source Weight
Isotope strength  Frac-
neutrons tion
B3y 1.623E-13  1.791E-09
BAy 1.201E-07 1.087E-03
By 1.123E-08 0.007
By 2.040E-06 0.003
88U 1.687E-03 0.819
BTNp 5.239E-09 2.961E-03
238 Py 3.326E-02  8.338E-05
239 Py 9.692E-06 0.004
240 py 2.985E-01 0.002
2L py, 1.882E-07 0.001
242 Py 1.005E-01  3.829E-03
2 Am 8.223E-05  2.081E-05
243 Am 6.827E-06  6.823E-05
220m 8.743E-07  7.585E-06
H30Om 3.961E-06 1.281E-07
H0Om 1.906E+01 1.738E-05
25Cm 1.430E-05 8.515E-07
25Cm 9.711E-02  6.809E-08
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Figure 2-6. The source spectrum used in MCNP simulations. The spectrum is a result of
spontaneous fission and («, n) reactions.
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and black is exterior face of the cast. Figure 2-7 shows about half (54%) of the neutron
flux is attenuated in the fuel region, and the concrete further reduces the flux by 39%.
This result is intuitively sensible: the fuel region is comparatively dense and contains
neutron-absorbing materials (e.g., boron), while the thick concrete overpack region is
composed principally of highly thermalizing isotopes (e.g., hydrogen). Together, these
processes are indicative of the observed dramatic reduction in neutron flux throughout
the cask. However, advancing beyond intuition requires definitive answers to a variety of

additional questions, namely:

e  Are the results correct?
e Could a mistake have been made in the simulation input?
e  Was an assumption made that neglected important physics?

e Does the problem include physics or exist in a physical regime outside the viability
of the simulated tool used?

While corroborating simulation results with intuition is qualitatively valuable, quantitative
or semi-quantitative assessments and their associated effects on confidence in simulation
results demands that the preceding questions be comprehensively addressed. The purpose
of this work is to answer these questions by 1) identifying key features of the neutron
flux spatial distribution as simulated in the detailed model, 2) developing simple physical
models to determine the cause of each feature, and 3) gain confidence in the accuracy of
the solution and inerrancy of the simulation process. In order to identify features in the
neutron flux, each material region in the spent fuel cask is analyzed briefly.
2.2 Analysis of the Detailed Model

2.2.1 Fuel Region

The fuel region of the HI-STORM 100 spent fuel cask features various materials
including spent UO, nuclear fuel, a stainless steel basket, boron-containing neutron
absorbing pads, and helium backfill. The geometric configuration of these materials

is highly complex, as depicted in Fig. 2-1. Unfortunately, a single mathematical

41



Spatial Variation of Flux

103<

utrons ]
=

o

N

cm?

—]— Detailed Model

|

0 20 40 60 80 100 120 140 160
Distance from center [cm]

Flux[2&

=
o
=

Figure 2-7. The interior neutron flux spatial distribution of the simulated HI-STORM 100
spent fuel cask. The vertical lines represent interfaces between material
regions. Error bars are shown along the curve. However, error is converged to

less than 1%.

model capable of describing the neutron flux in the fuel region is not analytically
tractable. Therefore, a simplified model must be developed using assumptions and
approximations derived from physics occurring in the model. In order to identify
appropriate simplification, the energy spectrum and angular distribution of the neutron
flux and cross section data of various materials are analyzed at various locations in the
fuel region.

Figure 2-8 shows the energy spectrum of the neutron flux throughout the spent fuel
cask. These plots show the neutron flux has little variation throughout the fuel region.
This is a result of evenly distributing fuel rods through the fuel region. Further, the lack
of thermalizing materials in the fuel region means there is little change in the energy
spectrum. Therefore, it can be assumed that energy dependence of the neutrons can be
handled uniformly throughout the fuel region. This is a very helpful assumption that
allows for uniform treatment of material properties throughout the fuel region with respect

to energy. Unfortunately, there have been no assumptions concerning how to handle
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neutron energy-dependence at this point, (e.g., is a monoenergetic method appropriate, or
will a different model be required?).

Analysis of the energy spectrum will determine how to best handle energy-dependence.
The percent of neutrons above 1 keV varies between approximately 88% at inner
radius values to ~81% at the edge of the fuel region as shown in Figs. 2-8a-2-8h. A
monoenergetic handling of the energy-dependence can be assumed since the majority
of neutrons have energies between 1 keV and 10 MeV, using an appropriate group
weighting spectrum described by Bell and Glasstone [39]. After choosing a method for
handing energy-dependence, it becomes necessary to determine a method for handling
directional-dependence of the neutron flux.

Figure 2-9 shows the angular distribution of the flux 0.5 cm from the centerline (Fig.
2-9a) and at the edge of the fuel region (Fig. 2-9b). The angular distribution was tallied
at these locations to capture the two extents of the angular flux. A perfectly isotropic flux
would be a horizontal line with zero slope. If half of the neutron population is traveling
in either direction (inward and outward), then the neutron flux can be approximated as
isotropic with the understanding that deviations from isotropy will lead to errors in the
results. Figure 2-9a shows the neutron flux is slightly inward-peaked 0.5 cm from the
centerline with 50.278% of all neutrons traveling toward the centerline. This indicates
the flux can be approximated as isotropic near the centerline, a perfectly isotropic flux
would have 50% of neutrons scattering toward the center of the fuel region. The flux at
the outer edge has an outward peaked flux as shown in Fig. 2-9b. This is because the
neutron population density is high in the fuel region, since the source of neutrons is in
the fuel region, and neutrons are diffusing, or leaking, out of the fuel region where the
neutron population density is lower. The percent of neutrons traveling outward from the
fuel region 57.290% at the surface of the fuel region. While, the angular distribution in
Fig. 2-9b shows the neutrons are slightly forward peaked, the angular distribution of the

neutron flux deviates from isotropic by only ~7%, thus, can be approximated as isotropic
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Figure 2-8. Energy spectrum of the neutron flux at various locations in the MPC where
fuel rods are stored.
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Figure 2-9. Angular distribution of the neutron flux at 2-9a 0.50 cm and at 2-9b the inner
surface of the MPC (84.34 cm) from the centerline of the fuel cask.

with the understanding that this approximation may lead to some disagreement between
analytic and computational results.

Figure 2-10 shows the mean-free-path (MFP) of each of the materials in the fuel
region. The MFP is the average distance between neutron interactions in a material.
Figure 2-10 shows the MFP in the fuel (blue), cladding (orange), helium (green), stainless
steel (red), and neutron absorbing material (purple). The source flux is also shown in

grey to identify which energy regions are most important (i.e., energy regions where the
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source flux is higher are more important). Assessing the MFP of each material helps to
identify other assumptions and approximations that aid in determining the appropriate
mathematical model to represent the neutron flux. The MFP of helium is about 1 km
where the source flux is most intense near 1 MeV. The thickest region of helium occurs
between the fuel cells and edge of the fuel region and is on the order of 10 cm thick. The
MFP is approximately two orders of magnitude larger, meaning there will be a negligible
number of neutrons interacting in helium. The first material assumption is that helium
outside of the fuel cells can be neglected.

The remaining materials have a MFP of approximately 1 cm at 1 MeV. These
materials show up in the fuel region on the same order, therefore, the remaining materials
cannot be neglected. However, since these materials are evenly distributed (i.e., the
materials exist throughout the fuel region and not just at a single location) and since
the remaining materials have similar MFP’s, a homogenization technique can be used to
approximated the geometry in the fuel region.

A cylinder shaped homogenous fuel material is made based on the weight ratio of
each material in the fuel region. The volume of the homogenous cylinder of fuel material
is determined to preserve the volume from the 32 original fuel cells, and the radius of the
cylinder is approximately 75 cm. The volume around the cylinder of homogenous fuel is
treated as a vacuum in the mathematical model. The radius of the homogenized fuel is
about two orders of magnitude greater than the MFP of the materials used in the fuel
region (e.g., ~100 cm radius of fuel >> ~1 cm MFP). Hence, the diffusion equation is
an appropriate model since the fuel material is much thicker than the neutron’s MFP.
Therefore, the monoenergetic diffusion equation is an appropriate mathematical model to
represent the neutron flux in the fuel region, given the previous identified assumptions and
approximations derived from physical properties of materials in the fuel region.

A monoenergetic diffusion approximation is an appropriate choice of an analytic

model for the fuel region, however, that may not be the case for other materials in the
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Figure 2-10. The mean-free-path, or distance between interactions, of the materials in the
fuel region. The source flux is provided in order to identify energy ranges of
greater importance.

cask. It is important to identify how the flux behaves in the remaining materials of the
fuel cask and to identify appropriate models.
2.2.2 Stainless Steel MPC

The MPC encompasses the fuel area in a 2.5 cm thick stainless steel 304 cylindrical
container. Figure 2-11 shows the MFP in stainless steel 304, where MFP implies the
neutron MFP. The most important thing to notice from the figure is that the MFP is on
a similar order of magnitude as the thickness of the MPC. The diffusion equation is not
an appropriate model when a material’s thickness is fewer than a couple MFP’s thick.
Therefore, the diffusion approximation is unlikely to be an appropriate mathematical
model within the MPC. Instead, the multigroup discrete ordinates equation is a better
approximation in this situation.

The number of energy groups and angles required to adequately model neutron
transport in the stainless steel is still needed. Analyzing the energy spectrum at the

interior and exterior surface of the MPC aids in finding an appropriate number of energy
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Figure 2-11. The mean-free-path of neutrons in stainless steel 304.

groups. Figure 2-12 shows the neutron energy spectrum at the interior surface (Fig. 2-12a)
and exterior surface (Fig. 2-12b) of the MPC. At the interior surface of the MPC, the
neutron flux is ~81% above 1 keV and a single energy model would be appropriate. This
would be preferable since the group structure in the MPC would match the energy group
boundaries in the fuel region. However, the number of slow neutrons increases throughout
the thickness of the MPC, and Fig. 2-12b shows that ~70% of neutrons are above 1 keV.
Hence, a two group analytic model is preferable.

Analysis of the angular distribution (Fig. 2-13) helps to determine the number of
angles to use in the multigroup discrete ordinates approximation. Figure 2-13a is the
angular distribution of the flux at the interior surface of the MPC. Approximately 57%
of the neutrons are forward scattering at this point in the MPC. In the fuel region, the
flux is considered isotropic even though over half of the neutrons are traveling away from
the centerline near the outer surface of the cask. This is an acceptable approximation
since there exist locations in the fuel region that feature near-isotropic neutron flux

distributions. However, the neutron flux in the stainless steel is only forward-pointed,
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which alludes to using two angles to approximate the neutron flux. Finally, the multigroup

discrete ordinates approximation with two energy groups and two angles is chosen to

model neutron transport within the stainless steel.
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Figure 2-13. The neutron angular distribution at the a) inner surface and b) outer surface

of the MPC.

2.2.3 Dry Air Gap

Surrounding the MPC is a gap of dry air for heat removal from the fuel. Figure 2-14

shows the mean-free-path of neutrons in dry air. The MFP is two orders of magnitude
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Figure 2-14. The mean-free-path of neutrons in the air gap. The low density of gaseous air
leads to a high MFP. The air gap can be treated as a streaming region since
the MFP is much larger than the thickness of the air gap.

larger than the thickness of the air gap (~10 cm). Meaning, the air gap can be treated as
a vacuum and there is no need for a mathematical model in this region when modeled in
a planar geometry. The air region is treated in a planar geometry as the thickness of the
air region is small as compared to the distance which the air region is located from the
centerline (approximately ). The MCNP results confirm this assumption as 97.653% of
the flux is preserved through the air gap, meaning the flux is left relatively unchanged.
Further discussion concerning geometric coordinate systems is provided in Sec. 3.2.
2.2.4 Concrete Annulus

The 71.120 cm thick concrete annulus provides nearly half the neutron shielding
capabilities in the spent fuel cask due to scattering on hydrogen. Following a similar
method as before, the MFP of neutrons in concrete are investigated. Concrete, being
a thermalizing material, is expected to change the neutron energy spectrum through
down-scattering neutrons, so both fast and thermal energies need to be taken into account

when analyzing Fig. 2-15. At higher energies, 1 MeV, the concrete is about 7 MFP’s
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Figure 2-15. The mean-free-path of neutrons in the concrete annulus.

thick. Therefore, diffusion may not be an appropriate model for these energies of neutrons.
However, at lower energies, 1 eV, the concrete is about 35 MFP’s thick. At lower energies,
the diffusion approximation is an appropriate model. Overall, analysis of Fig. 2-15 would
indicate that a multigroup discrete ordinates approximation would be better suited as

an analytic model in the entire concrete. Further investigation of the neutron energy
spectrum and angular distribution will aid in solidifying a model choice.

The energy spectrum does change significantly over the thickness of the concrete
annulus. Figure 2-16a shows the neutron energy spectrum at the inside surface of the
concrete annulus. The neutron flux is ~63% above 1 keV at the innermost surface of
the concrete. The neutron flux is quickly thermalized and approximately a third of the
neutron flux is above 1 keV after the neutrons have traveled ten centimeters into the
concrete (Fig. 2-16b). At the exiting surface, less than 8% of the neutrons remain above
1 keV as shown in Fig. 2-16h. The large change in neutron energies means more than one
energy group will be required to model transport in concrete. The shape of the flux shows

the presence of two local maxima in the neutron energy spectrum that occur throughout
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the concrete region, one near 1 MeV and the other near 0.1 eV. Therefore, a two energy
group model is expected to be adequate. Analysis of the angular distribution will indicate
the number of angles necessary for the multigroup discrete ordinates model.

Figure 2-17 show the angular distribution at the entering and exiting surfaces of
the concrete annulus. Analysis of the angular distribution shows the neutron flux is
forward-peaked with ~55% of the neutrons traveling outward at the inner surface of the
concrete annulus. At the exiting surface, ~68% of the neutrons are traveling outward.

At the interior surface, the flux deviates from isotropic by 5%. Therefore two angles are
assumed to be adequate for capturing the neutron flux with the expectation that the
analytic model may show higher disagreement at the exiting surface of the concrete.
2.2.5 Carbon Steel Outer Shell

The 1.905 cm thick carbon steel shell is the final material being analyzed in the
spent fuel cask. Using a similar analysis as with previous materials, the MFP is compared
to the thickness of the steel shell to aid in determining a mathematical model. Figure
2-18 shows the MFP of neutrons in carbon steel. The most probable energy of neutrons
leaving entering the carbon steel shell is about 0.1 MeV, shown in Fig. 2-16h. Using
this information, the most probable MFP of neutrons in the carbon steel shell is ~1
cm. This is on the order of the magnitude of the carbon steel shell thickness. Therefore,
the diffusion equation is likely a poor choice of mathematical model and the multigroup
discrete ordinates equation is likely a better choice.

Figure 2-19 shows the energy spectrum at the inner surface (Fig. 2-19a) and outer
surface (Fig. 2-19b). The percentage of fast neutrons increases in the carbon steel, further
discussion of this effect is provided in Sec. 7.1.4. For this reason, two energy groups should
be used to model the neutron flux in the carbon steel.

Finally, the angular distribution graphs of the neutron flux entering the carbon steel
(Fig. 2-20a) and leaving the carbon steel shell (Fig. 2-20b) show the neutron flux is

forward peaked. In fact, at the inner carbon steel surface ~68% of the flux is traveling
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outward and that fraction increases to ~97% of neutrons traveling outward at the exiting
surface of the cask. Nearly all of the neutrons are traveling away from the cask because
the cask is placed in dry air. As shown previously, the MFP of neutrons in dry air is large,
greater than 1 km, resulting in a small number of neutrons returning to the cask after

leaving. The small number of returning neutrons provides boundary condition information
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cm) and the b) outer surface (166.370 cm) of the concrete annulus.

for the final model. Therefore, the outermost boundary of the spent fuel cask can be

treated as non-reentrant. The most simplistic analytic models are revealing of salient
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physics. As using two angles are chosen for the other materials, a two angle model is also

chosen for the stainless steel.
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Figure 2-20. The angular distribution of the neutron flux at the a) inner surface and b)
outer surface of the carbon steel shell. Since the flux is heavily
forward-pointed, two directions can be used to model the flux.

By no means are the previous choices in analytic models meant to be the most
exhaustive means of describing the neutron flux in each material. Rather, choices were
made in order to keep the models as simplistic as possible while capturing the physics of
the spent fuel cask in an attempt to highlight inherent phenomena in the problem. As will
be seen during the sensitivity analysis portion of the work, even these simplistic models
yield complex sensitivity results. Therefore, identifying any physical meaning using the
analytic models becomes challenging, if possible, even when using very simple models.
Chapter 4 compares the results of the analytic models (derived in Chp. 3), reduced-fidelity
models, and the detailed model.

2.3 Identification of Features

“Features” are locations in the simulated neutron flux spatial distribution shown in
Fig. 2-7 which appear to be the result of a physical process. Using a reduced complexity
analytic or computational model to reproduce a feature yields two benefits: 1) the physical

process that generates the feature in question is identified and, 2) confidence is gained in
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the accuracy of the simulation result. Confidence in the simulation result is gained when
a feature is determined to be a result of an understood physical process. That is, the
feature should exist in the problem, is being modeled correctly in the code, and is not a
computational artifact. Ensuring agreement between simplified and complex models also
corroborates the accuracy of the simulation input itself. Something as simple as inputing
an incorrect area or volume would not result in a fatal error message in MCNP, but would
lead to incorrect neutron flux results. The process of reproducing features using simplified
analytic and computational models provides an opportunity to identify errors in the
simulation input and addressing these errors leads to increased confidence in the accuracy
of a simulation.

There are five features discussed in this effort which are identified as:

1. The “flat” flux region (highlighted in Fig. 2-21): The flux in this region smoothly
decreases by approximately 36% even though intuition suggests the flux should
increase in the fuel pins and decrease in the space between fuel pins.

2. The abrupt level-off region (highlighted in Fig. 2-22): The flux only decreases ~3 %
over the region 65.000 cm < r < 84.100 cm from the cask centerline.

3. Periodic depressions (highlighted in Fig. 2-23): There is a ~2% reduction in the flux
near 25 cm, 50 cm, and 75 cm from the cask centerline.

4. The asymmetric flux: Figure 2-24 is a density plot of the neutron flux when looking
at a center slice of the cask from above. Figure 2-25 is a contrast plot to better
illustrate the neutron flux asymmetry present in Fig. 2-24. The neutron flux in the
upper left section (above the diagonal line) of the plot is less than the neutron flux
in the lower right section (below the diagonal line) of the image. This asymmetry is
most obvious at the outer edge of the fuel region.

5. The concrete flux (Fig. 2-26): The concrete region provides the second-most

significant reduction in the neutron flux within the cask. Identifying the processes
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The neutron flux spatial distribution between the cask centerline and inner
face of the MPC. The highlighted region is considered the flat flux region.
This neutron flux is relatively flat and does not vary on the same order as the
physical dimensions of materials in this region.

attenuate radiation in this region provides evidence the overpack was modeled

correctly.

Beyond investigating these features, the neutron flux in the MPC and carbon steel shell

are also investigated.

The remaining chapters will discuss how the results assessment methodology is used

to identify t

he salient physics in each of the previously identified features, as well as, how

confidence is gained in the simulation results of the detailed model through sensitivity

analysis. However, the next chapter will provide an in-depth background on neutron

transport theory and the development of the analytic models which will be used in the

analysis provided in Chpt. 4.
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The flux stops decreasing and instead levels-off in the abrupt level-off region.
The flux decreases less than 3% over the last ten centimeters before the
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There are three depressions in the neutron flux spatial distribution located

approximately 22 cm apart. The flux decreases about 2% at each depression.
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Figure 2-24. A density plot of the neutron flux at a “central slice” of the fuel cask as
viewed from above. This plot shows the neutron flux is less in the upper left
section than in the lower right section. The asymmetry is most evident in the
blue and light blue sections at the outer radius of the figure.
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Figure 2-25. A contrast plot emphasizing the asymmetry of the flux values.
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Figure 2-26. The overpack accounts for about half of the reduction to the neutron flux.
The purpose of investigating this region is to determine which physical
processes are responsible for the attenuation.
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CHAPTER 3
THEORY

The behavior of any nuclear system is governed by the distribution of radioactive
particles within the system. In the case of a system containing neutrons, the distribution
of neutrons can be found by solving the neutron transport equation (NTE). The NTE
is also referred to as the Boltzmann transport equation because of its similarity to
Boltzmann’s equation governing the kinetic theory of gas [40]. Finding an analytic
solution of the NTE for even the simplest geometries is a challenging task, since the
equation is an integro-differential equation defined over a seven variable phase space.
However, the application of assumptions and approximations to the energy and directional
dependence of the neutron flux lead to tractable equations. The NTE is derived before
applying assumptions and simplifications to reduce the NTE into two, distinct tractable
approximations; known as (1) the diffusion approximation and (2) the multigroup discrete
ordinates equations.

Before deriving the NTE;, it is important to define terms which will be used. The
neutron angular density,

N(r,Q, E. 1), (3-1)

describes the expected number of neutrons in the region of phase space defined by
a neutron’s position vector r, direction of travel Q, and kinetic energy E at time .
It follows that the expected number of neutrons at time ¢ in a volume element dV'
having energies in dE about E and directions within a narrow beam d$2 about € can be
described by
N(r,Q, E, t)dV dQdE. (3-2)

The angular flux is defined as the product of speed v and the number of neutrons,

A~ A~

p(r,Q E t)=uvN(r,Q, E t). (3-3)

62



Using the angular flux, the reaction rate is defined as
RI("”? Q? E? t) = EI(”" Q? E? t)¢(r7 Q? E? t) (3_4)

where R, (7, Q, E,t) is the frequency of interactions between neutrons and surrounding
materials. The parameter ¥, (7, Q, E,t) is called the macroscopic cross section for reaction
“x” (e.g., total reaction cross section, absorption cross section, scattering cross section).
The macroscopic cross section describes the probability of an interaction occurring per
unit length as a function of incoming neutron energy. The cross section dependence on ¢
and € are treated by assuming the composition of the material slowly changes in time and

nuclear reactions are invariant to incoming neutron angle respectively.

3.1 Derivation of the Boltzmann Transport Equation for Neutrons by
Derivatives

The NTE can be derived by “following” a group of neutrons, referred to as a packet,
through a material and describe how neutrons are gained or lost in time [39]. Neutrons
with energy E are lost from the packet as a result of a collision over the distance vAt,
whereas neutrons that do not interact over the distance vAt remain in the packet. The
probability of a neutron being removed from the packet over the distance vAt can then be
written as

Probability of a neutron

= Yy (r, E)vAt, (3-5)
being removed from the packet

and the probability of a neutron remaining in the packet over the distance vAt is defined

as
Probability of a neutron
=1-— X (r, E)vAt. (3-6)
remaining in the packet

Using 3-6, the number of neutrons remaining in the packet after traveling a small
distance of vAt is
Number of neutrons

= N(r,Q, E,t)[1 — %(r, E)oAt] dV dQdE. (3-7)

remaining in packet
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Eqn. 3-7 adjusts the neutron population accounting for neutrons which left the packet
through interactions, however, neutrons can enter the packet through two mechanisms: 1)
internal neutron source or 2) by scattering from one packet into another. The number of
neutrons which enter the packet from an internal neutron source is given by

Number of neutrons entering

S(r,Q, E,t)dV dQ dEAL. (3-8)

packet from internal sources
Neutrons can also enter the packet through scattering interactions, called inscattering. An
inscattering reaction occurs when a neutron belonging to the packet described by a volume
element dV with energies in dE’ about E’ and directions within d§¥ about €2’ undergoes a
scattering event leaving the neutron traveling in dQ about Q with energy in dE about E,
adding this neutron to the packet (r,€2, E,t). The probability of neutrons with energy £’
and direction €2 which scatter into the energy E + dFE with direction in Q2 + d$2 can be
written as:

Probability of neutrons entering

Yo(r, QY = QF — E tyuN(r, Y, E' t).  (3-9)
packet due to inscattering

Integrating definition 3-9 over all initial energies dE’ and initial directions d€’ yields the
number of neutrons that enter the packet due to inscattering,

Number of neutrons entering

packet due to inscattering

{ / a2 / AES,(r, ¥ — QE — E t)oN(r, Y, E' t)| AV AQdAEAt.  (3-10)
47 0

The neutron density at r + QAt at time ¢ + At is found by adding 3-7, 3-8, and 3-10
and before dividing the sum by dV dQ dE:

N(r+ QAL Q, Bt + At) =
N(r,Q, E, t)(1-S0At) (3-11)

J{/ dQ’/ AE'S,(r, ¥ = QL E — Et)N(r, SV, E' t) | At + S(r,Q, E, t)At.
47 0
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Dividing Eqn. 3-11 and taking the limit as At — 0 yields the result, after rearranging

terms,

N(r + QuAt, QL E t + At) — N(r,Q, E, t A
i |0 QAL B b+ AL = N(r. €, B, )} + XN (r, S, B, t) (3-12)
At—0 At

:/ dQ’/ AE'S,(r, Y = O E' — E,)N(r, 0, E't) + S(r, Q. B, ¢).
47 0

Simplifying the first term requires adding and subtracting N(r, OBt + At) to the
second term in the numerator of the fraction in Eqn. 3-12 and simplifying the expressions

A~

individually. Adding N(r,€2, E,t + At) to the second term in the numerator gives

N(r,Q,E,t +At) - N(r,Q,E,t)] 0N

ot At = (3-13)
Subtracting N(r, OBt + At) from the first term in the numerator leads to a
less trivial expression, but it is more readily derived when decomposed in Cartesian
coordinates as
. N(r+QuAt,Q,E t) — N(r, QE, t + At)
lim =
At—0 At
AlimON(x + QuuAt,y + QuAL 2 + QZAUtAt, Q Et)— N(z,y,2,Q, E, t)7 (3-14)
5

where r and  have components z, y, z and Q, Q,, €, respectively. The infinitesmal

QuAt is equivalent to Az. Equation 3-14 is then solved using the chain rule.

. N(JT—FALZ',ZJ—FAZ/,Z—FAZ)—N<I,y72)
lim =
At—0 At
AN Ax N ANAy+ANAz B
Az At Ay At Az At
ON ON ON R
UQxa—x + Uan—y—i—UQZ% =vQ)-VN (3—15)

Inserting the results of Eqn. 3-13 and Eqn. 3-15 into Eqn. 3-12, and using the
definition

o(r,Q,Et) = N(r,Q, E t)v (3-16)
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yields the NTE,

100 A )
;5§+Q-V¢+2W@ALE¢y: (3-17)

/‘dQC/ AE'S,(r, Y E  H)p(r, ¥, E' t) + S(r,Q, E, t).
4 0

In the previous discussion, internal neutron sources are handled in a general manner.
As an aside, a brief discussion of internal neutron sources is provided. A dimensional
analysis provides insight into how source terms are defined in the NTE. Since the NTE

describes the number of neutrons in a volume at a point in time, then the units must be

neutrons

neulrons _ oy in cgs units neer. This is easily confirmed by checking the units of one

Length3Time’

term in Eqn. 3-17. Analyzing the dimensions of the interaction term,

(3-18)

A 1 t
Yp(r, QB t) = [ } { neutrons } _ { neutrons }

Length | | Length?Time Length?T'ime

which confirms the previous statement. Therefore, any source term must have these same
units.

Internal neutron sources do not depend on the neutron flux. Instead, neutrons are
released from a nucleus left in an unstable energy state, typically a result of another
nuclear reaction (e.g., fission). Occasionally, neutrons are released as a mechanism for a
nucleus to relax to a more favorable energy state.

Writing an internal neutron source term to use in Eqn. 3-17 requires finding the
number of neutrons emitted per unit volume per unit time. Chapter 2 discussed using
ORIGEN to find the neutron source distribution used in MCNP. ORIGEN outputs the
neutron source density from decaying nuclei and the output is compatible with Eqn. 3-8.

3.2 Cylindrical to Planar Coordinate Shift

The cylindrical shape of the spent fuel cask immediately lends to a cylindrical
geometry for the mathematical models. However, given the large extent of the cask, it is
expected that there exists a point along the radius of the cask where cylindrical geometry

can be relaxed to a planar geometry with negligible effect to the neutron flux. This point
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can be found through a dimensional analysis by developing non-dimensional forms for both
the radial and planar diffusion equations.

Non-dimensional analysis is a process where an equation is rewritten in a manner such
that there are no units in the problem (i.e., all parameters and variables in an expression
are redefined using ratios rather than dimensional quantities). A comparison can be made
between the non-dimensional forms of the 1-D cylindrical diffusion approximation and
1-D planar diffusion approximation to determine the location where planar geometry is
appropriate.

Starting with the geometry-independent diffusion equation,

d2¢
~DV—— +%,6=5. 82
Vst Y= (3-82)

where the second derivative has been written using the gradient, D is the diffusion
coefficient, ¢ is the scalar flux, ¥, is macroscopic absorption cross section, and S is the

source term. The monoenergetic, steady-state, 1-D planar diffusion approximation:

d?¢
—-D—4+X.0=25. -82
2 +X0=3S5 (3-82)

.. . . 92 _ ¥,
Diving the equation by —D and defining L™ = 33,

d?¢ 1 S
_ —Z —=0. 3-19
dx? L2 + D ( )
Non-dimensionalizing x,
x
F= = 3-20
T L’ ( )

where Z is the non-dimensionalized form of 2. The first derivative becomes

dz = Ldi (3-21)

in non-dimensional form.
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The second order differential of , da?, becomes
da?® = L*ddz*.

Eqn. 3-82 then becomes
1d% 1 S

Far 2° ="
or,

d2¢ L2S

mw vt =0

Note: % has units of Length 2Time~!, which are the same units as ¢. So,

]
or,
-L*S
0=,
where ¢ is the non-dimensionalized form of ¢. The second differential of ¢ becomes
LS -
d’¢ = Tngb.
Using QNS, Eqn. 3-24 is written as
L%Sd%%__L?9~%_L%9::O
D dz? D D ’
or, i
gg—é+1:0

The 1-D planar diffusion approximation is now expressed in a non-dimensional form.

Expressing the gradient in Eqn. 3-82 in 1-D cylindrical coordinates yields

1d /[ do 1 S

;5(7“5)—? tp =0
or,

¢ 1de 1.5

dr2 = rdr L2 D
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(3-23)

(3-24)

(3-25)

(3-26)

(3-27)

(3-28)

(3-29)

(3-30)

(3-31)



Let

,
. 29
r=T (3-32)
and,
- oD
0= (3-33)

Using the non-dimensionalized variables defined in Eqns. 3-32 and 3-33, Eqn. 3-31
can be rewritten as

— - — 0+ 1=0. (3-34)
Then, the curvilinear form of the diffusion equation is
f—i+§%—&+1:o, (3-35)
where & = 0 for planar geometries and £ = 1 for cylindrical geometries. Further, plotting
the variable % for k = 1 will show the location where accounting for cylindrical geometries
becomes negligible. Figure 3-1 shows the result from the previous dimensional analysis
using material properties of the fuel materials. The black vertical line in Fig. 3-1 shows
the location where the value of 1/7 (since & = 1 in cylindrical) is 1.411, or 10% of its
initial value (14.112). The location of the vertical black line shows where the cylindrical
and planar models agree within 90%, and is located at 10. 260 cm. After 10.260 cm
materials can be approximated using planar equations. Meaning, the flux in the fuel
region will need to be approximated using a cylindrical diffusion equation, but the MPC,
concrete annulus, and carbon steel shell can be approximated in a planar geometry.
3.3 Reduction of NTE
Upon inspection of Eqn. 3-17, there are four derivatives on the left-hand side of the
equation (one in time and three spatial derivatives) and three integrals on the right-hand
side of the equation (one in energy and two in direction). Equations containing both

integrals and derivatives are called integro-differential equations and are among the

hardest forms of problems to solve. Further, the NTE is a function of seven variables;
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Figure 3-1. As the factor % decreases, the planar solutions better approximate cylindrical

solutions in the homogenous fuel material. The location of the black vertical

line shows the point where the factor é is 10% of its initial value at » =10.260

cm.

three spatial, two direction, one energy, and one time. In its current form, the NTE has
no complete analytic solution. Therefore, assumptions and approximations are applied
to reduce Eqn. 3-17 into a tractable form. The following sections will discuss how the
multigroup discrete ordinates equation and the 1-D cylindrical diffusion approximation are
derived from the NTE.
3.3.1 Treatment of Time Dependence

The time dependence is contained in the first term in Eqn. 3-17. Assuming the
neutron flux is unchanging or slowly changing in time will simplify the time-derivative to

zero. This is a fair assumption in the context of the cask since the time between neutron
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interactions is much smaller than the time over which the neutron flux is evolving [41]. In

this assumption ¢ is taken to be independent of time, and

0% _

o = 0. (3-36)

Then Eqn. 3-17 becomes the steady-state NTE,

A

Q- Vo(r,Q, E)+3(r, E)p(r,Q, E) =

/ dﬂ’/ dE'S,(E' — E,S = Q)¢ (r, Y, E') + S(r, E, Q). (3-37)
4 0

Even after eliminating the partial derivative in time, Eqn. 3-17 is still not tractable
due to the three spatial derivatives and three integrals. Therefore, further reduction is
necessary.

3.3.2 Reduction to 1-D Planar

The hight of the cask (approximately 570 cm) is much greater than the MFP of
neutrons in the homogenous fuel, MPC, concrete, and carbon steel which have values
less 10 cm, Figs. 2-10, 2-11, 2-15, and 2-18. Meaning neutrons in the materials do not
effectively “see” the upper and lower boundaries of the spent fuel cask and the materials
can be treated as infinite, or rather, having one spatial dimension.

Reducing the problem from three spatial dimensions to one spatial dimension
eliminates two of the three spatial derivatives and one of the two direction derivatives.
As an aside, the components of the direction vector Q are ¢ and € components. ¢ is the
azimuthal angle and € is the polar angle. It is common to define the variable p in terms of
0 as

i = cosb, (3-38)
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where p is defined over the range [-1, 1] and ¢ is defined over the range [0, 27]. Integrating

Eqn. 3-37 over y, z, and ¢ reduces the dimensionality of the problem as

00 e’} 27
/ dy/ dz/ dpQ - Vo(r, 2, B) + 3,(r, E)o(r, Q, E)— (3-39)
—0o0 —00 0
/ dQ’/ AE'S,(E'— E. QY = Q) (r, ¥ E') + s(r, E, Q). (3-40)
47 0

(3-41)
Solving the integrals yields:

0
oo, B u)+Ez, E)p(e, B, p) = (3-42)

[e'e) 1
o / / S, B 1 = B, p)pla, B 1) Ayl dE' + S(x, B, ).
0 -1

Eqn. 3-42 is the steady-state 1-D planar form of the NTE. While this equation
appears much simpler to solve, the derivative on the left-hand side and two integrals
on the right-hand side indicate the equation is still an integro-differential equation and
further simplification is required to arrive at a tractable form. There are two common
reductions to Eqn. 3-42, 1) the multigroup discrete ordinates approximation and 2) the
diffusion approximation. The following sections apply each of these approximations to
the NTE in order to arrive at two tractable forms of the NTE which will be used in the
remainder of this work.

3.4 Multigroup Discrete Ordinates Approximation

The multigroup discrete ordinates equations handle the two integrals on the
right-hand side of Eqn. 3-42 by treating the integral over energy as integrals over energy
ranges and approximating the integral over u by evaluating the neutron flux at discrete
angles within the full range of [-1, 1]. The final result is a set of coupled, first-order

ordinary differential equations that are analytically tractable.
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3.4.1 Treatment of Energy Dependence

The first step in developing multigroup equations is to divide the neutron energy
range of interest into a finite number of energy groups, E,, where g = 1,2, ..., G. The order
of the energy group number is such that energy decreases as the group number increases,
(e.g., Ey > Ey11) [39]. Energy groups are typically chosen such that the total cross section
shows little variation within a group. This is done in order for the group averaged cross
section to best represent the energy-dependent cross section values of that group.

Integrating Eqn. 3-42 over g yields

/,u%cp(x,E, i) dE—i—/Et(x,E)go(x,E,,u) dE = (3-43)

g g

J/ N J/

v~

(1) @)

00 1
/2%/ / Yo(w; B pf — E p)p(x, E' () dp’ dE' dE+/S(m,E, w)dE,
g 0 -1

g
J/ . ”
~~ ~~

®3) (4)

where each term will be discussed individually. Before continuing, it is important to define

the the group flux and group cross sections as:

%(%M)E/ "~ o(z, E, 1) dE—/SO(%EaM) dE, (3-44)

Eq g

fg Et(xv E;N)W@’Ea /L) dE
g, B, 1)

Eigla,p) = , (3-45)

Jye(, B ) [ 2 Sa(a; B ff — B, p) dy dE dE’
QDQ/(IE,E/,/L) ‘

Es,g’—)g(x7 ,U) = (3_46)

@g(x, p) is the group averaged flux, ¥, ,(z, p) is the group averaged cross section, and
Zs,g/_hq(m, ) is the group to group, or transfer, cross section.

Definitions 3-44 - 3-46 are used to rewrite Eqn. 3-43 term by term. The first term of
Eqn. 3-43 is rewritten in terms of the group flux, 3-44 as

0 0
[ gt B 4B = oo ). (3-47)

g
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Rewriting the second term in Eqn. 3-43 using the total group cross section, Eqn. 3-45,
yields
[ S Bl B 4B = Sy )iy, ) (3-48)
g
The third term in Eqn. 3-43 requires a bit more work. If the integral of dE’ is taken over

each individual energy group rather than over 0 to oo, then

fo'e) G Eq’—l G
/ dE' =) / COdE' =) / dE, (3-49)
0 g=1 9 g'=1 g

and the third term can be expressed using group constants, Eqn. 3-50.

G
| B[S B dBAE = Y Sy (e o) (3-50)
g/

g g'=1
Finally, the fourth term is the group source term, Eqn. 3-51. The group source term
describes an arbitrary internal source of neutrons with energy in group g.
[ 8B = 5,600 (3-51)
g
Using the redefined terms, Eqns. 3-47 - 3-51, Eqn. 3-43 becomes a set of equations

characterizing the flux in each energy group:

G
0
/’L% + Et,ggpg = 27T Z/ Es7g/~>gg09/ + Sg, g — 1, 2’ . G (3_52)
g'=1 —1

3.4.2 Treatment of Directional Dependence

Equation 3-52 is a set of monoenergetic NTEs where each equation defines the flux for
the energy group g. Therefore, if a method for handling the directional dependence can be
found for a single equation in the set of equations, the same method can be extended to all
equations in Eqn. 3-52. The discrete ordinates method can be used to handle the integral
over p. Figures 2-9, 2-13, 2-17, and 2-20 show the angular distribution of the neutron

flux in each material. The neutron flux is isotropic within 7% at locations interior to the
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outer surface of the concrete annulus. A relatively isotropic neutron flux through the fuel
region, MPC, and part of the concrete annulus acts as an indicator that scattering can be
assumed to be isotropic. Therefore, assuming isotropic scattering, the inscattering term

reduces to
G 1 1 G 1
2m Z/ Ssg gy At = ) Z 28»999/ pg dit, (3-53)
91:1 _1 g/:1 —1

and Eqn. 3-52 reduces to

dp
”’ag Sty = szgﬁg/ 0y + Sy, g=1,2,...,G. (3-54)

Discrete ordinates treats directional dependence by evaluating the integral over p at
a unique set of directions, {yu;}. Evaluating the integral in Eqn. 3-54 at each value of p;

leads to a weighted sum of neutron fluxes, Eqn. 3-55.

1 N
/ =D widy () (3-55)
S

Evaluating Eqn. 3-54 along the set of direction vectors {u;}, using Eqn. 3-55, results in

the multigroup discrete ordinates equations:

dg? R G /
pig + NI = §ij223,ggg¢g +89,  ¢g=1,2,..,G;i=1,2,..,N, (3-56)
: —

where w; are weights used in the multigroup discrete ordinates equation. The weights are
equal to one in a two direction formulation of the discrete ordinates equation [42].
Section 2.2 identified the multigroup discrete ordinates approximation using two
energy groups and two directional angles for multiple materials in the cask. Therefore, a
set of equations are derived from Eqn. 3-56 using two energy groups (¢ = 1,2) and two

directions (i = 1,2). Iterating over both indices one at a time leads to the following set of
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equations:

g=11i1=1

doi

i mtot = L (S0 4 20l + T2 + Ei*lwgaﬁ) LSk (357)

1
T 2
g=11=2

des 1
m% + Xy = 3 (ziﬂwmﬁ + D1 wagy + X2 7w 6] + z?lwﬁ)g) + 5k (3-58)

g=2i=1
d¢i

pi—— + Xi¢7 =

o Do + S ol + S+ 5T} ) + 5% (359

1
2
g=2,i=2

de3 1
N2% + X705 = 3 (Ei_ﬂwmﬁ + X205 4+ X220, 07 + zganggb%) + 83, (3-60)

Further, the materials in the cask are assumed to be at temperatures where upscattering
in negligible. Duderstadt and Hamilton say upscattering effects are can be neglected above
10kT, where k is Boltzmann’s constant, 8.6172107° eV K1, and T is the temperature

in Kelvin. From the Final Safety Analysis of the HI-STORM 100 spent fuel cask, the
maximum allowable temperature of the fuel cladding is 673 K [36]. Then, upscattering
effects can be neglected for neutron energies above 0.580 eV. Chapter 2 identified 1

keV as the fast group threshold, which is much much greater than 0.580 eV. Therefore,
upscattering is assumed to be negligible. Moreover, there are assumed to be no internal

neutron sources within the MPC, concrete, and carbon steel shell. These assumptions are
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used to reduce Eqns. 3-57-3-60 to:

g=1l1=1
d 1
Nl% + 31 = ) (Zl_ﬂw 1 + Zl_ﬂa@%) (3-61)
g=11=2
¢2 vl — LiGist, =1, 41 ).
M2 dz + ¢2 - 5 Es w1¢1 + z:s CU2¢2 ) (3_62)
g=2,1=1
d¢2 2 1 1—=2 1-2 2—2 2—2
,uld— + X207 = 3 Y2017 + 2000 + 272017 4 B2 %w0¢s | (3-63)
g=21=2
1
S 526 = (S0l + D g+ S 4 S ). (6)

3.5 Reduction to Diffusion Approximation
The diffusion approximation is an alternative reduction of the NTE. There are several
methods for deriving the diffusion approximation, however, this derivation uses Legendre
polynomial expansions to account for angular dependence in the equation [43]. The NTE
can be simplified through the use of spherical harmonics, which in 1-D, reduce to Legendre
polynomials to expand the angular flux and source terms while assuming an isotropic
angular differential cross section. The 1-D planar, monoenergetic, NTE with isotropic

scattering is

oot 1)+ Tu(@)p(z, p) = (3-65)
1

1
5/ Es(w, ) — p)o(z, 1) dp’ + Sz, p)
-1

Expanding the angular flux with Legendre polynomials separates the directional and
spatial components of the angular flux. Legendre polynomials exhibit an orthogonality
property, Eqn. 3-66, and a ”3-term recursion” relationship, Eqn. 3-67, which are used in

deriving the diffusion approximation, where P/, (1) are the Legendre polynomials of order
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[ or m respectively and ¢, is the Kronecker delta, equal to 1 when m = [ and 0 otherwise

[43)].
/_ 1d#Pl(M)Pm(M) = QZilézm (3-66)
20+ DpBi(p) = I+ 1) Paa(p) + () P-1(p) (3-67)

Expanding the angular flux in Eqn. 3-65 yields:

3[2”“@( )\ >}+2t2”“¢z< VPi() = (3-68)

'u(%c

5 [ st 3 2 )R + 5,

l

Requiring the projections of Eqn. 3-68 against Legendre polynomials of degree m

(e.g., Py,) to be equal to 0 leads to

[ 2 [ 2 awneraon] + [ as S 2 awreora = @

1=0 1 1=0

[ apa [ s S 2 awnon + [ (o) P

2
1 1 1=0

The summation is truncated at [ = 1 since the first two terms are all that is necessary for
finding the diffusion approximation.

Using the recurrence relationship, Eqn. 3-67, in the first term of Eqn. 3-69 yields

> ot 09l [ / pg P Pul) + [ dugPaPa)|- 70

Applying the orthogonality gives,

(m—1)+1 2 O¢p-1(x) Lm +1 2 0¢pmii(x)

3-71
2 2m+1 Oz 2 2m+1 0x ' ( )

or,

m Opm_1(x) N m+ 1 5’qu+1(x).

3-72
2m +1 ox 2m+1 ox ( )
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The second term in Eqn. 3-69 is also solved using the orthogonality property as,

23 2 o) [ aunra (373
— 1
such that, X
> ; 2! ; 1¢m(:v)2m2+ T (3-74)
or,
S (). (3-75)

Solving the third term of Eqn. 3-69 involves calculating the values for P/, () for
I,m = 0,1, which are Py(u) = 1 and P;(u) = p. Note each integral evaluates to 0 when
either [ or m is odd. Alternatively, the scattering term evaluates to 2¢,, when [ and m are

0.

1 1 1 2¢0; l and m =0

1 20+ 1 0;

32 355 [ e [ dupan - (3760
=0 - -

0; else.

And the final term in Eqn. 3-69 is simply redefined as:

A~

SmE/ duS(z, Q)P (). (3-77)

1

For an isotropic source, S, = 0 for m > 0.

Combining the terms leads to the final set of P, equations, Eqns. 3-78 and 3-79.

0
90 1 00 = St + 50 (3-78)
ox

LO¢py | 20¢, B

3or THar Tl =5 (3-79)

If this set of equations were solved for ¢q, the result would be the diffusion approximation.

Unfortunately, there are three unknowns (¢g, ¢1, and ¢,) and two equations. In fact, this

set of equations will always have more unknown variables than equations. Therefore, a
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closure condition is needed to truncate the set of equations by setting ¢,, = 0 for n > 2.

Eqgn. 3-79 then becomes

—1 0¢y
= —— 3-80
¢1 32,5 ox ( )
which is Fick’s Law [43].
Substituting Fick’s Law in Eqn. 3-78 for ¢,
0 | —1 0¢y
| == ) =3, So, 3-81
8:70[32,5 ax}Jr b0 = 2o + 5 (3-81)
which simplifies to the 1-D, mono-energetic, steady state diffusion approximation:
0o
-D 522 + X0 = So, (3-82)
where D, the diffusion coeffificent is defined as
D=_1 (3-83)
3%

when D is independent of x. The second derivative, g—;, results from expressing the
Laplacian operator in a planar coordinates systems where the coordinate-independent
diffusion approximation is

—DV?¢g + Saho = So, (3-84)

from Duderstadt & Hamilton [41]. Given the cylindrical geometry of the cask, the
diffusion equation is expected to be applied in a cylindrical coordinate system. Equation
3-85 is the 1-D cylindrical, steady-state monoenergetic diffusion equation where the

Laplacian has been expressed in cylindrical coordinates.

1d<d¢0

T?) + Ea¢0 = S() (3_85>
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CHAPTER 4
ANALYSIS OF SUB-PROBLEMS

This chapter analyzes each sub-problem in depth according to the results assessment
methodology using the mathematical models identified in Sec. 2 and derived in Sec.
3. Through the explanation of the causes of each feature, confidence is gained in the
correctness of the detailed MCNP simulation.

4.1 Discussion of Fuel Region Sub-problems

4.1.1 Flat Region

Chapter 2 identified the analytic model choice for each material region. However,
differential equations only yield unique solutions when coupled with boundary conditions.
Therefore, a discussion identifying appropriate boundary conditions in each material is
provided. The fuel region has a unique geometry-induced feature at the center of the
cylindrical fuel region where the radius is 0. The geometry at the center of the cask
suggests the central symmetry boundary condition which limits the solution to a finite

value at the centerline of the cask, where r = 0, as

lim ¢(r) < o0. (4-1)

r—0

Further, at the exiting surface of the fuel region, an approximate non-reentrant boundary

condition associated with Eqn. 3-85 is

¢(7“b + d) =0, (4—2)

where 7, is the vector of positions comprising the outer surface S of V, and d is an
“extrapolation distance” given by

d=2.13D. (4-3)

Equation 4-2 is intended to qualitatively reproduce the neutron flux behavior at the outer
surface of a non-reentrant convex body, as otherwise observed from more general neutron

transport scenarios [44].
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Table 4-1. Summary of cross section data in the homogenized fuel.

Parameter Values

S 20.1430 %
Ye 0.01756 %
Xy 0.00260 %
Y 0.02981 %

v 2.6475 neutrons
Tp 84.34 cm

Table 4-1 summarizes the input parameter values which are used in Eqn. 4-5. These
values are calculated using the NJOY cross section processing code, where the cross
section data is a composition of the isotopes in the fuel region by weight fraction, made in
a similar manner to the homogenous fuel composition [45].

Initially, the flatness of the first feature, Fig. 2-21, suggests that a reduction in fine
structure detail can be used to adequately represent a substantial portion the fuel region.
Each fuel pin is approximately 1 cm in diameter, yet the neutron flux spatial distribution
does not show variations at the centimeter level. Fluctuations in the neutron flux spatial
distribution at the centimeter level would require any simplified models to also preserve
geometric structures at the centimeter level, but the absence of these fluctuations implies
that geometric reductions are possible. Therefore, an MCNP model is developed with a
homogenized fuel in the MPC.

For the purpose of clarity, this fuel composition is called “fully homogenized” since it
incorporates all the materials inside the MPC. The fully homogenized fuel composition is
determined by calculating the mass fractions of each material in the MPC (the stainless
steel basket, the neutron absorbing pads, the helium backfill, and the fuel rods). Finally,
the density of the fully homogenized fuel is calculated based on the mass fraction of each

material to account for the various densities of materials in the MPC (10.44 —Z; for a

single fuel rod vs. 2.31 —Z4; for the fully homogenized fuel). The entire interior volume of

cm3

the MPC is filled with the fully homogenized fuel material. Figure 4-1 is a cross section
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Figure 4-1. The homogeneous model. The gray circle is the fully homogenized fuel which
fills the entire volume interior to the MPC.

view of the corresponding MCNP model using the fully homogenized fuel material. This
model is referred to as the “homogenous model”.

Figure 4-2 shows the homogeneous model neutron flux spatial distribution through
the fuel region of the MPC as calculated using MCNP, together with the complementary
result from the detailed model. The inset graph shows the relative error between the

analog model and the detailed model determined by

¢(r)analog - ¢(r)detailed _
gb(r)detailed (4 4)

relative error(r) =

where ¢(7)anaiog 15 the neutron flux value at location r for the analog model (i.e.,
homogenous model, helium model, analytic model) and ¢(7)getaitea i the neutron flux
value at location r given by the MCNP detailed model. From Eqn. 4-4, the homogenous
model over predicts the neutron flux spatial distribution by 20-25% through the fuel

region. Even though the reduced model overpredicts the detailed flux, the shape of the
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neutron flux spatial distribution predicted in both models shows a steady decrease across
the inner 65 cm. The relative flatness of the two fluxes is evidence that the inclusion

of geometric details is less important than the material properties within the MPC. To
further corroborate this notion, Fig. 4-2 also includes results from an analytic model:
the dotted line appearing in this figure is a result from monoenergetic, 1-D cylindrical
diffusion theory, Eqn. 3-82, which is derived in Sec. 3.5. In this analytic setting, the

monoenergetic scalar neutron flux across a 1-D cylindrical region with constant material
properties is given by

(- s B

where « is the intrinsic neutron source, B is indicated in terms of the macroscopic total

absorption cross section >J,, macroscopic fission cross section ¥, and mean number of
neutrons per fission 7, and diffusion coefficient D, I; is the modified Bessel function of the
first kind, and 7 is the extrapolated radius of the fuel region. The cross section values in
Eqn. 4-5 are representative of the homogenous fuel. The spatial curvature of the scalar
flux appearing in Eq. 4-5 is controlled principally by the material buckling B; as the value
of B increases (resulting when absorption physics is dominant over scattering physics) the
neutron flux spatial distribution calculated in Eq. 4-5 produces a flat distribution in r -

as in the fuel region of both the detailed and helium computational models. This result

is discussed further in conjunction with the sensitivity discussion corresponding to the
diffusion approximation in Sec. 7.1.1. The flatness of the diffusion model is proof that the
flatness seen in the MCNP models is controlled by material properties (e.g., cross sections)
rather than from geometric details (e.g., physical extent of each fuel rod). If the physical
extent of the fuel rods were to control the shape of the neutron flux, the results of neutron
flux in the detailed model would likely show oscillatory behavior at the 1 cm level, since
the fuel rods have diameters of approximately 1 cm. Moreover, the neutron flux would

show local maximum values at locations coincident with each fuel rod and local minimums

84



Flux in Fuel

1600 1 -=== 1-D Polar Diffusion
T [ ] © ® ©
1400 ro®oo ®ceog0,e P Hongeneous Model
________________________________ eoe g, —f— Detailed Model
____________ CXCIA
1200 poeer— T TTEEes
—~f e
— - ‘~Q\Q
é " 1000 Ratio of Difference NQ‘Q
s(E 061 _--. 1.D Polar Diffusion
g v 800 —— Homogeneous Model
< . 04
= 60015 ,
. € 02 T M T A A e
R
400 § 00}
2001 -o2f
0 0 ) 20 30 Dls::nce Icm]so 60 70 80
0 10 20 30 40 50 60 70 80

Distance [cm]

Figure 4-2. The results of the simulated neutron flux spatial distribution from the
homogenous model (circles) is similarly flat to the neutron flux spatial
distribution of the detailed model (solid line). The flux calculated using the
diffusion approximation (dotted line) is also plotted against the two MCNP
models. The diffusion approximation also shows the flatness of the neutron
flux spatial distribution.

at locations between fuel rods. However, this behavior is not observed in Fig. 4-2. Instead,
the flatness of the neutron flux observed in the detailed model is shared by the diffusion
solution, Eqn. 4-5, where the geometric details have been homogenized but material
properties are preserved in the development of Eqn. 3-85. While the diffusion model
captures the essential physics giving rise to the flat flux region, it does not adequately
capture the abrupt level off within the fuel region for » > 65 cm.
4.1.2 Abrupt Level-off Region

In order to better capture the physics which describes the second feature (Fig.
2-22), a second model is developed. The purpose of this model is to capture the physics
associated with the neutron flux spatial distribution suddenly flattening before exiting
the MPC. Intuitively, since geometric attenuation is minimal and the MFP for neutrons
(approximately 70,000 cm at 1 MeV) is much greater than the thickness of the region

between the fuel basket and MPC wall (approximately 10 cm), a free streaming (i.e.,
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constant flux) approximation is likely to be valid there. Figure 3-1 confirms that geometric
attenuation is minimal at these locations, in fact geometry accounts for a difference of
0.115% between neutron flux values calculated in planar and cylindrical geometries. To
further corroborate this notion, the homogeneous model is modified to add an annulus of
helium around a fuel region which is reduced in radius in a manner which preserves the
volume of the original 32 fuel cells. This model is referred to as the “helium model”. Fig.
4-3 shows the difference between the homogenous and helium models. The composition of
the fuel region is changed to account for the helium now present in the annulus. The new
homogenized fuel composition, called the partially homogenized fuel composition, is made
using the mass fractions of materials in the 32 fuel cells (the stainless steel fuel basket, the
neutron absorbing pads, the helium interior to the fuel cells, the fuel rods) and the density

of the material is adjusted to account for the reduced amount of helium (2.95 —Z3).

Il Carbon Steel Il Carbon Steel
D Concrete D Concrete
[ Dry Air

[ Dry Air

B Sstainless Steel B Sstainless Steel
Il Helium B Helium

[ Fuel [ Fuel

(a) (b)

Figure 4-3. A) Section views of the homogeneous model, B) Helium model. The helium
model includes an annulus of helium gas, ~10 cm thick, added around the
homogenized fuel to allow streaming at the edge of the fuel region. Not to
scale.

Given the fuel composition of the helium model, these input parameters are evaluated
using the nuclear data processing NJOY code [45], where the necessary calculations

proceed by weighting the cross section values against the neutron source energy spectrum
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Table 4-2. Summary of cross section data in the homogenized fuel of the helium model.
Parameter Values

S 20.1430 %
Ye 0.02264 %
Xy 0.00335 %
Y 0.03842 %
v 2.6475 neutrons
Tp 74.68 c¢cm

(Fig. 2-6). Otherwise, the nominal input parameter r{ is the radius of the homogenized
fuel material, » = 74.68 cm. Table 4-2 provides a summary of input parameter values
calculated for the homogeneous fuel associated with the helium model. These values

are used in the analytic model, the 1-D cylindrical diffusion approximation (Eqn. 4-5),
where the fuel composition and geometry have been modified to account for the added
helium annulus. That is, Eqn. 4-5 models the neutron flux in the fuel (0 cm—74.68 cm),
where the cross section values have been recalculated to account for the new fuel material
(matching the fuel material from the helium model). The flux is considered constant from
74.68 cm to 84.34 cm. Holding the flux constant is equivalent to free-streaming in a planar
geometry, as curvilinear effects are determined to be negligible between 74.68 cm to 84.34
cm from Fig. 3-1.

Figure 4-4 shows the results of the simulated flux, using MCNP, in the helium model
as compared to the detailed model. The fuel region, containing the partially homogenized
fuel material, has a smaller radius and the analytic solution is held constant for r > 7. The
increased density of the fuel in the helium model increases the total neutron absorption
and thus lowers the amplitude of the neutron flux spatial distribution. The flux flattens
out over the last 20 cm, which is a result of adding the non-interacting helium annulus.
Again, the effect of geometric attenuation in a cylindrical geometry is not observed, as
curvilinear effects are minimized. Fig. 3-1 shows that curvilinear effects account for a
0.115% discrepancy between 1-D planar and 1-D cylindrical geometries. As a result, the

helium model better demonstrates that the flatness of the detailed and helium models and
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Figure 4-4. The neutron flux spatial distribution simulated by the helium model (circles)
captures the neutron flux spatial distribution flattening out in the detailed
model (solid line) over the 20 cm region before exiting the fuel region. The
diffusion approximation (dotted line) also captures the flux flattening near 65
cm from the cask centerline after adding a helium annulus for neutron
streaming.

the diffusion (including a free-streaming) model match, with the exception of the three
depressions present in the detailed models. These results show neutrons streaming through
the helium region exterior to the fuel cells before exiting into the MPC even though the
helium model and the analytic model do not capture the small depressions.
4.1.3 Inter-bundle Depressions

To this point, the simulation results assessment has shown that explanation of causes
for the first two features, the flat region and abrupt level-off regions, does not necessitate
simulation of geometric details at the individual fuel pin level. However, the physics
associated with the three small depressions in the detailed model (seen in Fig. 2-23) has
not been explained. Intuition suggests it seems necessary that some level of geometric
detail needs to be added back into the reduced complexity simulations to identify the

cause of the final two features.
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The scalar flux depressions depicted in Fig. 2-23 represent the third feature and
are presumed to be caused by the neutron absorbing pads that are present between fuel
bundles, located at —71.62 < r < —71.41 cm, —47.61 < r < —47.40 cm, —23.61 < r <
—23.40 cm, 0.40 < r < 0.61 cm, 24.40 < r < 24.61 cm, 48.41 < r < 48.62 c¢m, where 7 is
the distance from the cask centerline. These pads contain B, which has a propensity for
absorbing thermal neutrons. To corroborate this notion, reintegrating the stainless steel
basket structure and neutron absorbing pads is expected to capture the depressions not
found in the previous models. Again, comparing the MFP of neutrons in stainless steel
304, the neutron absorbing pads, and fuel rods in Fig. 4-5 shows the MFP is dominated
by the absorbing component at a level of approximately 10 cm (or less, depending on the
energy of the incident neutrons). These MFP’s are similar to the physical thickness of
the stainless steel (0.4 cm thick), neutron absorbing pads (0.207 cm thick), and fuel in
the MPC (21.42 c¢m thick). Where, the MFP of 1 MeV neutrons, neutrons with energies
near the maximum neutron source energy of 2.71 MeV, is approximately 10 cm in the
fuel, 3 cm in the neutron absorbing pads, and 0.5 cm in the stainless steel. Therefore,
the neutrons present within the fuel region will likely undergo an appreciable number of
interactions in the stainless steel and neutron absorbing materials. However, the neutron
flux is expected to decrease in the steel and neutron absorbing pads, as, no neutrons are
being generated in these materials in the MCNP models (the MCNP models only simulate
neutrons and other types of radiation are neglected, such as a particles generating
neutrons through (a,n) reactions).

Another MCNP model is developed to describe the cause of the depressions, Fig. 4-6.
This multi-layered model is called the “1-D basket model” and represents a single row
of fuel cells from the detailed model with one difference: the volume attributed to fuel
materials. In this model, the interior volume of each fuel cell contains a cell homogenized
fuel composition with helium on both sides and neutron absorbing pad to the left. The cell

homogenized fuel composition is determined using the mass fraction of materials which
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Figure 4-5. The mean free paths for stainless steel 304 (blue), neutron absorbing pad
material (orange), and fuel pin material (green). These three mean free paths
are similar to the physical thicknesses of each material implying that the steel
and neutron absorbing pads need to be included in MCNP simulations as
discrete materials instead of being incorporated into the homogenized fuel.

comprise the 264 fuel rods and helium between the fuel rods in each cell. The volume of
the cell homogenized fuel material is defined to be equal to the volume of a single fuel
bundle.

The simulated neutron flux spatial distribution through the 1-D basket model is
shown in Fig. 4-7. The simplified basket model has six small depressions present in the
flux around 425 c¢m, £50 cm, £75 cm. These depressions correspond to a 1-2% local
reduction in the flux, which is similar in location and magnitude to the depressions present
in the simulated neutron flux spatial distribution in the detailed model. The depressions in

the neutron flux spatial distribution occur within the stainless steel and neutron absorbing

90



SS Neutron
] absorber

Helium

Figure 4-6. The 1-D basket model used to identify the cause of the small depressions. The
model is repeating layers of stainless steel (pink), neutron absorbing pads
(orange), helium (blue), and cell homogenized fuel (gray).

1-D Basket Model

Flux [neutrons ]
cm?s
o
x =
2 2

-60 -40 -20 20 40 60

0
Distance across cask [cm]

Figure 4-7. The neutron flux spatial distribution simulated from the 1-D basket model.
The colors are representative of each material: stainless steel 304 (pink),
neutron absorbing pad (orange), helium (blue), and cell homogenized fuel
(green). There are depressions present in the flux which occur within the
stainless steel and neutron absorbing pads.

pad materials. The flux increases in the fuel as neutrons are born from spontaneous fission
decays and (o, n) reactions. The combination of the absorption events in the neutron
absorbing pads and source events in the fuel cause the depressions observed in the neutron
flux spatial distribution.
4.1.4 Azimuthally Asymmetric Flux

The final feature, the flux asymmetry (seen in Fig. 2-24), is also explained using the
1-D basket model. The detailed model shows a higher flux leaving the bottom right of

section of the cask as compared to the top left section of the cask. This discrepancy is
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seen at the leftmost and rightmost exiting surfaces in Fig. 4-7. The leftmost face has a
lower exiting flux value than the value observed at the rightmost face. Figure 4-8 shows
the top-down view of the MPC where the approximate locations of the neutron absorbing
pads highlighted with blue lines. From this perspective, pads are located at the top and
left side surfaces of each fuel cell. The asymmetric placement of the pads are likely the
cause of the azimuthally asymmetric neutron flux. Figure 4-6 is a 1-D representation of
Fig. 4-8 and shows the reason for the asymmetry: a neutron born in the left fuel cell and
traveling left will pass through three neutron absorbing pads before exiting the left face,
which is the same number of neutron absorbing pads that same neutron would have to
pass through if it were traveling right. Conversely, if a neutron is born in the right fuel cell
and traveling to the left, it passes through four neutron absorbing pads. However, if that
same neutron were to travel right, it only potentially encounters two neutron absorbing
pads. The number of neutron absorbing pads a neutron potentially encounters is not the
same based on the the location of neutron generation and direction of travel because of the
placement of neutron absorbing pads in the MPC. The asymmetric loading of these pads
directly affects the neutron flux spatial distribution exiting the spent fuel cask.

To further corroborate this notion, the detailed model was adjusted, replacing the
stainless steel structure and neutron absorbing pads with vacuum, shown in Fig. 4-9.
This modification makes the detailed model fully symmetrical. Figure 4-10 compares the
ratio of the neutron flux spatial distribution averaged over the top left section and the
flux averaged over the bottom right section from the detailed model where one simulation
replaced neutron absorbing pads with vacuum and the original detailed model. The
maximum deviation of the ratios of neutron flux spatial densities is 0.1% as a result of
replacing non-fuel structure in the MPC with vacuum, confirming the results from the
basket model. In contrast, the maximum deviation of these same ratios in the original

detailed model is nearly 10%.
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Figure 4-8. The approximate location of the neutron absorbing pads are shown in the
MPC. From the perspective shown, the pads are placed at the top and left
sides of each cell which may result in the asymmetric neutron flux.
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Figure 4-9. A zoomed in top-down view of a single fuel cell where the neutron absorbing
pads have been replaced with vacuum.
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Figure 4-10. The ratio of the neutron flux spatial distribution in the upper left section of
the fuel region to the neutron flux spatial distribution in the lower right
section of the fuel region. This ratio is nearly 1 over the entirety of the fuel
region, confirming the assumption that removing the neutron absorbing pads
removes the previously identified depressions.

4.1.5 Alternate Fuel Region Modeling

Previous findings have shown that geometric structures finer than the stainless steel
baskets, neutron absorbing pads, and helium annulus result in less than 15% error in the
neutron flux, from Fig. 4-4. Therefore, an alternate reduced-fidelity computation model
is developed which preserves the stainless steel fuel basket and neutron absorbing pads
but homogenizes the fuel pins within each cell. The “cruciform model” is developed to
ensure no important physics are neglected in the reduced-order modeling and analysis
process. This model uses the cell homogenized fuel definition in each of the 32 original fuel

cells. In doing so, the stainless steel fuel basket and neutron absorbing pads are retained
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and discrete from the homogenized fuel. The helium surrounding the 32 fuel cells is also

retained.

Figure 4-11. The cruciform model. The gray squares are cell homogenized fuel, the
stainless steel fuel basket and MPC are pink, the helium annulus is blue, the
air exterior to the MPC is green, and concrete is yellow. The neutron
absorbing pads (orange) are present in this diagram, but are too thin to be
seen here.

The neutron spatial flux distribution simulated by the cruciform model is shown in
Fig. 4-12. These results underpredict the flux from the detailed model by 5-7% through
the entire fuel region, including in the helium annulus. Moreover, these results can also
be interpreted as the cruciform model accounting for the physics relevant to the detailed
model’s spatial neutron flux distribution at a level greater than 90%. That is, further fine
detail additions to the cruciform model will “close the gap” with respect to the detailed

model at a sub-10% level.
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Figure 4-12. The neutron flux spatial distribution of the cruciform model (triangles)
capture the flatness of, the leveling off of, and the depressions in the neutron
flux spatial distribution seen in the detailed model (solid).

4.2 Discussion of MPC and Overpack Sub-problems

4.2.1 Flux in Concrete

Eqns. 3-61-3-64 are a general set of coupled differential equations which are applied
to the MPC, concrete, and the carbon steel shell, which motivates discussion of handling
boundary conditions to find unique solutions for each material region. Previously, the air
region is decided to be treated as a free-streaming region. Therefore, the concrete region
is thought of as sandwiched between the MPC and the carbon steel shell and the neutron
flux is chosen to be continuous at both interfaces, between the MPC and concrete and
between the concrete and carbon steel shell. The boundary conditions for the right-moving
fluxes are taken at the interface of the MPC and concrete, where the boundary conditions
for the left-moving fluxes are taken at the interface between concrete and the carbon steel
shell.

The boundary conditions are chosen in this manner in order to account for information
at the inner and outer radius values of the MPC and overpack. At the outmost radius of

the over, there is assumed to be no incoming flux, or, the left-moving fluxes are zero at
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this point since neutrons that leave the cask are unlikely to backscatter back into the
cask given the large MFP of neutrons in air. To account for this boundary condition, the
boundary conditions for the left-moving flux values are taken at the outer thicknesses of
each material. The right-moving fluxes are determined from the fuel region. Neutrons

are born in the fuel region and, at a macroscopic level, travel outward due to diffusion.
Then, these neutrons provide information concerning the right-moving flux through the
cask radius, motivating the choice of taking the boundary condition for each right-moving
flux at the interior radius of each material. Using the previously described notion, the

boundary conditions for a continuous flux in concrete are written as

mpe (1= 86.84 cm) = ¢4 (r = 95.25 em), (4-6)
tomea (1 =166.37 cm) = ¢, 5(r = 166.37 cm), (4-7)
mper (1 =86.84 cm) = @21 (r = 95.25 cm), (4-8)
pomea (1 =166.37 cm) = ¢2, ,(r = 166.37 cm), (4-9)

where ¢? . is the i direction g group neutron flux in the MPC, ¢? is the 7 direction

mpc, 7 conc, 7

g group neutron flux in concrete, and (Z) - is the ¢ direction g group neutron flux in the

carbon steel shell. Figure 4-13 show the results of the neutron flux calculated by solving
Eqns. 3-57-3-60 with the identified boundary conditions, Eqns. 4-6-4-9.

Table 4-3 provides the nominal parameter values used in Eqns. 3-61-3-64 to
calculate the neutron flux in the concrete annulus. The input parameters in Tab. 4-3
are determined using NJOY [45] using the energy cutoff value of 1 keV. This value is
chosen based on Fig. 2-15, where a 1 keV threshold contains all resonances in the total
cross section to the fast group. Energy group boundaries are chosen with the intent
of keeping the cross section value as uniform as possible within an energy group [41].

Further, choosing 1 keV as the energy group cutoff means the partial neutron fluxes are

continuous between the MPC and concrete annulus.

97



Table 4-3. Summary of parameter data in the concrete annulus.

Parameter Values

qo () neutrons

0 0.5773502691 unitless
u9 -0.5773502691 unitless
3ot 0.00155 -1

392 0.0041 _-
3o 0.28144 -
3012 0.01456 %
3021 %

3022 0.37215 %
T'concrete,inner 95.25 cm
Tconcrete,outer 166.37 cm
concrete thickness 71.12 em

The hydrogen content in concrete is responsible for thermalizing the neutron flux
and attenuating neutrons. Figure 4-13 compares the neutron flux from the detailed model
(solid line), the E5Sy analytic solution (red dashed), the fast energy group EsS, solution
(blue dotted), the thermal energy group E2Ss solution (brown dotted), and the MCNP
helium model (dotted). In concrete, the neutron flux experiences a shift in energies as
a result of downscattering occurring on hydrogen atoms. The analytic solutions confirm
the observed shift in energies. The fast flux (the blue dotted line) decreases exponentially
through the concrete regions. Observing the fast group flux equations, Eqns. 3-61 and
3-62, show no source terms appear in these equations. That is, neutrons in the fast group
are only preserved through in-scattering interactions or lost through down-scattering
interactions, causing the fast flux to be reduced through the concrete region. In the case
of concrete these interactions are mainly scattering since the scattering ratio <§_t) in the
fast region for concrete is 99.5%. A high scattering ratio at fast neutron energies breeds
thermal neutrons. Similarly, observing the thermal flux equations, Eqns. 3-63 and 3-64,
show the only source term comes from downscattering of fast neutrons, resulting in the
initial increase of the thermal neutron flux shown in the first 10 cm of Fig. 4-13. As the
fast neutron population decreases, the rate at which neutrons are thermalized decreases

as well, which when combined with loss terms, causes the populations of both the fast
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and thermal neutron fluxes to decrease as a function of thickness. Both the analog MCNP
model and the analytic model capture the physics of the detailed model within 10%, with

the exception of the last 6 cm of the analytic model.
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Figure 4-13. The neutron flux spatial distribution of the analytic E5S; model (dashed
line), helium model (circles), and detailed model (solid lines). The fast and
thermal portions of the EsSy solutions are shown in the blue and brown

dotted lines respectively. The inset graphs shows the error between the
analog models and detailed model.

The reason the analytic model shows higher disagreement with the detailed model in
the outer 6 cm is a result of the boundary conditions. The EsS, equations are solved using
a continuous flux boundary condition at both surfaces of the model. While considering
the neutron flux as continuous is a physically consistent boundary condition, higher order
effects (e.g., continuity of derivatives) are not being considered. Further, the outermost
boundary condition assumes that no neutrons will re-enter the cask after leaving. A
non-reentrant boundary condition, while nearly physically consistent, will still act as
source of error to materials within the cask, since error at the outermost boundary will be

propagated through the cask. Further discussion concerning the effects of the boundary

conditions is provided in Chpt. 7.
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4.2.2 Flux in MPC and Carbon Steel Shell

The MPC and carbon steel shell are the final material regions left to discuss.
However, solving Eqns. 3-57-3-60 in these materials requires knowledge of boundary
conditions. The boundary conditions corresponding to the MPC are discussed first.

In the MPC, the right-moving flux is considered continuous from the fuel region.
Unfortunately, this value is not directly available and some data needs to be taken from
MCNP. The analytic flux leaving the fuel is considered monoenergetic and isotropic,
however, the flux in the remain cask is treated with two energy groups and two directions.
Fig. 2-9b shows 57.290% of the neutrons are traveling rightward at the surface of the
MPC and the remaining neutrons are moving leftward. Further, Fig. 2-8h shows 81.493%
of the neutrons have energies above 1 keV, which is considered the “fast” energy group for
this work. Using these two results, the right-moving partial fluxes can be determined from

the value of the monoenergetic isotropic neutron flux leaving the fuel as

gb}npc,l (r = 84.34cm) = (0.5729 % 0.81493) ¢ fye; (r = 84.34cm) , (4-10)
620 (r = 84.34cm) = (0.5729 % 0.18507) sy (r = 84.34cm) , (4-11)

where ¢, ., and ¢, ., are the fast and thermal right-moving fluxes respectfully at the
interface between the fuel and MPC. The remaining two boundary conditions are taken
from the exiting surface of the MPC at 86.84 cm. In order to have a continuous flux

at this point, the left-moving fluxes in the MPC must be equal to the corresponding
fluxes from the concrete (since the air annulus is a free-streaming region). Therefore, the

remaining two boundary conditions are chosen to be

Drapes (1= 86.84 ¢m) = @l ereres (1 = 95.25 cm) (4-12)
Drpes (1 =86.84 ¢m) = ¢2ereres (1 = 95.25 cm) .. (4-13)

Table 4-4 also includes values for ;7 and py. These parameters are chosen by the

evaluator and have few constraints (e.g., p cannot be chosen to equal zero) [42]. Further,
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Table 4-4. Summary of parameter data in the MPC.

Parameter Values
5 0 e
wd 0.5773502691
u9 -0.5773502691
¥ 0.01912 -
302 0.13941
301 0.54681 —
3012 0.00281 %
Eg,2—>1 0 %
3022 0.89962 %
T'mpe,inner 84.34 cm
T'mpe,outer 86.84 cm
MPC thickness 2.5 cm

the directions are typically chosen as opposites (pyy1-n = pin for n =1,2,...,(N/2)), and
are typically picked according to Gaussian quadrature rules [42].

Eqns. 3-61-3-64 are solved using the boundary conditions (Eqns. 4-10-4-13) to yield
analytic expressions in the MPC which are plotted in Fig. 4-14. Figure 4-14 compares
the neutron flux from the detailed model (solid blue), the EsSy model solution (dotted
blue line), and the analog helium model (circles). The fast and thermal components of the
ES, solution are displayed as the dark blue and brown lines respectively. Even though the
thickness of the stainless steel is a similar to the MFP, some of the fast neutrons undergo
scattering interactions and thermalize which results in an increase in the thermal flux.
The error between the analog models and the detailed model is less than 10%. In fact, the
analytic model agrees with the detailed model within 5%, which is better than the helium
model, as the Eqns. 3-61 - 3-64 allow for anisotropies in the direction flux where the
diffusion approximation, Eqn. 3-85, assumes an isotropic flux. Moreover, there are fewer
interactions occurring in the MPC, caused by the thickness of the MPC (2.5 cm) being
similar to the MFP of fast neutrons in the MPC (approximately 3 cm). Figure 4-14 shows
the flux is flat as compared to the other materials, which further corroborates the concept
that only a fraction of the neutrons are undergoing interactions in the MPC. Therefore,

less physics is occurring in the MPC as a result of fewer neutron interactions taking place.
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Figure 4-14. The neutron flux spatial distribution of the analytic EoS; model (dashed
line), helium model (circles), and detailed model (solid lines). The fast and
thermal portions of the EoSy solutions are shown in the blue and brown
dotted lines respectively. The inset graphs shows the error between the
analog models and detailed model.

Finally, the flux in the carbon steel shell needs to be determined, by first discussing
the boundary conditions chosen in order to solve Eqns. 3-57-3-60. The flux at the interface
between the concrete and the carbon steel shell is assumed to be continuous and the

boundary conditions are written as

bone, (1= 166.3T cm) = ¢, 1 (r = 166.37 cm), (4-14)
(bgonc,l (7” = 166.37 Cm) = (bz&l(r = 166.37 CTTL), (4_15)

where the right-moving flux values are defined in a consistent manner as those in Sec.
6.2.3. The left-moving flux is assumed to be non-reenterant, meaning a neutron will

not return to the cask after it has exited. This is a fair assumption as the large MFP
of neutrons in air means neutrons are unlikely to backscatter into the cask once they

have entered the environment. Mathematically, a non-reenterant boundary condition is
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Table 4-5. Summary of parameter data in the carbon steel shell.

Parameter Values

qo () neutrons

10 0.5773502691 unitless
u9 -0.5773502691 unitless
301 0.02016 %

5302 0.11740 —-
3011 0.45573 —
3012 0.00276 —
3021 %

3022 0.94474 %
Tcarbonsteel inner 166.370 cm
Tcarbonsteel ,outer 168.275 cm
carbon steel shell thickness 1.905 cm

expressed as

reo(r =168.275 cm) = 0, (4-16)
2ea(r =168.275 cm) = 0. (4-17)

Table 4-5 provides the parameters used in the solution to Eqns. 3-61-3-64 to calculate
the neutron flux in the carbon steel shell, with the corresponding boundary conditions,
Eqns. 3-61-3-64. The values for the input parameters are calculated using NJOY [45]
with an energy cutoff at 1keV. Once again, this energy cutoff value is chosen to isolate
resonance structure in the total cross section to the fast group only, and the resonances
are absent in the thermal group, Fig. 2-18. Further, choosing 1 keV as the threshold value
between the fast and thermal groups matches the threshold value chosen in the concrete
region, meaning the partial fluxes have matching energy groups.

Figure 4-15 shows the neutron flux in the carbon steel shell. The flux in the carbon
steel shell is almost entirely thermal since the concrete has already thermalized the
neutron flux. The analytic model captures this behavior, unfortunately, the analytic model
does not capture an increase in the source neutrons in the carbon steel which is observed
in the detailed model. Section 7.1.4 describes the causes for this discrepancy further.

However, the analytic model agrees within 10-40% over the thickness of the carbon steel.
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The higher degree of error is attributed to the small scale of the neutron flux. In fact, the

flux at the exiting surface of the cask is 0.68 as predicted by the detailed model and

1
cm?s

0.91 Cnigs as predicted with the E5Sy solution. The error increases through the carbon steel
region. A result of the analytic models under predicting loss terms in the carbon steel
shell. Figure 4-15 corroborates this result as the total flux does not share the inflection
point occurring at 167.132 cm in the detailed model. The inflection point occurs as
neutron leakage increases throughout the carbon steel shell, as indicated in by the 29%
increase in right moving flux shown in Figs. 2-20a and 2-20b. Further, Fig. 4-15 shows

the initial value of the thermal flux at 166.37 cm is larger than the total neutron flux
simulated in the detailed MCNP model. The analytic thermal neutron flux is chosen to be
continuous with the thermal neutron flux leaving the concrete region at this location and
over-predicting the exiting neutron flux from the concrete annulus causes over-predictions

in the carbon steel shell flux as well. The effects of boundary conditions are discussed

further in Chpt. 7.
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Figure 4-15. The neutron flux spatial distribution of the analytic E5S; model (dashed
line), helium model (circles), and detailed model (solid lines). The fast and
thermal portions of the EoSy solutions are shown in the blue and brown
dotted lines respectively. The inset graphs shows the error between the
analog models and detailed model.
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4.3 Summary

Using reduced complexity analytic and computational models to analyze the
simulation results of a high-fidelity computational model allows for the quantification
of effects of any assumptions invoked when developing the latter model. Ensuring
important physics are preserved in the course of conducting simulations increases
the likelihood of correct results. This work exemplified this notion through a process
referred to as ”simulation results assessment.” As a demonstration, this work included
post-simulation analysis of a detailed MCNP model of a HI STORM 100 spent nuclear
fuel cask. A series of reduced analytic and computational models were developed and
used to identify the physics which causes features in the neutron flux spatial distribution
as calculated by the detailed model. In the HI-STORM 100 model, the stainless steel
basket, neutron absorbing pads, and helium annulus around the fuel cells are important
physical components that need to be preserved in modeling. Retaining the individual
fuel pin structure was found to be less important than broadly capturing the lumped
material properties inside the individual fuel cells. These results were corroborated using
the cruciform model, which appears to capture the physics relevant to the neutron flux
spatial distribution in the detailed model beyond the 90% level. The major features of
the neutron flux spatial distribution simulated by the detailed model are expected to be
correct since the this model preserves material fuel properties and the geometric structure

of the neutron absorbing pads and helium annulus.
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CHAPTER 5
SENSITIVITY ANALYSIS OF THE DETAILED CASK

The former analysis in Chpts. 2 and 4 help to justify the appropriateness, in terms
of characterizing essential physics that give rise to notable features, of the previously
used analytic models. Chapter 4 concluded the degree to which each mathematical
model captures the physics of its detailed counterpart. Extending the analysis in Chpt. 4
with a complementary sensitivity analysis proves informative as a guide in interpreting,
understanding, and rigorizing results of computational studies. Further, the previous
analysis justifies using the mathematical models as the focus of an analytic sensitivity
analysis. In a similar approach to Chpt. 2, the sensitivity coefficients (SC’s) pertaining
to cross section values in the detailed cask model are calculated using MCNP and the
results are analyzed in order to form the basis of discussion for Chpt. 7. Further, the
shortcomings of computational sensitivity analysis are introduced for further discussion.

5.1 Calculating Sensitivity Coefficients with MCNP

SC’s are unitless values calculated from sensitivity information and are used to
determine the the “importance” of each input parameter (e.g., cross sections). Input
parameters with larger SC’s have a larger impact on the the system response. The sign of
a SC is also important, as the signs indicate the direction of change in the response value
given a change in an input parameter parameter value. Meaning, if the SC has a negative
value for a given input parameter, increasing the value of that parameter will cause the
value of the response to decrease. On the other hand, if the SC has a positive value,
increasing the associated input parameter value will cause an increase in the response
value. These values can be compared against each other and between models not only
to stratify the importance of each value, but also to identify trends occurring in the
model. SC’s are calculated differently based on whether the model is computational or
analytic. Discussion concerning calculations of SC’s from analytic models occurs in Chpt.

6. However, in order to discuss trends in the SC’s pertaining to cross section values used
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in the detailed models, the process for determining SC’s from MCNP models is discussed
NOW.

MCNP has the capability to perform a sensitivity study using the PERT card. From
the MCNP manual, the PERT card “uses first and second order differential operator
techniques” using a Taylor series expansion, which allows “perturbations in cell material
density, composition, or reaction cross-section data” [20]. For the purpose of this work,
MCNP perturbs cross section data through perturbing the material mass density and,
therefore, the macroscopic cross section values. Favorite describes the process for using
MCNP to efficiently calculate SC’s [46]. In MCNP, SC’s are calculated from the results of
the Taylor series expansion of the neutron flux. Therefore, taking the second-order Taylor

series expansion of the neutron flux as

d 1 d?
qb(ax) = (ﬁ(O’x’o) -+ dogi - AO’I + 5 dT‘f (Ao‘z)2’ (5—1)

T log.0

where o, is the unperturbed cross section value, ¢(o, ) is the neutron flux evaluated
with respect to the nominal value cross sections, and Ao, = 0, — 0,0.

The first- and second-order expansion terms are defined as

_ do
A= g7 3 Aa, (5-2)
and
_1d% 2
AQbQ = 5 dT"% o (AUI) (5—3)

respectively. Larger perturbations applied to the cross section values lead to larger changes
in the response functions, therefore it is important to define the relative cross section

change, p,, as

Ao,
Dz = ; (5-4)

0,0

where p, is used to normalize the amount of response change to the amount of perturbation.

Further, Eqns. 5-2 and 5-3 can be re-written in terms of p, after applying the chain rule

107



as

d
A I (55)
Pr | po—o
and
1 d?¢
Ay = P; 5-6
S dp? a0 (5-6)
respectively.

MCNP’s perturbation feature estimates the derivatives in Eqns. 5-5 and 5-6 [46].
Equations 5-7 and 5-8 are the two values with corresponding error values, saq, and sage,
for A¢; and A¢y respectively, that are output by MCNP when using PERT cards. The

value ¢, is defined as ¢(o,,,) = ¢, for notational convenience.

A¢l (pa:,r) + 3A¢>1 (5—7)

A¢2 (pa:,r) + 3A¢>2 (5—8)

The values A¢y(pyr) and A¢o(p, ) are used to determine the SC’s. The first-order

SC to the cross section value o, is defined as

¢1
S ox — [ 9-9
b2 = 5o (5-9)
where ¢, is calculated as
A x,r
b = %' (5-10)

And ¢y is the unperturbed neutron flux. The uncertainty values corresponding to S, are

(2 ()]

where s4, is the standard deviation of the unperturbed response given by MCNP and s,

determined by

is calculated as
_ SAg
’p$|

S (5-12)
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The notation of the SC’s is similar to notation used for the internal source terms in Eqn.
4-5. However, the two can be distinguished from the subscript (¢, 0,) appearing on the
SC’s, and used consistently through this effort. Further, the SC’s pertaining to the cross
sections, >, and Y, are considered for study using MCNP in this program of study,

as these values show up as input parameters in Eqn. 4-5 for the fuel region and in the
solutions of Eqns. 3-61-3-64 for the MPC, concrete, and carbon steel shell. Equation

4-5 and the solutions to Eqns. 3-61-3-64 contain more input parameters, which will be
identified in Chpt. 6, however, these parameters are not compatible with MCNP’s PERT
capabilities.

The SC’s are calculated along the radius of the cask, making them functions of radial
distance only. That is, the angular and energy dependence of the SC’s is integrated out
and radial dependence remains. This handling of the SC’s is chosen to reflect the handling
of the neutron flux in Chpts. 2 and 4.

5.2 Sensitivity Coefficients in the Detailed Model
5.2.1 Fuel Region

Probably the most impactful shortcoming of using MCNP to determine SC’s occurs
in the fuel region of the spent fuel cask. In order to perturb cross section values in MCNP,
the simulation geometry needs to be modified with a SURFACE card at the location
where a simulated measurement is made. That is, the geometry must be changed to
accept what sometimes is a “non-physical” surface. Unfortunately, this may not be
possible in a given geometry, such as in the fuel containing region of the spent fuel cell.
Adding cylindrical surfaces through the fuel lattice precludes a realistic source sampling
distribution from being defined across the fuel rods. This prevents the possibility of
finding SC’s in the fuel containing region of the detailed model. However, development of
reduced models allows for comparison between the helium model and the analytic model,

Eqn. 3-85, which will be discussed in Chps. 7 and 8.
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However, Chpt. 4 motivated the use of the reduced-fidelity MCNP helium model,
which serves as a surrogate model in the fuel region. Figure 5-1 shows the SC’s pertaining
to Xy, ¢, and X in the fuel region of the helium model, where X, is the capture cross
section defined as >, = >, + X7. The SC of X is positive since fission acts to create
neutrons and, therefore, increase the neutron flux (Fig. 5-1). This SC has a linear shape,
owing to the homogenous distribution of fissionable material in the cask. Further, any
negative slope is a result of the increasing importance of loss mechanisms, as a spent fuel
cask is designed to attenuate radiation. That is, spent fuel casks are designed to reduce
the neutron flux. Meaning, neutron source terms will have a decreasing effect on the flux
through the fuel region in an attempt to attenuate radiation through the cask.

The value of Sy, is negative, shown in Fig. 5-1. In the range 0 cm-60 cm, Sy 5, is
flat since neutrons are indirectly lost through thermalization leading to absorption. From
60 cm to 74.68 cm, S, x, increases in the negative direction owing to leakage in the fuel
region. Leakage mechanisms increase near the material boundary which is the reason Sy s,
increases in magnitude near the boundary at 74.68 cm.

Figure 5-1 also shows the value of the SC for ¥.. This value is negative for the entire
fuel region, as capture is purely a loss term. Sy x, decreases in magnitude over the fuel
region. From 15 cm to 60 cm, both S, 5, and Sy 5, decrease in magnitude, alluding to a
relationship between the two values when thermalization resulting in capture is the main
loss term. From 60 cm to 74.68 cm, neutron loss through leakage is occurring and the SC
of ¥, continues to decrease near the boundary as S,y increases in magnitude.

Figure 5-2 shows the absolute values of the SC’s in order to make stratifying the
parameters by importance more obvious. Through the entire fuel region in the helium
model, X is the least important term, reinforcing the importance of loss physics
in a shielding problem. From 0 cm to approximately 70 cm, X, is the second most
important parameter and >, is the most important. However, these two parameters switch

importance from 70 cm to 74.68 cm as leakage becomes the dominant loss mechanism.
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Sensitivity Coefficients in the Fuel Region
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Figure 5-1. SC’s corresponding with X; (blue), ¥ (red), and X. (green) calculated using
MCNP in the fuel region of the helium model.

5.2.2 Multipurpose Canister

Figure 5-3 shows the SC’s corresponding to ¥ and ¥, as the red and green lines
respectively. The SC pertaining to Y, initially have a positive value at the inner surface
of the MPC (84.34 cm from the centerline), before going negative near 85.59 cm. While
the values are positive, scattering is acting to preserve the flux value, likely through
downscattering which decreases the energy of neutrons but, alone, does not reduce the
magnitude of the flux. Once the coefficients become negative, scattering acts as a loss
term by causing neutrons to leak through the outer surface of the MPC (86.84 cm).

The SC corresponding to the absorption cross section is entirely negative. Negative
sensitivity values indicate that the flux and ¥, are inversely related. That is, as the
absorption cross section increases, the flux decreases. The magnitude of the SC increases

from 84.34 cm to 86.34 cm, before decreasing in the remainder of the MPC.
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Absolute Value of Sensitivity Coefficients in the Fuel Region
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Figure 5-2. The absolute values of the SC’s corresponding with ¥ (blue), ¥, (red), and
Y. (green) calculated using MCNP in the fuel region of the helium model.

Figure 5-4 shows the absolute value of the SC’s in the MPC. Plotting the absolute
values of the SC’s makes it easier to identify which parameters are most important at
each location within the MPC. For approximately the first 0.5 cm, the scattering cross
section is the most sensitive parameter. However, absorption becomes the most sensitive
parameter as neutrons move further into the MPC.

5.2.3 Air Region

There is an annulus of air between the MPC and the concrete annulus. Chapter 2
considered the air region as a free-streaming region where the neutron flux was assumed
to not interact in the material. Further analysis of the SC’s in the air region corroborate
the previous assumption as treating the air region as void. Figure 5-5 shows the SC’s
of ¥; and X, in the air. From this figure, it is shown that the magnitude of the SC’s

are much smaller (at least two orders of magnitude smaller than the SC’s in the other
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Sensitivity Coefficients in MPC
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Figure 5-3. SC’s corresponding with ¥, (red) and ¥, (green) calculated using MCNP in

the MPC.

materials, shown in Figs. 5-3, 5-6, and 5-8) and, therefore, further sensitivity analysis in
the air region can be neglected. That is, the small SC’s in the air mean the neutron flux is
relatively insensitive to perturbations in material properties in air.
5.2.4 Concrete Annulus

Chapter 2 determined that approximately half of the neutron flux is attenuated in
the concrete and the high hydrogen content in this material caused a shift in the neutron
energy spectrum. Presumably, the scattering cross section is essential in driving physics
within the concrete. Figure 5-6 shows the SC pertaining to the scattering cross section
is initially positive, similar to other materials, before becoming negative near 99.75 cm.
The negative SC pertaining to the scattering cross section indicates that neutrons are
mainly removed through scattering and neutrons are caught in thermal equilibrium in

the concrete as absorption is unlikely in concrete. Near the outer radius of the concrete
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Absolute Value of Sensitivity Coefficients in MPC
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Figure 5-4. The absolute values of the SC’s pertaining to ¥, (red) and ¥, (green).

(162.75 cm), leakage causes the SC pertaining to the scattering cross section to increase.
At this location, the neutron flux is peaked in an outward direction as seen in Fig 2-17.
This provides further evidence that scattering is driving 1) attenuation and 2) leakage in
the outer radii values of the concrete.

The SC pertaining to the absorption cross section is negative showing that absorption,
while less likely to occur than scattering, causes losses in the neutron flux. The increasing
slope across the annulus thickness shows how losses due to absorption increase as the
magnitude of the thermal flux increases making absorption more likely. At 162.75 cm,
the SC pertaining to the absorption cross section decreases in magnitude. This behavior
is inversely related to the behavior observed in the SC pertaining to > alluding to a

relationship between increased leakage and decreasing absorption importance.
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Sensitivity Coefficients in the Air Annulus
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Figure 5-5. The SC’s corresponding to 3 (red) and ¥, (green) are two orders of
magnitude lower than the other SC’s in the other materials. Therefore, an
analytic sensitivity analysis for this region can be neglected.

Figure 5-7 shows the absolute values of the SC’s in the concrete. Scattering is the
most important parameter from approximately 104.25 cm to the outer radius of the
concrete at 166.37 cm, which is expected since neutron attenuation in concrete is mainly
caused through scattering interactions (as indicated by the larger magnitude of the SC
pertaining to ¥4 as compared to those of ¥,).

5.2.5 Carbon Steel Shell

Figure 5-8 shows the SC’s of ¥ and ¥, throughout the carbon steel shell. Once
again the values of the SC pertaining to Y, are initially positive before going negative
near 167.51 cm. The forward peaked flux shown in Figs. 2-20a and 2-20b indicates that
an increase in neutron leakage is reflected in the increasing negative magnitude of the SC

corresponding to ;.
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Sensitivity Coefficients in the Concrete Annulus

0.0l o -4- Detailed: s
' el SR -4~ Detailed: £
-3 ]
e
—0.51 e T
\\\\ ‘‘‘‘‘ t_\\
+ \\‘\ ~~~~~~~
c —1.01 N Tl
a . ~e o __
< e
& 151 AN
o ~
O Sl
2 —2.01
= .
B .
& —2.51 S
a .
n Ny
—3.0 \\\\
i\
-3.51 X
[
_4.0 T T T T T T T
100 110 120 130 140 150 160

Distance [cm]

Figure 5-6. The largely negative SC’s of X, (red) and ¥, (green) corroborate the concept
that scattering and absorption act as loss mechanisms through the concrete.

The SC pertaining to >, is once again negative since absorption causes neutron loss.
There is an inflection point in the SC corresponding to >, near 167.51 cm, the same
location where the SC of ¥ becomes negative. This is another instance where the two sets
of SC’s are inversely related.

Figure 5-9 again shows the absolute value of the SC’s in order to stratify the
importance of the parameters. Over the entire carbon steel shell region, the detailed
model is more sensitive to the absorption cross section. This indicates that while the
carbon steel is a high scattering material, absorption is still highly important.

There are some trends that are seen across all materials, with the exception of the
SC’s in air. First, the SC pertaining to the total scattering cross section has initially
positive values before going negative, shown in Figs. 5-3, 5-6, and 5-8. Figures 2-9, 2-13,

2-17, and 2-20 show that the flux is outward peaked through the entire spent fuel cask
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Sensitivity Coefficient

While computational tools, such as MCNP, provide for extensive sensitivity analysis
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Figure 5-7. The absolute values of the SC’s of ¥, (green) and ¥ (red) which confirms that
the model is more sensitive to the scattering cross section than the absorption

cross section for nearly the entirety of the concrete annulus.

and becomes more outwardly peaked further from the centerline. The result is that
leakage is less likely at inner boundaries and more likely near outer boundaries, which
generally indicates that scattering leads to a flux preservation effect at inner radii values
and loss effects at outer radii values. Another trend seen across all the materials is the SC
corresponding to the absorption cross section is always negative since absorption (in the

absence of fission) is a loss mechanism.

5.3 Shortcomings of Computational Sensitivity Analysis

capabilities, an analytic sensitivity analysis is capable of investigating sensitivities to
parameters which are not readily available for investigation with MCNP. One such

parameter has been previously identified in Sec. 5.2.1. In cases where the geometry
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Sensitivity Coefficients in the Carbon Steel Shell
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Figure 5-8. SC’s with respect to ¥ (red) and %, (green) in the carbon steel shell. The
values of the SC pertaining to >, experience a sign change 167.513 cm which
represents a change in the scattering physics. When the values are positive,
scattering is acting to preserve the flux. However, when the values are
negative, scattering is a loss term caused by neutrons leaking from the steel.
Absorption is always negative since absorption results in neutron losses.

precludes modification, it may not be possible to perform a sensitivity analysis. Further,
parameters such as source (S) and radius (r,) from Eqn. 3-85 require running many
simulations to manually determine sensitivity information, but are readily available
through an analytic methodology, as will be seen in Chpt. 6. The goal of the following
chapters is to further identify and understand the physics occurring in the cask and to

rigorize the results of the previous sensitivity analysis of the detailed cask.
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Absolute Value of Sensitivity Coefficients in the Carbon Steel Shell
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Figure 5-9. Observing the absolute values of the SC’s corresponding to ¥, in red and X,
in green show that the neutron flux is most sensitive to the absorption cross
section. The slope of the SC pertaining to Y, decreases at the same location
where the slope for the SC for ¥g increase, at 167.51 cm, alluding to a
relationship between absorption and leakage loss mechanics.
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CHAPTER 6
SENSITIVITY THEORY OF REDUCED PHYSICS MODELS

6.1 Local Sensitivity Analysis Primer

Saltelli, Chan, and Scott define sensitivity analysis as the study of “relationships
between information flowing in and out of a model [47].” That is, sensitivity analysis
investigates how perturbations in input parameter values influence a system’s response,
where input parameters are data values passed by the user or calculated by a model
and are used in the calculation of output variables. The most common input parameters
appearing in nuclear engineering models are cross sections, which are derived from
material properties supplied by a model or code user. In order to better understand the
general process of sensitivity analysis, Oblow and Pin provide a short description of the

procedure [48]. To begin, consider the set of linear equations
R = F(ya a)v (6_1)

where

R is a vector of the system responses,

F is a vector of the model equations (e.g., vector containing the diffusion

equation),
y is the state vector (e.g., vector of ¢ values),

a is the vector of the system input parameters,
where the vector F' can also represent nonlinear model equations, however, the following
discussion is limited to linear equations for the purpose of this work.
Local sensitivity information describes first-order sensitivities, that is, the sensitivity
information is related to the first derivative of R, (e.g. , g%:). Further, the first derivative
describes the ratio of change in a system’s response caused by changing the value of a

input parameter [49]. Hence, taking the derivative of Eqn. 6-1 over each input parameter,
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a;, independently yields

dR OF d
-9 (6-2)
dOéZ' 8y dOéZ‘
Since F' contains the analytic models described by the user, the value g—i can be

calculated directly. Simplifying the final derivative in Eqn. 6-2 requires using the chain

rule on Eqn. 6-1 to arrive at

dy _OF dy  OF da
dOéZ‘ B 6y dO[Z‘ Ja dO[i .

(6-3)

dR
da”

Re-expressing Eqn. 6-2, using Eqn. 6-3, yields the sought after sensitivity information
However, this approach can be algebraically involved since it requires solving the set of
equations F' for each input parameter variation.

In response to this problem, Cacuci developed a method for determining sensitivity
information for all input parameters simultaneously, given the function F' has a solution
[13]. Cacuci utilizes the G-derivative, a form of the directional derivative, to find the
differential value corresponding to each input parameter simultaneously. The G-derivative
can be applied to find sensitivity information various ways, two separate methods will
be described here: 1) applying the G-derivative directly to analytical expression of the
neutron flux and 2) applying the G-derivative to the governing differential equations and
boundary conditions.

In the former method, the unperturbed response value (the value of the response

function where all input parameters are unperturbed) is defined as
R(e’), (6-4)

where €? = (y° a) and the superscript 0 denotes the nominal, or unperturbed, value.
If, moreover, the vector h, contains the perturbation values for M number of input

parameters as

h, = (0o, 0an, ..., 0an). (6-5)
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Sensitivity information of the response function caused by the variations h,, is found by
taking the G-derivative, R(e’; h), of the response function, where h is the concatenation

of the perturbed input parameter values and the perturbed state values;
h = (hy, h,). (6-6)

Taking the G-derivative of the response thus yields

sR(e%h) = L [R(e’+ch)]| =lim R(e®+ch) - R(e’) (6-7)

de o 0 €

where € is interpreted as an infinitesimal deviation from the nominal value of a given input
parameter, and the rightmost expression is the definition of the G-derivative. In general,

the evaluated result of Eqn. 6-7 can be written as

M
R (e h) = nidos, (6-8)

where 7; contains sensitivity information for the input parameter «;. The values of 7; are
used to calculate the sought after SC’s, which provide a relative comparison between input

parameters. The SC’s are thus calculated using 0 R as

S _5_R & Y
1 = San R(e0) — "R(e0)’

(6-9)

where S, ,, is the SC for input parameter «; [50]. The SC’s are comparable to the SC’s
determined from the computation results using Eqn. 5-9, as described in Sec. 5.1.

The second method of finding sensitivity information involves taking the G-derivative
of the governing ordinary differential equation (ODE) and its boundary conditions.
Applying the G-derivative to the governing equations and respective boundary conditions
leads to what Cacuci named the Forward Sensitivity Equations (FSE) [13]. The boundary

condition to Eqn. 6-1 is defined as

[B(a”)y’—A(a")],,=0, =i, (6-10)
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where A is the inhomogeneous terms of the boundary conditions and B is an operator.
Together A and B work to define the boundary condition within the boundary 0€2, and «
is the position vector. Then, the sensitivity information, d R (e'; k), is found by taking the

G-derivatives of Eqns. 6-1 and 6-10 which yield
F (a’)hy+ [F' (&) y°] ho — 6Q (a”;h,) =0 (6-11)

and

{B(a") hy + [B,, (a’) ¥’ ho —6A (a’;h,)},, =0, (6-12)

respectively, where F’ (a”) and B!, (a°) are the partial G-derivatives of F' and B at o'
respectively, and @) and J A are the inhomogeneous terms of the equation and boundary
conditions respectively. Eqns. 6-11 and 6-12 together are called the FSE and solving these
equations for h, yields the sensitivity information. SC’s are calculated using the results of
h,.

As in Chpt. 5, the SC’s are used to determine which input parameters cause the
largest changes to the neutron flux. The magnitude of the SC’s in each material are used
to stratify the parameters based on importance. Further, the sign on the SC identifies how
the response will change given a perturbation to an input parameter. That is, the neutron
flux and input parameter change in the same direction when the SC value is positive.

If the SC value is negative, then the neutron flux and the input parameters experience
changes in opposite directions. Meaning, a positive perturbation to an input parameter
leads to a negative change in the neutron flux.

The remainder of this chapter calculates the SC’s for input parameters relating to
nuclear data in the solution to Eqn. 4-5, the solution to the 1-D cylindrical diffusion
equation, in the fuel region and Eqn. 3-56, the multigroup discrete ordinates equations, in

the remainder of the spent fuel cask.
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6.2 Local Sensitivity Analysis of Representative Spent Fuel Cask Model
6.2.1 Fuel Region
Section 3 introduced the diffusion approximation which uses experimental data in
the form of cross sections to predict the neutron flux through the fuel region of the cask.
Taking the solution to Eqn. 3-82 with the boundary conditions given in Eqns. 4-1 and 4-2
is

S0 I.(B° 0 — p0330
(r) = DB <1 - —]00((30;2)); B’ = — 7 (3-85)

where S is the intrinsic neutron source, I is the modified Bessel function of the first kind,
and 70 is the extrapolated radius of the fuel region equivalent to 79 + d°. The superscript
0 denotes the nominal value of each input parameter or response function.

Identifying the unperturbed input parameters from Eqn. 3-85 as
a’=(S°,D° B ), (6-13)
and the perturbation vector, h, as
h, = (6S,0D,0B, d7), (6-14)

the vector h, becomes

h, = (69). (6-15)
Then, the vector of nominal input parameters and response functions is defined as
e’ = (¢"(r), o), (6-16)

where the response function is

R(e") = ¢°(r). (6-17)

Finally, determining the sensitivities for each input parameter using Eqns. 6-13-6-17 in

Eqn. 6-7 is equivalent to replacing each input parameter in Eqn. 3-85 with

o) = (af + eday) . (6-18)
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Using Eqn. 6-18 to expand the input parameters in Eqn. 3-85 gives

ooy d (S° + €dS) __ L((B"+eB)r)
(k) = G (DT wp) (B0 + b)) (1 Io((B° + €0 B) (f°+65'f’)))H

=0
(6-19)
Evaluating Eqn. 6-19 yields
SR (€% h) = Npuers (1) 68 + Nfuer2 (1) 0D + Npuer,s (1) 0B + Nfuera (1) OF, (6-20)
where the r-dependent functions appearing in Eqn. 6-20 are defined by
07‘
1 fj((ﬁor()) (6-21)
Nfuel,l = (30)2 Do ’
—SO [0 (BOT)
el =————5 (1 — ———- ], 6-22
T fuel,2 (B0)2 (D0)2 ( Iy (BOTO)) ( )
—960 (1 — Zo(B%r)
_ fo(B°70) SOrl, (Br) 1 S,y (B°r) I (BY) (6-23)
fuets = (B9)? Do (BY)2 DOy (B%9) ' (B9)? DO (I, (B°©))®
S°Iy (Br) I, (B
Nfuel,a = 0 ( ) . (~ 2)7 [3pt] (6_24>
BODO (I, (BO70))
and the associated SC’s are summarized as
SO
56 fuers = Mueld s (6-25)
DO
56 fuet.D = Miuel2 G5 (6-26)
BO
S¢fuer.B = Miueld 5y (6-27)
7;0
Sofuet i = Muela 515 (6-28)

Equation 3-85 indicates that some of the input parameters appearing within the
equation may be defined in terms of other, more fundamental input parameters, such as
how Y0 appears in the definition of B? as well as in D°. In practice, the values for D°, B,
and 7° are calculated from experimental data or geometry (in the case of 7). Therefore,

it is necessary to express each of the above input parameters according to their individual
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definitions using Eqns. 6-29 - 6-31:

1
D’ = 6-29
3(X0+ X0+ %9 (6-29)
20 — 0% 20 +39(1 -0
BO = \/ “ 0 ! = = fl( )a (6_30)
b BB
0.710
PO=rp)+ (6-31)

(39 + X0 + E(}) ’
where X0 is the nominal capture cross section and r{ is the nominal cask fuel region outer
radius, and the nominal total absorption cross section is redefined using %) = X2 + Xj.
Fundamental SC results written in terms of the parameters >, X, X, and r;, are then
determined by applying the G-derivative to each of Eqns. 6-29-6-31 and substituting the
results into their respective places in Eqn. 6-21 - 6-24.

Redefining the SC’s for B, D, and 7 in terms of those for X, ¥, 7, ¥y, and 3, is a
straightforward process similar to how the coefficients were found for B, D, and 7 above.
Taking the G-derivative of each of Eqns. 6-29-6-31, each equation is expressible in the
terms 0%, 0%, 0v, 0¥ ¢, and ory. These definitions are then used in the SC’s summarized
in Eqn. 6-25 - 6-28 to yield the final expressions.

Applying Eqn. 6-7 to Eqns. 6-29-6-31 using the following definitions for e® and h,

e’ = (¢, 20,50, 0°, 55, 1) (6-32)
h = (6¢,0%., 0%, 67,05, dry) (6-33)
yields
a | 1
§D(e’: h}) = — , 6-34
(e’ h}) de |3 ((29+ ed%s) + (X0 + ed%.) + (E? + €6%y)) » (6-34)

5B(e: h}) — d (30 + ed%e) + (3% + fézf) (1— (P° + €d0)) | (6-35)

de | 3((S0+e0%) (S0 HeSe) +(2G+ed2 ) e=0

d i 0.7104
57 O;h _ 0+ ) + 6-36
b)) = G |U ) o Gm T (S o)+ (59 1 o) L
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Evaluating Eqns. 6-34-6-36 determines the variations d B, D, and 07 as

5B — §5V3(—1"%% + X0 + 19) B
2\/(—90251 + X0+ 29)(20 4 %0 + X9)
57V/38(20 + 14 + 19) §5.V/3(—1°8% + 250 + 289 + 19)
+
2\/(—502g + 20+ T9)(Z0 + 2% + x9) 2\/(—5029 + 20+ T9)(Z0 + 2% + x9)

S5 V/3(—=° (80 4+ 4 + 20) — 205 + 250 + 259 + X0)

, (6-37)
2\/(—5029 + 20+ 29)(0 + 20 + %9
85 + 0%, 4 6%
5D = JZe T 0% 0%y (6-38)
3(X2+ %9 +x9)
7104 T10479(85, + 0% + 0%
5 0710497, 0.71047) (0%, + 0%f + 03;) (6-39)

D +T0+ 50 (29429 + £0)2
These values are then substituted into Eqn. 6-20 in order to determine the SC’s. Chapter
7 provides the SC’s with discussion. The theory for determining the SC’s in MPC is
provided next.
6.2.2 MPC

Chapter 2 identified the same mathematical model, the multigroup discrete ordinates
equations (Eqns. 3-61-3-64), for use in the MPC and the overpack (concrete and carbon
steel shell). Rather than calculating the SC’s directly from the solutions to Eqns.
3-61-3-64, the coefficients can be found through solving the FSE (Eqns. 6-11 and 6-12)
for the general form of the multigroup discrete ordinates equations, Eqn. 3-56, which have
been reproduced below for convenience.

g
Hi dx

N G
1 / .
+ X = §ij E Zs,g/ﬁgﬁb? +57, 9=12..,Gi=12,..N. (3-56)
7j=1 =1

The vector a? is

al = (pir X7, Yis.g'—g) A), (6-40)

where A is included to show the sensitivity information pertaining to the boundary

condition values.
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Using the FSE requires identifying the operator F () as

4 (NG
F(a') = i (5 ;%‘ gzl Yisg'—vg E?) ) (6-41)

and the quantity [F’ (a®) y°] h,, as

dx 2

=1 g=1

1(0Y .0 dg? 1o - g 949
[F (a ) Y } h, =u; —| = ij Zéﬁs’gqg o] + 037 ¢ (6-42)

For Eqn. 3-56, h, is defined as h, = (6, 057,05, y—yq, A), where A represents the
inhomogeneous boundary conditions for each material. The vector h, is then defined as
h, = (0¢7) where g = 1,2,...,G and i = 1,2,..., N for both h, and h,. Equation 6-11

when no internal sources are present becomes
d (1L &
= g =

¢! [1 &
: g 9.9 _
O g ™ 5;%‘2528%9 @7 +0X8{¢7 =0,  (6-43)

g'=1

when setting higher order terms to zero. Equation 6-43 is a general expression that can
be used in any scenario where sensitivity information of the multigroup discrete ordinates
equations is required, including in the other materials of the overpack. Similarly to solving
other systems of ODE’s, unique solutions are found when solving an ODE with the
appropriate boundary conditions. This same principle applies to solving Eqn. 6-43, where
Eqn. 6-12 is used to make the required boundary conditions. Each material will have its
own set of boundary conditions leading to unique sensitivity information.

The boundary conditions in the MPC are provided in Eqns. 4-10-4-13. Using these
boundary conditions in Eqn. 6-12 will give the boundary conditions required to solve Eqn.

6-43. For ease, the boundary conditions represented by Eqns. 4-10-4-11 are written in
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matrix form as

mpc,

al
2
(
2

r=284.34 cm
r = 86.84 cm
2 eq (r=284.34 cm
r = 86.84 cm

(0.5729 * 0.81493) ¢ pyer (1 = 84.34 cm)
(0.5729 % 0.18507) ¢ fuer (1 = 84.34 cm)
Qsloncrete,Q (T =95.25 Cm)

)
) =
)
)

2 (r = 95.25 cm)

concrete,2

The first term in Eqn. 6-12, B (a°) h,, is simply

as there are no operators in the boundary conditions. The second term in Eqn. 6-12,

(B!, (a®) y°] h,, is identically zero, since the boundary conditions contain no input

r=284.34 cm

mpco 1
r = 86.84 cm

mpco 2

mpco 1

( )
( )
(r = 84.34 cm)
(r = 86.84 cm)

mpco 2

(6-44)

(6-45)

parameters so the G-derivative evaluates to zero. The final term in Eqn. 6-12, §A (a°; h,),

accounts for inhomogeneities in the boundary conditions and is equivalent to

(0.5729 % 0.81493)¢ fyer (r = 84.34 cm)
(0.5729 % 0.18507)0¢ fyer (r = 84.34 cm)
r = 95.25 cm)

concrete 2

(
concrete 2 (T =95.25 Cm)

Therefore, the final expression for the boundary conditions in the MPC is

mpc 1

mpc 1

(
Prnpe2 (
(
(

mpc 2

r=284.34 cm

r=84.34 cm
r = 86.84 cm

(0.5729 % 0.81493)0¢ fyer (r = 84.34 cm)

r = 95.25 cm)

)

r = 86.84 cm) (0.5729 % 0.18507)¢ fyer (r = 84.34 cm)
)
)

concrete 2 (
(

r = 95.25 cm)

concrete 2
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Solving Eqn. 6-43 with the boundary conditions in Eqn. 6-47 for

1
5¢mpc71
Sl

mpc,2

2
5¢mpc,1

2
5¢mpc72

5¢mpc

(6-48)

will yield the sought after sensitivity information need to determine the SC’s. While
the equations are linear and inhomogeneous, and thus in principle possess an analytical
solution, this solution is notationally cumbersome, enough so that its explicit reproduction
is of little value. For this reason, the results of the numerical analysis in the MPC and
overpack are provided graphically and discussed in Chpt. 7.
6.2.3 Concrete
The multigroup discrete ordinates equations, Eqn. 3-56, are chosen as the analytic
model representing the neutron distribution in the concrete annulus. Since this model is
the same as in the MPC, Eqn. 6-43 will yield the appropriate sensitivity information in
the concrete. However, a new set of boundary conditions needs to be determined.
Equations 4-6-4-9 are used to find the terms in Eqn. 6-12. The first term in Eqn. 6-12
becomes

6L 1 (r=95.25 cm)

conc,1

8Pt . o(r =166.37 cm)

conc,2

B (a’) h, = : (6-49)
62,1 (r=95.25 cm)

conc,1

82 . o(r =166.37 cm)

conc,2

where §¢7,,,.; is the perturbed value of the i direction g energy group neutron flux in
concrete. Similar to the analysis in the MPC, the second term in Eqn. 6-12, [B/, (a°) y°] h.,
evaluates to zero as there are no input parameters appearing in the boundary condition

equations, Eqn. 4-6-4-9. The final term in Eqn. 6-12, §A (a°; h,), is equivalent to the
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inhomogeneous quantities in the boundary conditions as shown in Eqns. 6-50.

dpl (r=86.84 cm)

mpc,1

8l o(r = 166.37 cm)

JA(a%h,)=| ° : (6-50)
8¢2, .1 (r =86.84 cm)

mpc,1

52, o(r = 166.37 cm)

cs,2

where 5gz§fnpc’i is the perturbed neutron flux of the ¢ direction g energy group neutron flux
in the MPC and ¢, ; is the perturbed flux of the i direction g energy group neutron flux
in the carbon steel shell. Finally, the boundary conditions for use with Eqn. 6-43 in the

concrete annulus are

0P eonen (1 =95.25 cm) 0@ et (r = 86.84 cm)
Yo r = 166.37 cm ¢t ,(r =166.37 cm
¢conc,2( ) _ quS’Q( ) ' (6_51)
5¢30m’1(7’ = 95.25 c¢m) 5¢%ch’1(7= — 86.84 cm)
0P ne2 (1 = 166.37 cm) 02, o(r = 166.37 cm)

The final solution to Eqn. 6-43 with the boundary conditions given by Eqn. 6-51 is
provided graphically in Chpt. 7. Determining the system of equations in the carbon steel
is the final remaining analysis.

6.2.4 Carbon Steel Shell

The carbon steel shell is the final material requiring analysis. Once again, Eqn. 6-43
is the foundational system of differential equations describing the sensitivity information
in the carbon steel shell, since the multigroup discrete ordinates equations, Eqn. 3-56,
are chosen as the representative analytic model. Solving Eqn. 6-43 requires calulating

appropriate boundary conditions.
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Using the boundary conditions in the carbon steel, Eqns. 4-14-4-17, the non-zero

terms of Eqn. 6-12 can be found as

dopl, 1 (r = 166.37 cm)

cs,1

Sl o (r = 168.275 cm)

cs,2

B (a’) h, = : (6-52)
d¢2, (r = 166.37 cm)

cs,1

§¢2, o(r = 168.275 cm)

cs,2

and
dpl . (r =166.37 cm)

conc,1

0

§A (a’; hy) (6-53)

8¢, .1(r =166.37 cm)

conc,1

0
There are two zeros appearing in Eqn. 6-53 since the boundary condition is assumed to be
exactly zero with no error for these boundary conditions. Further, the second term in Eqn.
6-12, [B’, (a®) y°] h,, evaluates to zero since there are no input parameters appearing in

the boundary condition equations, Eqns. 4-14-4-17. The final expression for the boundary

conditions corresponding to Eqn. 6-43 are expressed as

0es 1 (r = 166.37 cm) 0Pone,1 (1 =166.37 cm)
ot 5(r = 168.275 cm 0
gbcs,Q( ) _ ' (6_54)
5925?5,1(7” = 166.37 c¢m) 5¢Eonc,1(r = 166.37 ¢m)
02, o(r = 168.275 cm) 0

The solution to the system of ODE’s given by Eqn. 6-43 with the boundary
conditions Eqn. 6-54 is provided, graphically, in Chapter 7. Chapter 7 also compares
the sensitivity analysis results of the helium model, the detailed model, and the analytic

models to identify salient physics and rigorize simulation analysis.
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CHAPTER 7
DISCUSSION OF SENSITIVITY ANALYSIS

The purpose of this chapter is to show the numerical results from the sensitivity
analysis of the analytic models conducted in Chpt. 6. From the sensitivity analysis
results, discussion of the physical phenomena causing the features in the SC curves in
each material region is provided. Finally, the results of the analytic sensitivity analysis are
compared to the corresponding results from the MCNP sensitivity analysis.

7.1 Results of Analytic Sensitivity Study
7.1.1 Sensitivity Analysis of the Fuel Region

The representative homogeneous fuel composition employed in the helium model
may be used to determine an associated set of nominal input parameters S, %9 %% 0
and ch for use with the analytical results appearing in Sec. 6.2.1, featuring an associated
quantification of their relevance to the detailed model. The nominal values of the input
parameters is summarized in Tab. 4-2

Figure 7-1 depicts the sensitivity coefficients S, ; associated with the elemental
parameters ¢ = S, Y., X, U, Xy, and 1, appearing within the analytical model given
by Eqn. 4-5, as calculated using Eqs. 6-21-6-24, 6-25-6-28, and 6-37-6-39 and the data

appearing in Table 4-2. Several trends are immediately evident from Fig. 7-1:

e The sensitivity coefficient associated with the intrinsic neutron source term S is
identically one since the source term itself appears simply as a scalar multiplier
within Eqn. 4-5.

e  The sensitivity coefficient associated with the capture cross section ¥, is negative
throughout the entire homogenous fuel region. This phenomenon indicates that
as the capture cross section increases, the neutron flux decreases. This behavior is
physically plausible since capture is a pure loss mechanism (i.e., as more neutrons
are lost to capture, the value of the neutron flux becomes smaller). Syy, has an
inflection point and increases in value near » = 73 cm from the centerline, since loss
terms are forcing the flux to meet to the boundary value in Eqn. 4-2.

e  The sensitivity coefficient of r, exhibits the most dramatic change across the radius
of the cask. In fact, the value increases to 5.051 at » = 74.68 cm. Perturbing r, is
effectually perturbing the location of the boundary value, Eqn. 4-2. For this reason,
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Figure 7-1. Analytical sensitivity coefficients as a function of the cylindrical radius in the
homogenized fuel region.

Se.r, increases drastically from r = 40 cm to r = 74.78 cm since boundary values
are imperative in constructing unique solutions. This also explains why the value
is less than 0.04 for the first 40 cm, as the flux at these values is less affected by
the boundary value at » = 74.68 cm and more affected by the boundary value at
the centerline, Eqn. 4-1. Finally, the values are positive since increasing the radius
value would force the flux to remain at higher values through the radius of the fuel.
The boundary condition at r = 74.68 cm effectively sets the value of the flux at
this location. Therefore, by furthering the location of this boundary condition (and
increasing the thickness of the fuel region), the neutron flux in the fuel region must
remain at higher values throughout the homogenized fuel region in order to satisfy
the boundary condition. The opposite is true if the fuel radius thickness is lessened,
as the neutron flux would have to be attenuated more quickly in order to meet the
boundary condition at the perturbed location.

e Figure 7-1 shows that positive perturbations in 7 cause uniformly positive
perturbations in the neutron flux. This trend is physically plausible since increasing
the number of neutrons generated through fission events will increase the flux value
throughout a multiplying material. Along these same lines, the sensitivity coefficient
for the fission cross section ¥ is also uniformly positive since increasing the
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likelihood of fission will in turn increase the number of neutrons in the homogeneous
fuel material (i.e., as the number of neutrons available for transport increases, the
flux increases). Moreover, while there appears to be a strong correlation between
Sy and Sy », as appearing in Fig. 7-1, the two coefficients are not identical since ¥
appears decoupled from o as part of its inclusion in the definition of D given by Eqn.
4-5.

e  Otherwise, the sensitivity coefficients associated with X, v, ¥, and Y. all have a
similar shape: they are nearly flat for a majority of the cask’s radial extent, before
trending toward zero near the outer surface of the cask. This phenomenon is a
consequence of all these terms appearing within the definition of B as given by Eqn.
4-5, which in turn controls the shape of the analytical neutron flux. The relationship
between these input parameters demonstrates how the structure of the neutron flux
is related to the structure of the sensitivity coefficients, since the G-derivative is a
linear operator.

e  The sensitivity coefficient associated with the scattering cross section >4 exhibits the
most non-trivial behavior; it is positive and increasing for » < 66.84 cm, positive
and decreasing for 66.84 cm < r < 70.93 cm, and negative for r > 70.93 cm to the
cask outer radius. In turn, these features are indicative of the relative importance
of a variety of gain and loss mechanisms occurring within Eqn. 4-5. In particular,
for r < 70.93 cm neutron scattering serves a gain mechanism: it acts to spatially
redistribute but otherwise preserve the neutron flux within the monoenergetic
diffusion model (i.e., in the absence of thermalization). For r > 70.93 cm, neutron
scattering is a loss mechanism: scattering in proximity to the outer boundary of
the fuel region serves to increase leakage processes. The inflection point occurring
at r = 66.84 cm is then indicative of the spatial location where the role of neutron
scattering begins to transition: its presence owes to the approximate non-reentrant
boundary value given by Eqn. 4-2; which is intended to include leakage mechanics
within the analytical diffusion model. That is, if the neutron flux was instead
terminated at the physical extent of the fuel region, the analytical model would
predict no neutron leakage and rather a zero neutron flux there. In this case, Sy 5,
would then be uniformly positive, which is clearly a non-physical result in the
neighborhood of the cask outer boundary.

To further understand and better rank the importance of the various competing
physical phenomenologies included in Eqn. 4-5, Fig. 7-2 depicts the absolute value of
each sensitivity coefficient plotted in Fig. 7-1. Several additional trends are immediately

evident from Fig. 7-2:
e For a majority of the cask radius, . is the most important input parameter;

however, its importance drops near the cask outer radius as a result of the increase
in Sy x, caused by leakage.
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Figure 7-2. The absolute values of the sensitivity coefficients depicted in Fig. 7-1.

e For a majority of the cask radius, S is the second most important input parameter;
however, near » = 50 cm, S, ,, quickly becomes the most important parameter
and Sy g is briefly the most important parameter before becoming the second the
important parameter near r = 54 cm.

e Initially in the cask radius, 7 and X are the third and fourth most sensitive
parameters, respectively. However, the sharp increase in Sy,, relegates v and ¥y to
the fourth and fifth most important parameters near r = 38.098 cm and r = 28.283
cm.

e Initially in the cask, r; is the fifth most important parameter until approximately
r = 28.283 cm where S, ¢, 1, increase and overtakes Yy before becoming the most
important parameter in the system near 54 cm.

e For a majority of the cask radius, > is the least important input parameter;
however, it becomes the fourth most important parameter near the cask outer
radius.

These importance trends manifest in Figs. 7-1 and 7-2 due principally to the

r-dependent interplay between the capture and leakage loss mechanisms present in
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Eqn. 4-5. For example, capture is the dominant loss mechanism near the cask centerline,
as shown in Fig. 7-1 a neutron initially located there is most likely to undergo many
interactions before escaping from the cask outer surface. Conversely, leakage becomes

an increasingly important loss mechanism near the cask outer radius, the importance of
which is observed to eventually exceed that of capture. This physical interplay noticeably
manifests in the behavior of Sy, and Sy 5, as depicted in Figs. 7-1 and 7-2: for example,
at the point where S, 5, changes sign, S, s, changes slope. Further, the capture loss
mechanism is more important than any source term, with the exception of the internal
neutron source term S near r = 70 cm, as the cask is a subcritical system by design.

The geometry and materials of the cask are chosen in order to limit the neutron flux, and
thereby, increasing the loss mechanisms. In fact, the importance of loss mechanisms is a
common theme observed in each of the remaining materials of the spent fuel cask.

The previous discussion analyzes the SC’s of input parameters in the analytic model.
Further comparison of the SC’s between the detailed and analytic model in the fuel region
identifies essential physics in the detailed model. Figure 7-3 shows the comparison between
the SC’s calculated from the helium model in MCNP and the analytic SC’s. The SC’s
from the detailed model are not included in the analysis of the fuel region, as limitations
of MCNP’s perturbation capabilities preclude sensitivity analysis in this region. Further,
only the analytic SC’s which have comparable computational values are displayed. The
inset graph shows the relative error between the analytic model and the helium model

using

S(T)¢>,ai,analog - S(T)qﬁ,ai,reference (7_1)

relative error(r) = S )omres :
o, reference

where S(7) g a;,analog 15 the SC pertaining to the input parameter ¢; from the analog model
and S(7)p.a;reference 18 the SC pertaining to the input parameter «; from the reference
model. In the fuel region, the helium model is the reference model, since limitations of

MCNP’s sensitivity analysis capabilities precluded analysis of the detailed model in the

137



fuel region, and Eqn. 4-5 is the analog model. ! Referencing Fig. 7-3, a comparison of the

SC’s calculated using the analytic model, Eqn. 4-5, and from the helium model yields:

Absolute Value of Sensitivity Coefficients in the Fuel Region
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Figure 7-3. A comparison between the SC’s from the helium model (dot dashed), the

30-group helium model (dot dashed with star markers),and the analytic model

(solid). The inset plot shows the relative error between the SC’s calculated
with the analytic and helium models.

1 The SC’s for S and r, are not directly computable from MCNP using the PERT
card. MCNP results are given in units of per source neutron, therefore the value of Sy g
is likely 1 as there is a linear relationship between the internal source strength and MCNP
simulated neutron flux. However, discussion of the computational SC’s is limited to values
that are entirely computationally attainable, and Sy ¢ is not. Determining the values of
Se.r, through computational means would require running multiple simulations where 7y,
the fuel radius, is changed in each simulation, as geometry perturbations are precluded
from MCNP’s perturbation capabilities. Finally, perturbations in 7 are not compatible
with MCNP perturbation capabilities, and therefore, cannot be computationally
determined.
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The analytic and computational values of Sy, agree within 5% throughout the
fuel region. Near r = 60 cm, the value of the analytic SC’s pertaining to the fission
cross section begins to decrease where the computational values of Sy 5, remain
flat. Here is the first example of the effect of boundary values. The analytic model
in the fuel region requires a boundary value at r = 78.788 cm (the extrapolated
radius of the fuel). The flux is chosen to vanish at the extrapolated boundary value.
Therefore, the value of the analytic Sy 5, decreases reflecting the decreasing flux
value approaching the boundary value location. The computational model does not
share this boundary value, and the computational values of Sy 5, do not decrease as
a result.

Figure 7-3 shows there is considerable disagreement between the analytically
calculated values of Sy, and their computational counterparts. There are clear
benefits when the two models agree; in this scenario, a code user understands

the physics at the level of the analytic models. However, the scenario when the

two models do not agree still provides insight into the problem leading to a more
rigorous analysis of a simulation. The inset graph in Fig. 7-3 shows the relative error
between the two models is nearly constant over the the first 50 cm of the fuel region
for each of the parameters. The analytic values of Sy 5, are positive due to the
choice of a monoenergetic analytic model. That is, choosing a monoenergetic model
prevents thermalization which, in turn, does not capture the how the probability

of absorption increases as neutrons thermalize, Fig. 7-4a. As a result, neutron
scattering can only act as a loss term through leakage, which will not occur until

a neutron is significantly close to a boundary. The computational models use
continuous energy cross section data which captures thermalization and indirectly
leads to neutron loss through capture of thermal neutrons, in addition to the
aforementioned leakage process, yielding a negative SC value. Further, the two
models have similar shapes, flat before breaking downward. This behavior occurs

in the analytic models because of the boundary value at the extrapolated radius.
The SC’s pertaining to loss terms increase in value at the boundary value since

the neutron flux is being forced to zero. However, the computational model does
not have boundary values at this location. Instead, the neutron flux is decreasing
because the flux is directed outward (from Fig. 2-9b) confirming that neutrons are
leaking from the fuel region. Therefore, increasing the scattering cross section will
increase the chance that a neutron leaks from the fuel region. Even though the two
models do not agree, understanding the causes for the disagreement are as important
in understanding the problem as having matching results.

Finally, the values of S,y for analytic and computational models disagree as shown
by the inset graph in Fig. 7-3. However, both curves are negative, since absorption
is a loss term. The values of the analytically determined Sy, initially show a
reduction around r = 60 cm, near the location where S,y goes negative (r =
66.842 cm). From this, a relationship is again seen between the loss terms, ¥, and
Ys. The computationally computed values of Sy 5. do not show a drastic reduction
at the same location, since scattering is always a loss term in the computational
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models. That is, there is no location where scattering physics changes from a
preservation term to a loss term, therefore, there is no drastic change in Sy 5, in the
computational model. Another difference between the two models occurs near the
boundary of the fuel region, at r = 73 cm where the analytically calculated values of
Sex, has an inflection point. This inflection point results from the boundary value
forcing the flux to zero, resulting in larger negative values for S, s, and Sy x,. The
computational model does not have this inflection point since the flux is not forced
to zero at this location in the helium model.

Macroscopic Absorption Cross Section Comparison
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A) The absorption cross section and B) the scattering cross section in the
homogenous fuel material used in the helium model. The dark blue line is the
continuous energy cross section, the royal blue line is the monoenergetic cross
section value used in the analytic model, the purple line is the 30-group cross
section data. The source spectrum (light blue) is shown for reference, as the
source spectrum is used in NJOY as a weight function to make the
monoenergetic cross section value.

The disagreement between the SC’s from the helium model and analytic models is

a result of oversimplifying the continuous energy cross section data when using only two

energy groups. In an effort to investigate the effect of better representing the continuous

cross section data by increasing the number of energy groups, a 30-group instantiation of

the helium model is developed in MCNP, using the pre-loaded multigroup formulations

included in that code [20], the 30-group absorption and scattering cross section values

are provided in Fig. 7-4a. The sensitivity coefficients of the 30-group MCNP modes are

calculated using Eqn. 5-9, in a similar manner as the SC’s from the continuous energy

MCNP models. Further, while the cross section data is energy dependent in the 30-group
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MCNP models, the simulated neutron flux values are integrated over energy, similarly to
the neutron flux values of the continuous energy MCNP models. Figure 7-3 shows the
results from the 30-group sensitivity analysis. The SC’s from the 30-group model for ¥,
and X¢ better agree with the corresponding SC’s from the helium model than the SC’s
from the analytic and detailed models. However, the SC’s pertaining to ¥ from the
30-group model show more disagreement than from the analytic model. This conclusion
shows that 30 energy groups are insufficient to capture the sensitivity information from
the detailed model in the fuel region. Further analysis of the remaining materials shows
similar results.
7.1.2 Sensitivity Analysis of the MPC

The E,Sy equations are chosen to analytically represent the neutron flux in the MPC.
These equations, Eqns. 3-57-3-60, are a system of four coupled ODE’s representing four
partial fluxes, which depend on group-wise cross section data values. Table 4-4 provides
a summary of these values in the MPC. These values are calculated using NJOY with
the same composition as MPC in the detailed and reduced-fidelity MCNP models, where
the energy cutoff between the two groups occurs at 1 keV [45]. The 1 keV energy cutoff
value is chosen as at this energy value, a majority of the resonances occurring in the total
cross section are contained in the fast energy group while the the thermal energy group
has only one resonance. A lower energy cutoff (i.e., 100 eV) could have been chosen to
capture all the resonances in the fast group, however, the fast-to-thermal group cross
section becomes too low to accurately capture the neutron transfer from the fast group
to the the thermal group. This is a result of choosing the fast energy group to be too
wide. In a two-energy group model, a neutron is transferred from the fast group to the
thermal group in a single interaction. Meaning, a neutron has to lose a sufficient amount
of energy in a single scattering event such that the final energy of the scattered neutron is
in the thermal energy group. Choosing too wide of an energy group causes the percentage

of neutrons capable of transferring energy groups to decrease. Table 4-4 summarizes the
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nominal values of the input parameters used in the solution to the set of equations given
by Eqns. 3-61-3-64. Further, finding the SC’s for the total flux requires first finding the
SC’s for each partial neutron flux depending on the group-wise cross sections, as the

SC’s calculated using MCNP are given for the total scattering and total absorption cross
sections rather than the group-wise cross sections. The SC’s for the cross section values for

the total parameters are defined as

S¢7Za — S(z)’E(lz + S¢7Zg (7‘2)

Soz, = g1 + Spmi2 + Spm1 + Sp w2, (7-3)

where the value Sy 521 is zero since upscattering is assumed to be zero. The SC’s
corresponding to each parameter in Tab. 4-4 will be discussed.

Figure 7-5 shows the partial and total SC’s pertaining to the absorption cross section.
The values of Sy 2 are more important than the corresponding values for Sy x1. Table
4-4 shows the value of 2 is more than five times larger than X! causing the difference
in importance between the two parameters in spite of the thermal flux only accounting
for 20-40% of the total flux in the detailed model (see Fig. 2-12). As expected, both
the curves of the SC’s pertaining to the group-wise cross section values are negative.
Probably the most notable feature of the curves is all the curves become less negative at
the boundaries. The values of Sy, increase from r = 84.34 cm to r = 85.84 cm, near
where the values of Sy 5, has a zero point.

Neutron losses are related between the X, and X, since both input parameters act
as loss mechanisms. The value of the neutron flux is controlled at both the left (r =
84.34 c¢m) and the right (r = 86.84 cm) surfaces due to the boundary conditions. As a
result, there exists a certain number of neutrons which will be attenuated in the MPC. At
locations where neutrons are being lost to leakage, the importance of absorption must be

reduced to account for the increased importance of leaking neutrons. For the remaining
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thickness of the MPC, neutron loss physics is shared between absorption and leakage and

this relationship is observed.
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Figure 7-5. The SC’s pertaining to 3! (dark green dotted), 32 (light green dotted), and
¥, (solid line) in the MPC.

The value of Sy s, is the sum of Sy 11, Sp 512, Sy x2-2 as shown in Fig. 7-6. This
figure shows %272 is the least important parameter across the thickness of the MPC,
since the low energy flux is smaller than the high energy flux in this region. From r =
84.34 c¢m to nearly r = 85 cm, the most significant partial scattering cross section is the
fast in-group scattering cross section, %71 due to 60-80% of the neutrons belonging
to the fast group. As thermal neutrons are bred deeper in the MPC, S 512 becomes
the most important partial scattering cross section from r = 84.84 cm to r = 86.09
cm. Beyond this thickness, the fast group in-scattering cross section term becomes most
important since the fast group neutrons comprise the majority of the total neutron

population and leakage is causing the neutrons in the fast energy group to become most
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significant. Also at r = 86.09 cm, the SC’s corresponding to the total scattering cross
section begins to flatten out. This is a result of the continuous flux boundary value as

neutrons begin leaking from the MPC.
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Figure 7-6. The SC’s pertaining to the scattering cross sections in the MPC. The values of
Sg,x, 18 the sum of the partial sensitivity coefficients Sy s1-1, Sy s1-2,54 w2-2.

Figure 7-7 shows the sensitivity coefficients pertaining to p, the directions in which
the multigroup discrete ordinates equations are evaluated. The values of y; and sy are
included in the sensitivity analysis, since these parameters are chosen and can be set to
any angle. The magnitude of the values of the SC’s pertaining to p; are larger than the
corresponding values pertaining to pe, since the right-moving flux has a larger value than
the left-moving flux through the entire cask. This behavior is seen in all the remaining
materials. The positive values of S, ,, mean the flux value will increase as the direction of
11 becomes more forward directed. However, choosing s to be more backward directed

would cause a reduction in the total flux. Further analysis of the causes of this behavior is
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required, however, it is likely a result of the chosen boundary values and anisotropy in the

flux.
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Figure 7-7. The SC’s pertaining to the values of . The right directed flux (orange) has a
SC with a magnitude larger the corresponding values for the left directed flux
(brown).

The final parameters to discuss in the analytic models are the boundary values from
Eqn. 6-12, A, shown in Fig. 7-8. The two most important boundary values at the left
surface of the MPC, r = 84.34 cm are the two boundary value applied at that location
(the boundary values for ¢ and ¢?). These two curves decrease in value through the
MPC thickness. At the exiting face (r = 86.84 cm), the boundary value for ¢} is the
most important as the this boundary value is applied at the outer face of the MPC and
applies to the fast flux. While the boundary value for ¢2 is also applied at this location,
it is not the second most important boundary value due to the neutron flux population

being significantly fast. Figure 7-8 shows that the SC’s for the boundary values have
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maximum values at the location where the boundary value is applied and decreases away

from that location. Further, the values are all positive,

meaning, as the boundary value

value increases the flux values also increase, a physically intuitive result.
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Figure 7-8. The SC’s of the boundary values are included in the sensitivity analysis. The

flux values for ¢} (green-grey) and ¢? (dark grey) are given as boundary values
at r = 84.34 cm, where the flux values for ¢} (black) and ¢3 (light grey) is

chosen to be continuous at r = 86.84 cm.

The extension of the results assessment methodology in sensitivity metric space

requires comparing the SC’s from the detailed model, helium model, and analytic model.

The only comparable SC’s are the cross section values

¥, and X, 2 . Figure 7-12 compares

2 The comparison between the SC’s from the detailed, helium, and analytic models
is limited to X, and Y, since other values included in the analytic sensitivity analysis
do not have computational counterparts. p; and us are analytic constructs and have
no counterpart in MCNP. Further, manipulating the thickness of MPC in MCNP can
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the values of Sy 5, and S, 5, for the detailed model, the helium model, and the E,S,
model in the MPC. The inset plot in Fig. 7-12 shows the relative error between the
analog models and the detailed model, where the relative error is calculated using Eqn.
7-1 with the reference model being the detailed model. The error values for the analog
models’ Sy 5, drops off the graph at the location where the detailed model’s value of S, 5,
crosses zero. This is a result of calculating the relative error, since the difference between
the model values is divided by the value of the detailed model value. That is, when the

detailed model value is nearly zero, the relative error will be large.
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Figure 7-9. A comparison of the neutron spectrum between the detailed model (red) and
helium model (blue) at A) the inner surface of the MPC (r = 84.340 cm) and
B) near the outer surface of the MPC (r = 86.590 cm)

The values for Sy 5, of the detailed and helium models are nearly the same through
the MPC thickness and the relative error has a maximum value of 6.849% at r = 85.09
cm. Overall, it is expected for the SC’s of the helium model to be similar to those of the

detailed model since there are no assumptions, approximation, or reductions in geometry

only be conducted through running multiple simulations and does not lend itself to direct
computational sensitivity analysis using the methods presented in Chpt. 5.
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occurring outside of the fuel region in the helium model, making the two MCNP models
the same outside of the fuel region. However, there is a noticeable difference in the values
of Sy, between the two MCNP models, as the helium model underpredicts the thermal
neutron flux, as seen in Fig. 7-9, especially at the left surface of the MPC (Fig. 7-9a).
While the materials and geometry are the same between the MCNP models, the energy
spectrum differs between the two causing discrepancies between the sensitivity coefficients.
The helium model underpredicts the neutron flux at lower energies, which results in

differences appearing in derivative terms (i.e., the SC’s).
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Figure 7-10. A) The absorption cross section and B) the scattering cross section in the
MPC. The dark blue line is the continuous energy cross section, the red line
is the two-group cross section value used in the analytic model, the purple
line is the 30-group cross section data. Increasing the number of energy
groups used to represent the cross section better captures the shape of the
continuous energy cross section data.

Further, the analytic model underpredicts the values of Sy 5., for positive values of
Sex, and overpredicts the values of Sy 5, for negative values of Sy 5, . Treating the neutron
flux with only two energy groups and two angles artificially preserves the flux between r =
83.34 cm and r = 85.09 cm, and over-accounts for leakage between r = 85.09 cm and r =
86.84 cm. The implications of these simplifications are further emphasized through the
comparison of Sy x,. Using only two energy groups “smoothes” out the various resonances

that occur within various cross sections as shown in Fig. 7-10. Similarly to the discussion
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in Sec. 7.1.1, a helium model using 30-group cross sections is developed for comparison
with the detailed model. Increasing the number of energy groups used to represent the
cross sections helps to better capture the continuous energy cross section data, including
any resonance structure, shown in Fig. 7-10. The calculated SC’s of the 30-group model
are included in Fig. 7-12 as the dash-dotted line with star markers. Using 30 energy
groups yields SC’s which, through inspection, are more representative of the detailed
model’s values than the 2-group analytic model. This result shows the effect of increasing
the energy group number, however it is unlikely a 30-group model sufficiently converges

the energy grid, similar to in the fuel region.
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Figure 7-11. A comparison of the SC’s from the detailed model (dashed), helium model
(dash-dotted), and analytic model (solid). A 30-group model (dash-dot with
star markers) is also included to investigate the effect of increasing the energy
mesh.
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Finally, the SC’s in the MPC can be compared to stratify importance. Figure 7-12
shows the absolute values of the various SC’s. For the detailed MCNP model, ¥ is
the most important parameter for approximately the first 0.5 cm of the MPC before
absorption becomes the most important parameter for the remainder of the cask. Similar
behavior is captured with the helium model. The analytic models have a similar behavior,
however, ¥, is the most important parameter for a much smaller distance, r = 83.34 cm to

r = 84.44 cm. The sensitivity analysis proceeds in the concrete annulus.
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Figure 7-12. The absolute values of the SC’s are shown to ease stratification of the
parameters in the detailed model (dashed), helium model (dash-dot), and
analytic model (solid).

7.1.3 Sensitivity Analysis of the Concrete Annulus
The neutron flux undergoes a shift in energy (show in Figs. 2-16a-2-16h) and sizable
reduction, approximately 50%, through the thickness of the concrete annulus (Fig. 2-7).

The energy shift indicates scattering physics is driving thermalization, which alludes to a
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large importance of scattering physics. The nominal values of the input parameters used
to calculate the SC’s in the concrete region are provided in Tab. 4-3.

Figure 7-13 shows the values of the SC’s for the partial and total absorption cross
sections. The contribution to the total SC’s from the thermal group cross section is
greater than that from the fast energy group, since the value of $%? is approximately three
times larger than %!, Tab. 4-3. Further, the population of thermal neutrons is increasing
through the concrete annulus, which causes the values of Sy 52 to increase until the edge of
the concrete region. Near the edge of the concrete boundary (r = 166.37 cm), the values of
the SC’s for both the thermal and fast group absorption cross sections decrease. A similar
behavior is seen in Fig. 7-5 at r = 86.84 cm, where the MPC shares a boundary with the
concrete. The boundary value at both locations is chosen to have a continuous flux. At
locations where a continuous flux boundary value is applied, the SC’s pertaining to the
cross section data trend toward zero, since the flux is essentially “pinned” to a value at
these locations.

The SC’s pertaining to the group-wise and total scattering cross sections are shown
Fig. 7-14. The negative values of Sy s1-1 is indicative of the role that scattering plays in
neutron shielding. Concrete has a scattering ratio of 99.452% for fast neutrons, meaning
neutrons undergo many scattering events before an absorption event occurs, where the
scattering ratio is calculated as 3,/ (3%;) using cross section values pertaining to the
concrete (Tab. 4-3). Therefore, X171 acts to prevent forward motion of the neutrons
through scattering until a neutron can downscatter and eventually be absorbed. The
values of Sy 512 are negative and increase through the concrete thickness, so, neutrons
thermalizing indirectly leads to absorption since the absorption cross section is greater in
the thermal energy group, see Tab. 4-3. Figure 2-16 shows the increase in the thermal flux
through the concrete region due to the the group-to-group scattering cross section Y172
This effect is realized in the increasing values of the SC’s pertaining to Sg si-2. Sy s2-2

is initially positive, since the thermal neutron flux is being preserved for approximately
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Sy, 5, in the Concrete
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Figure 7-13. The values of Sy, (solid) in concrete show X2 (light green) contributes more

the first 30 cm of the concrete thickness, a result of the high scattering ratio in concrete
(98.910% for thermal neutrons). After the first 30 cm, S, 522 has negative values as
neutrons are lost indirectly to absorption and directly to leakage. Again, at the right

boundary value (r = 166.37 cm), the group-wise, and therefore total, SC values trend

to the total sensitivity of the absorption cross section than X} (dark green).

toward zero due to the continuous boundary value at that location.

Figure 7-15 shows the SC’s corresponding to the user-chosen directions p. The values
of the SC’s pertaining to u; are greater in magnitude than the same values for py. These
two curves have a similar shape which is presumed to be related to applying the same
type of boundary value on both edges of the concrete annulus, a continuous flux boundary

value. Further investigation of the physics which causes the shape of the curves in Fig.

7-15 is required.
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The SC’s pertaining to the scattering cross section in concrete (solid line).
The values of the partial cross section SC’s are shown to investigate how the
partial fluxes depend on their individual parameters: Sy 11 (dark red),
Sy (pink), and S, 522 (red-orange)

Figure 7-16 shows the SC’s pertaining to the boundary value values of Eqns.

3-57-3-60. The boundary values for ¢] and ¢? both are applied at r = 95.25 cm and those

for ¢ and ¢3 are applied at r = 166.37 cm. At r = 95.25 cm, the two most important

boundary values are the ones applied at this location, with the boundary value for the

fast flux being the more important of the two due to high population of fast neutrons at

this location. Moreover, since thermal neutrons are bred from the fast flux, the boundary

value for ¢} remains the most important boundary value throughout the thickness of

the concrete, as changing the number of incoming fast neutrons affects the fast and

thermal fluxes. Further, the values of the SC’s corresponding to the boundary value for ¢?
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Figure 7-15. The values of the SC’s pertaining to p1 and po. The values of Sy ,, (orange)
have a larger magnitude than S, ,, (brown), signifying more importance
being attributed to p; than ps.

decreases through the thickness since the population of the thermal flux depends more on
downscattering from the fast group than from incoming thermal neutrons.

At the other boundary (r = 166.37 cm), the boundary value for ¢} is still the most
important boundary, owing to dependence between the thermal neutron population
and downscattered neutrons from the fast group. However, the second most important
parameter is the boundary value for ¢, since the thermal flux has a higher population
at the exiting surface of the concrete than the fast neutron population at that location.
The values of the boundary value of ¢} are the least important since the population of fast
neutrons entering the concrete at r = 166.37 c¢m is comparatively low (about 0.753% of the

total flux).
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Figure 7-16. Perturbing the boundary values is equivalent to error occurring in the flux
values at the material interfaces. These graphs effectively show how deep into
the concrete region a specific boundary value affects the neutron flux.

After analyzing the physics driving the behavior in the concrete annulus, it is
necessary to compare the SC’s from the analytic, helium, and detailed models in the
concrete annulus. Figure 7-19 compares the SC’s for the detailed, helium, and analytic
models. This figure shows better agreement between the computational models than is
seen in the MPC. In fact, the values of Sy 5, and S, x, agree within 1.070% and 1.314%
respectively over the concrete thickness. The helium and detailed model show better
agreement in the concrete than in the MPC since the energy spectra compare more
favorably in the concrete than in the MPC, Fig. 7-17. The further neutrons travel away
from the fuel region, the more the energy spectra will agree, since the helium and detailed
models differ in the fuel region only. For a majority of the concrete region, the analytically

calculated values for S, 5, overpredict the sensitivities of the detailed model and the
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Figure 7-17. A comparison of the neutron spectrum between the detailed model (red) and
helium model (blue) at A) near the inner surface of the concrete annulus (r =
95.758 cm) and B) near the outer surface of the concrete annulus (r =
165.862 cm)

analytically calculated values of Sy 5, underpredict those from the detailed model. The
discrepancy is a result of using only two energy groups in the analytic model. Similar to
the other material regions, a version of the helium model is developed in MCNP using 30
group cross section data rather than continuous energy cross section data, where Fig. 7-18
show the continuous energy, two energy group, and 30 energy group cross section values.
Thirty energy groups better capture the structure (i.e., resonances) of the continuous
energy cross section data than the two energy group data provided in Tab. 4-3. The
results of the sensitivity analysis performed on the 30-group helium model are displayed
in Fig. 7-19. The values of the SC’s from the 30-group model compare favorably to those
from the detailed model, confirming that the previous discrepancies between the SC’s from
the analytic and detailed models are a result of using too few energy groups.

Both the values of Sy 5, and Sy 5, from the analytic models decrease in magnitude
near the material boundary at r = 166.37 cm. As previously discussed, this phenomenon
is a result of applying boundary values and are artifacts of analytic modeling. For this

reason, these trends are not seen in the computationally derived SC’s. In fact, the SC’s

156



Macroscopic Absorption Cross Section Comparison Macroscopic Scattering Cross Section Comparison

—— Concrete
—— 2-group Concrete

10'{ — Concrete

—— 2-group Concrete
1o-2) — 30-group Concrete —— 30-group Concrete

ol Aoy

T
107!

107® 1077 107° 107° 107 1072 1072 107! 10° 10t 102 107° 107 107° 107 107 1072 1072 107! 10° 10t 102
Energy [MeV] Energy [MeV]

o
o

H
5
Cross Section [2&]

Cross Section [2&]

=
o

Figure 7-18. A) The absorption cross section and B) the scattering cross section in the
concrete annulus. The dark blue line is the continuous energy cross section,
the 30-group cross section values (purple) better capture the shape of the
continuous energy cross section values than the 2-group cross section values
(red), which are used in the analytic models.

pertaining to the scattering cross section in both the detailed and helium models increase
at the boundary. Neutrons at this location are able to “see” the exterior of the cask, as
the carbon steel thickness immediately exterior to the concrete region is 1.9 cm and the
MFP for thermal neutrons in the carbon steel region is around 1 cm, Fig. 2-18. The values
of Sy, from the computational models flatten out near the boundary of the concrete in
response to the increased leakage occurring following the previously identified relationship
between the two loss mechanisms.

Figure 7-20 shows the absolute values of the SC’s. In the detailed model, ¥, and X
have similar SC’s for the initial 9 cm of the concrete annulus with 3, generally being the
most important value. However, after 9 cm, Y, is the most important parameter due to
the amount of scattering which causes thermalization in the detailed model. This same
behavior occurs in the analytic model however, ¥, is the most important parameter for
the initial 20 cmm. While these two locations are separated by 11 cm, the analytic models
capture the general shape of the SC’s from the detailed model within 50% relative error

between r = 104.25 cm and r = 162.75 cm.
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Figure 7-19. The sensitivity coefficients for ¥, (green) and ¥ (red) from the detailed,

helium, and analytic model. The models agree that the scattering cross
section is the most important parameter over most of the concrete annulus
due to the amount of thermalization occurring in the concrete.

7.1.4 Sensitivity Analysis of the Carbon Steel

The final material to be analyzed is the carbon steel shell, which is the outermost

layer of the cask. The carbon steel shell is thin (1.9 cm) compared to the MFP for thermal

neutrons (1 cm, Fig. 2-18), as the neutron flux is predominately thermal in the carbon

steel (Figs. 2-19a and 2-19b). Further, there is no energy shift occurring in the shell

and the angular distribution is predominately forward peaked, resulting from the the

cask being surrounded by a high MFP material (air). The nominal values of the input

parameters used to calculate the SC’s in the carbon steel shell are given in Tab. 4-5.

Figure 7-21 shows the values of the analytically determined SC’s pertaining to the

absorption cross section in carbon steel calculated from the solutions to Eqns. 3-61-3-64.
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Figure 7-20. The absolute values of the sensitivity coefficients from the detailed model,
helium model, and analytic model.

The flux in the carbon steel is mainly thermal and, as a result, the values of Sy s is
nearly zero through the thickness of the carbon steel. The values of Sy 52, and therefore
S¢x., increase through the cask as thermal neutrons are absorbed through the steel.
Sy, does not decrease in magnitude near the boundary at » = 168.275 cm, since
the boundary values applied at this location are not continuous flux boundary values.
Rather, a non-reentrant condition was applied to the left-moving partial fluxes, ¢} and ¢3.
Further, there is no noticeable relationship between the two types of loss mechanisms as a
result of these boundary values.

The values of Sy x, initially have positive values for the first 0.5 cm of the carbon
steel thickness before having negative values for the remainder of the material thickness, as
shown in Fig. 7-22. This behavior has been observed in the analytically calculated values

of Sy x, in each previously discussed material. The positive values of Sy 522 indicate
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Sy, 5, in the Carbon Steel Shell
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Figure 7-21. S, 51 (dark green) essentially has a zero value through the carbon steel shell
thickness resulting from the small population of fast neutrons compared to
the thermal neutron population. Then, Sy, (solid) is nearly equivalent to
Sy (light green).

that scattering is acting to preserve the thermal flux for the first 0.5 cm before leakage

dominates scattering physics for the remainder of the shell thickness. In the carbon steel

shell, the thermal flux accounts for approximately 90% of the total flux. The physics
determined by the 317! and X172 values is proportional to the value of the fast flux,
which explains the reason Sy 11 and Sy s1-2 are nearly zero for the entire thickness of
the carbon steel. Finally, there is an increase in the magnitude of Sy 11 and Sy s2-2 near
the boundary at » = 168.275 cm. This occurs as a result of the chosen boundary values.

The non-reentrant condition only applies to the left-moving flux equations, Eqns. 3-60

and 3-60. Meaning, the flux values for ¢} and ¢? are determined entirely by the material

properties. The boundary values at » = 166.37 cm and the right-moving flux leaks
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strongly out of the cask as there is no material present past r = 168.275 cm. Since there
are no constraints on the right moving flux at » = 168.275 cm, there is no relationship
between the leakage and absorption loss mechanism, because the flux at » = 168.275 cm is

not pinned to a value as in the other materials.

Sy, 5. in the Carbon Steel Shell
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Figure 7-22. The neutron flux in the carbon steel shell is 90% thermal. Meaning, S 522
(red-orange) controls the values of S,y (solid). The low populations of fast
neutrons leads to nearly zero values of Sy 11 (dark red) and Sy 512 (pink).

Figure 7-23 shows Sy, and S ,,. The values of S, ,, are greater than Sy ,,. The
boundary values applied to the right-moving flux is a continuous flux condition at the
interface between the concrete and carbon steel. Without having a material outside of the
carbon steel shell, the values of Sy ,, increase linearly. The boundary values applied to the
left moving flux are different from those applied elsewhere in the cask. The left-directed

fluxes have a non-reentrant boundary value applied, which presumably causes the shape of
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the curve in Fig. 7-23. Further analysis is required to identify the physics which causes the

behavior of Sy, and Sy ,,.

Sy, In the Carbon Steel Shell
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Figure 7-23. The values of the SC’s of the directions, u values. Sy ,, have higher values
than Sy, across the thickness of carbon steel shell.

Figure 7-24 shows the SC’s pertaining to the boundary value values. The values of
the SC’s corresponding to the boundary values of ¢3 and ¢3 are identically zero, since the
unperturbed value of the left-moving flux at » = 168.275 cm is zero (a result from choosing
a non-reentrant boundary value). The values of the SC’s for ¢? are the most important
since the thermal flux is approximately 90% of the total flux through the carbon steel and
slightly decreases through the carbon steel thickness as the thermal flux decreases. The
values of the SC’s for the boundary values of ¢! slightly increase over the cask thickness
are a result of the increase in the contribution of the fast flux to the total flux. Figure 2-19
shows the fast flux accounts for approximately 7% of the total flux entering the carbon

steel shell and nearly 15% of the total flux exiting the carbon steel shell in the detailed
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model. Initially, this is attributed to a small number of fast neutrons being born through
nuclear reactions. However, the slight increase in the SC’s of the boundary value for ¢}
reflects the slight increase in the fast flux, which is determined to be caused by extra
absorption occurring in the thermal flux causing a reduction in the total flux. The effect
caused by thermal neutrons being preferentially absorbed as compared to fast neutron

would increase the ratio of the fast lux to total flux.

Sy, 8c in the Carbon Steel Shell
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Figure 7-24. The non-reentrant boundary value causes the values of the SC’s pertaining to
the boundary values for ¢} (black) and ¢3 (light grey) to evaluate to zero.
However, the boundary values applied to the right-moving fluxes, ¢}
(green-grey) and ¢? (dark grey), are non-zero and the boundary values have
importances related to the intensities of the fast and thermal fluxes
respectively.

The previous analysis helped to identify physics occurring in the carbon steel shell
using simple analytic models. However, by first identifying how certain physics causes

causes changes to the neutron flux, the SC’s of the detailed model can be analyzed with
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Figure 7-25. A comparison of the neutron spectrum between the detailed model (red) and
helium model (blue) at A) near the inner surface of the carbon steel shell
(r = 166.847 cm) and B) near the outer surface of the carbon steel shell (r =
167.803 cm)

more depth through comparison with the analog models. The comparison of the SC’s is
shown in Fig. 7-27. The helium model is capturing the results form the sensitivity analysis
within 6% for Sy, away from the location of the root of the detailed model’s Sy, and
2.38% for S, y,. These discrepancies are attributed to the small differences between the
energy spectra of the detailed and helium models, seen in Fig. 7-25. The analytic models
underpredict both S, x, and Sy yx, by a maximum of 64.168% and 83.482%, respectfully,
away from the root location. The error of Sy, goes to a value of 618% at the location
the root of Sy 5, for the detailed model. Again, this is a result of Sy, from the detailed
model being close to zero, leading to high values of relative error. The overall shape of
the SC’s from the detailed model is captured by the analytic models. The SC’s from

both the analog and computational models show the values of Sy 5, increasing near r =
187.894 cm. This is caused by an increase in neutrons leaking out of the carbon steel
shell. The difference between the SC’s from the detailed and analytic models is attributed
to an unrefined energy mesh, shown through the comparison of the detailed model and

previously discussed 30-group model in Fig. 7-27. A comparison of the continuous energy,
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two energy group, and 30 energy group models is provided in Fig. 7-26, which shows that
the 30-group cross section data better represents the structure of the continuous energy

cross section data than when using two energy groups.
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Figure 7-26. A) The absorption cross section and B) the scattering cross section in the
carbon steel shell. The dark blue line is the continuous energy cross section,
the 30-group cross section values (purple) better capture the shape of the
continuous energy cross section values than the 2-group cross section values
(red), which are used in the analytic models.

Figure 7-28 compares the absolute values of the SC’s in the carbon steel shell. In
the computational models, ¥, is the most important parameter for nearly the first 0.38
cm before ¥, becomes the most important parameter. A common theme which occurs
in the materials is that X, tends to be the most important parameter even though the
materials are mostly scattering, demonstrating that unless a material is almost entirely
dominated by scattering, a smaller magnitude parameter may be more important in
properly modeling physics. As a result of under-representing the SC’s, the analytic results
have two intersection points. In the analytic models, ¥ is the most important parameter
from r = 166.37 cm to r = 166.47 cm and again from r = 167.97 ¢m to r = 168.275 cm.
From r = 166.47 cm to r = 167.97 cm, X, is the most important parameter.

7.2 Summary
The previous sensitivity analysis of the detailed and analog models and comparison

of the results helps to identify, characterize, and importance rank processes occurring in
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Sensitivity Coefficients in Carbon Steel Shell
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Figure 7-27. A comparison of the SC values between the detailed model (dotted), helium
model (dot-dashed), and analytic model (solid). The 30-group model
(dot-dashed with star markers) is also shown to see the effects of using a
larger number of energy groups.

the spent fuel cask. There are some behaviors that are persistent through the materials

analyzed:

o Sy, calculated in from the analytic models is generally controlled by the energy
group where the value of ¥, is largest.

e Six, as determined in the analytic models is controlled by the in-group scattering
cross section value where the flux is most intense.

o Sy, from the analytic models initially has positive values before becoming negative
(moving left to right through the material), meaning scattering preserves the flux
as it enters a material, before loss physics occurs through leakage and indirect
absorption (through thermalization).

e Refining the energy grid better captures the first derivative information of the
detailed model, as seen through the SC’s from the 30 energy group models generally
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Absolute Value of Sensitivity Coefficients in the Carbon Steel Shell
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Figure 7-28. The absolute values of the sensitivity coefficients from the detailed model,
helium model, and analytic model.

showing better agreement with the SC’s of the detailed model than between the SC’s
of the two energy group model and the detailed model.

e X, generally is the most important cross section value even though the materials are
mostly scattering.

Given the previous analysis, future work should include an energy grid refinement
study to determine an effective grid number for capturing the sensitivity information to

some prescribed level of fidelity.
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CHAPTER 8
CONCLUSIONS

Analytical models are useful tools for enhancing traditional analysis from the
extensive computational modeling used in nuclear engineering. Using reduced complexity
analytic and computational models to analyze the simulation results of a high-fidelity
computational model allows for the quantification of effects of any assumptions invoked
when developing the latter model. Ensuring important physics are preserved in the course
of conducting simulations increases the likelihood of correct results. This work exemplified
this notion through a process referred to as ”simulation results assessment,” or more
simply “results assessment.” As a demonstration, this work includes post-simulation
analysis of a detailed MCNP model of a HI-ISTORM 100 spent nuclear fuel cask. A
series of reduced analytic and computational models are developed and are used to
identify the physics which causes features in the neutron flux spatial distribution as
calculated by the detailed model. In the HI-STORM 100 model, the stainless steel
basket, neutron absorbing pads, and helium annulus around the fuel cells are important
physical components that need to be preserved in modeling. Retaining the individual
fuel pin structure is found to be less important than broadly capturing the lumped
material properties inside the individual fuel cells. These results are corroborated using
the cruciform model, which appears to capture the physics relevant to the neutron flux
spatial distribution in the detailed model beyond the 90% level. The major features of
the neutron flux spatial distribution simulated by the detailed model are expected to be
correct since the this model preserves material fuel properties and the geometric structure
of the neutron absorbing pads and helium annulus. Further, the multigroup discrete
ordinates equations compares to the neutron flux from the detailed model within 15% in
the MPC, concrete, and carbon steel shell.

Further, the previous analysis is extended with a results assessment through

sensitivity analysis. Performing sensitivity analysis reveals the underlying mathematical
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structure inherent to a scenario, leading to an even deeper understanding of the salient
physics. Incorporating a study of appropriate analytical models acts as part of a broader
program of study which underpins the results from increasingly complicated computational
science simulations. Further, the addition of analytically computed sensitivity information
proves informative as a guide in interpreting, understanding, and rigorizing results of
existing and future computational studies.

In the spirit of established analytical and computational model comparison techniques
and outcomes the various analytical results, examples, and commentary provided in
Chpts. 4, 6, and 7 represent an example of how an incorporated comparison with analog
models and analytic sensitivity analysis studies can be used to set up, precondition, and
eventually inform or compare against a complementary computational sensitivity analysis
study. Within this conceptual strategy, and against the backdrop of the detailed MCNP
computational model of a HI-STORM 100 spent nuclear fuel storage cask, the results
appearing herein exemplify a more general recipe justifying the development and execution
of local sensitivity analysis formalisms within the context of surrogate analytical models:

1. Establish a high-fidelity computational model, and extract key features of the
simulation output.

2. Based on these key features, establish a reduced-fidelity model of the same
underlying scenario; preferably this model is amenable to analytical or semi-analytical
solution.

3. Compare results from the analytic or semi-analytic study with results from the
computational model to verify appropriateness of reduced-fidelity model. Here,
comparisons are conducted by determining the relative error between the models.

4. Execute a sensitivity analysis study on the reduced-fidelity model; again, preferably

this study will be amenable to analytical or semi-analytical evaluation.
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5. Scenario dependent evaluation of the analytical or semi-analytical sensitivity
structure requires nominal input parameters; these must also be consistent with the
key features extracted from the high-fidelity computational model.

6. Establish scenario-dependent sensitivity trends and input parameter importance
ranking to precondition additional high-fidelity computational sensitivity analysis
studies.

The aforementioned results assessment methodology is exemplified through the
enhanced analysis of the detailed cask MCNP model, which is superficially analyzed in
Chapter 2. Chapter 4 uses analytic and reduced-fidelity models to identify which physical

processes are influencing the neutron flux at different locations within the fuel cask.

e Developing the homogenous model demonstrates that some of the geometric
details are capable of being reduced and the fuel region can be treated as a single,
homogenous material. Using a homogeneous material motivates the use of the
diffusion approximation, Eqn. 3-85, as the radial thickness of the homogenous fuel
is large enough to allow for neutron diffusion. Even though the homogenous model
and diffusion approximation capture the general flat shape of the neutron flux from
the detailed model, the analog models did not capture a level-off region occurring
near the outer edge of the fuel region. Nor did the analog models capture multiple
localized depressions in the neutron flux, thus motivating further refinement of these
simplified models.

e The insufficiencies in the previous analog models (i.e., the models did not capture
the neutron flux leveling-off at the outer radius of the fuel region) lead to the
addition of a helium streaming region to the reduced-fidelity MCNP and analytic
models. Identifying the necessity of neutron streaming regions in the analogous
models indicates the importance of including including a neutron streaming region
inside of the fuel region.

e  Wahile the helium model and solution to the diffusion approximation, Eqn. 4-5,
modified with a streaming region compare more favorably to the detailed model
than the homogenous and original diffusion approximation, none of the analog
models capture the three small depressions occurring in the neutron flux predicted
by the detailed model. Therefore, a 1-D array model is developed in MCNP which
investigated the effects of the the stainless steel basket and neutron absorbing pads
which are located inside the MPC. Through this analysis, the stainless steel basket
and neutron absorbing pads cause the neutron flux to decrease 1-2% at the locations
of the stainless steel basket and neutron absorbing pads. Identifying the causes
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of the depressions demonstrate the importance of preserving the structure of the
stainless steel basket and neutron absorbing pads in the detailed model.

e An asymmetry in the azimuthal neutron flux is identified during the analysis of the
detailed model. The asymmetry is a result of the asymmetric loading of neutron
absorbing pads in the fuel region. This conclusion further reinforces the importance
of accounting for the neutron absorbing pads in the analysis of the spent fuel cask.

e The conclusions of the previous analyses show which geometric details can be
homogenized and which need to be retained. That is, individual fuel pins can be
homogenized into a single material as long as material properties are accounted for
though homogenization. However, the stainless steel basket and neutron absorbing
pads need to be retained to accurately model the spent fuel cask. Therefore, the
cruciform model is developed to test these conclusions. The cruciform model
captures the physics occurring in the fuel region within 7%, and corroborating the
results from the previous analyses.

e  The multigroup discrete ordinates equations, Eqns. 3-61-3-64, are used to model the
neutron flux in the MPC, concrete, and carbon steel shell. In each of these materials,
the analytic model in the MPC and concrete have relative error values less than 15%
throughout each material. The highest relative error values given by the analytic
models outside of the fuel region are seen in the carbon steel shell, a combined effect
from the small magnitude of the neutron flux simulated in the detailed model and
the analytic models underpredicting neutron loss mechanisms.

Identifying the physical causes which generate features in the simulated neutron flux
from the detailed model aids in corroborating these results, an irreplaceable practice
when experimental data is lacking. Further, the results assessment methodology acts
complementary to existing validation techniques, which rely on experimental data to
compare against simulation results. Comparing simulation results with foundational
theory reinforces the validity of simulation results.

The results from the detailed model are further rigorized with the addition of results
assessment through sensitivity analysis. Chapter 7 conducts a sensitivity analysis on the

analytic models which are used throughout the cask. This analysis concludes:

e  The sensitivity coefficients of input parameters in the modified diffusion approximation
(i.e., Eqn. 4-5 with a neutron free-streaming region applied) show that ¥, is the
most important term in through the fuel region, signifying the importance of loss
mechanisms in a sub-critical system.
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Even though the MPC is scattering dominated, 96.638% for fast neutrons and
86.583% for thermal neutrons, ¥, is the most important input parameter occurring
in both the analytic and computational MPC models. Again, using 30 energy groups
to model the cross section data yields better agreement between the SC’s in the
30-group helium and detailed models than between the two energy group analytic
model and detailed model. This is a result of the 30 group cross section data better
capturing resonances in the cross section data than the two energy group models,

Fig. 7-10.

The concrete region has a scattering ratio of 99.452% for fast neutrons and 98.910%
for thermal neutrons. The high scattering ratios occurring in the concrete annulus
leads to the high importance of ¥, as compared to ¥,, Fig. 7-19. This is the only
material region where scattering has a higher importance than absorption, even
though the other materials are also scattering dominated. This result shows how

a smaller magnitude parameter may be more important when properly modeling
physics.

The neutron flux in the carbon steel shell has seen a shift in energy, a result of
thermalization occurring in the concrete annulus. This leads to increased importance
of thermal energy scattering cross section being observed in the carbon steel shell.
This effect is best observed in Fig. 7-22, which shows Sy 5, in the carbon steel shell.
In fact, throughout the MPC, concrete, and carbon steel shell, the SC’s pertaining
to the total scattering cross section are dominated by the energy group pertaining to
the partial flux with the highest magnitude.

The scattering cross section alone is generally seen to act as a “pass-through”
mechanism. That is, scattering does not act to remove neutrons in the manner
absorption does, but rather, scattering “pushes” the neutrons through a material,
either preserving the flux or causing leakage.

The group-wise absorption cross section contributing the most importance to the SC
of the total absorption cross section is always the thermal group absorption cross
section in the MPC, concrete annulus, and carbon steel shell. This occurs because
the thermal absorption cross section always has a larger value than the fast neutron
absorption cross section. Therefore, SC’s pertaining to the absorption cross section
are dominated by the group-wise absorption cross section value with the largest
value. Further, the absorption cross section generally has higher importance values
than the scattering cross section values as the spent fuel cask is a sub-critical system,
meaning loss mechanisms have more importance than gain mechanisms in the cask.

Using a monoenergetic or two energy group model is shown to misrepresent the
SC’s in each material of the spent fuel cask, as the one and two energy group cross
sections underrepresent the fine structure of the cross sections. Therefore, a version
of the helium model is developed using 30 energy group cross section data. Using
more energy groups better captures the fine structure of the continuous energy cross
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section data. Performing a sensitivity analysis on the 30-group helium model shows
better agreement between the sensitivity coefficients of the 30-group model and

the detailed model than the monoenergetic and two group analytic models and the
detailed model. This conclusion reinforces the concept that the analytic models use
too few energy groups to reproduce sensitivity information of the detailed model.
While the analytic models may require more energy groups to adequately capture
the sensitivity information of the detailed model, explaining the reasons for the
discrepancies between the analytic models and the detailed model provide insight
into how the energy dependence in the cross sections influences the neutron flux.

e There is a relationship between loss mechanisms occurring in the cask (namely
leakage and absorption), which is observed in the fuel region, the MPC, the concrete
annulus, and the carbon steel shell. As the importance of leakage physics increases,
the importance of absorption decreases. Further, this relationship is a result of
pinning the neutron flux to a specific value at the interface between each material,
through the boundary conditions. Taking the flux to have specific values at the
material interfaces means only a specific number of neutrons can be lost inside a
single material, and those neutrons must be shared between absorption and leakage.
Therefore, as one mechanism causes more neutrons to be lost, the other mechanism
decreases in response.

As the fuel cask is a sub-critical system, loss mechanisms are seen to have higher
sensitivities than gain mechanisms through the entire cask. Presumably, if this analysis
were to be conducted on a critical or super-critical system, the sensitivities of loss
mechanisms would be equal to or less than gain mechanisms respectively. The extension of
an analytic sensitivity analysis helps identify the causes of physics driving features in the
SC’s pertaining to Y, and X in the analytic models. From these conclusions, the analysis
of the Sy, and Sy, (or Syx,, S5, and Sgx,in the fuel region) from the detailed
model. Further, the differences between the SC’s pertaining to 3, and X (or 3., ¥y and
Ys in the fuel) are attributed to the two energy group model (or monoenergetic model in
the fuel region) not representing resonance structure in the cross section data. Therefore,
a version of the helium model is developed using 30 energy group cross section data in
MCNP, and corresponding SC’s are calculated from this model. The 30 energy group data
is shown to have better agreement with the continuous energy MCNP models (with the
exception of Sy s, in the fuel region), a result of the 30 energy group cross section data

better capturing resonance structure appearing in the continuous energy cross section
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data. Finally, the analytic sensitivity analysis extends the scope of the sensitivity analysis
to input parameters which are not directly computationally available for a computational
sensitivity analysis (i.e., S, 75, and © using the current capabilities of MCNP).

More broadly, sensitivity analysis results are capable of guiding future research to
reduce uncertainty in the most impactful input parameters inherent to a given scenario of
interest. Further, by identifying the most impactful parameters a code user can identify
if any simplifications were made when developing an input which would affect the results.
From these conclusions, a user could either change the input to address any insufficiencies
or explain the insufficiencies and identify pathways for improvement. Either decision
results in a more thorough examination of the problem, which is ultimately the goal of any
scientific study.

Further, the analytical results provided in this work are intended to be informative
of complementary studies performed using computational tools. A process exemplified
in Chp. 7, perhaps the most meaningful application of this work is the performance of a
purely computational, local sensitivity analysis study in the context of both the detailed
and helium models, using MNCP. In such an activity, the results of this work serve two
principal purposes:

1. The analytical results are used to guide more expensive (in terms of time or
resources) computational studies, by identifying input parameters that are either
particularly important or rapidly variable at some physical location within a fuel
cask geometry or physics model, or somehow otherwise impactful.

2. The analytical results are directly compared to computationally derived, local
sensitivity coefficient information, thus further illuminating not only the possible
sufficiency and limitations of various analytical models, but also the most important

physics occurring within neutron transport simulation of spent fuel cask scenarios.
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8.1 Summary of Chapters

Chapters 2,4, 6, and 7 exemplify the results assessment methodology in its application
to the HI-STORM 100 spent fuel cask and complimentary analytic models.

Chapter 1 motivates the application of what is termed the “results assessment”
methodology to spent fuel casks, and more specifically the HI-STORM 100. While
spent fuel casks have been the center of much research within the nuclear sciences
and engineering communities, validation activities are limited, as experimental data
is sparse. The results assessment methodology is designed to work complimentary to
existing validation methods to rigorize analysis of simulations, an imperative task when
experimental data is lacking.

Chapter 2 introduces the Holtec Int. HI-STORM 100 spent fuel cask and corresponding
computation model (the detailed model). A basic analysis of the computational results
from the detailed model is also provided in order to identify analytic models capable of
representing the neutron flux in the fuel. Further, an analytic model is chosen and justified
in each fuel sub-region. Chapter 2 concludes by identifying each analogous analytic and
reduced-fidelity computational models for analysis in Chpt. 4.

Chapter 3 derives the neutron transport equation. The diffusion approximation and
multigroup discrete ordinates approximation are developed from the neutron transport
equation. Chapter 3 also includes a discussion of geometry reductions and identifies the
location where the geometry can be reduced from cylindrical to planar, approximately 10
cm from the cask centerline.

Chapter 4 develops reduced-fidelity computational models for comparison against
the detailed and analytic models. Using reduced complexity analytic and computational
models to analyze the simulation results of a high-fidelity computational model allows for
the quantification of effects of any assumptions invoked when developing the latter model.
Ensuring important physics are preserved in the course of conducting simulations increases

the likelihood of correct results. This work exemplified this notion through a process
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referred to as ”simulation results assessment.” As a demonstration, Chpt. 4 included
post-simulation analysis of a detailed MCNP model of a HI STORM 100 spent nuclear
fuel cask. A series of reduced analytic and computational models are developed and
used to identify the physics which causes features in the neutron flux spatial distribution
as calculated by the detailed model. In the HI-STORM 100 model, the stainless steel
basket, neutron absorbing pads, and helium annulus around the fuel cells are important
physical components that need to be preserved in modeling. Retaining the individual
fuel pin structure was found to be less important than broadly capturing the lumped
material properties inside the individual fuel cells. These results were corroborated using
the cruciform model, which appears to capture the physics relevant to the neutron flux
spatial distribution in the detailed model beyond the 90% level. The major features of
the neutron flux spatial distribution simulated by the detailed model are expected to be
correct since the this model preserves material fuel properties and the geometric structure
of the neutron absorbing pads and helium annulus. Outside of the fuel region, the EoS,
model captures the physics occurring in the concrete region of the detailed model within
10%. These same analytic models capture the physics within the detailed model within 5%
in the MPC and 40% in the carbon steel shell. The reason for the higher degree of error in
the carbon steel is an over-prediction of the thermal flux exiting the concrete annulus.

Chapter 5 introduced the sensitivity analysis discussion of the detailed model. This
chapter calculated the SC’s pertaining to ¥, and >, for each material in the detailed
model. Through this analysis, the SC’s for air proved to be sufficiently low compared to
the other SC’s and air is neglected from the analysis. Further, in the fuel region, MPC,
and carbon steel shell the absorption cross section is determined to be the most important
parameter for the majority of each material.

Chapter 6 introduced the local sensitivity analysis and the FSAP method for
analytically calculating SC’s. The method is then applied to the flux model which is

the solution to the diffusion approximation. Then, the FSAP method is applied to the
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governing system of multigroup discrete ordinates equations which is applicable is a
general result for any material where the multigroup discrete ordinates equations are
acceptable. Further, the G-derivative is used to find the equations for the boundary
condition of the MPC, concrete annulus, and carbon steel shell.

Chapter 7 analyzed the results from of the analytic sensitivity analysis from Chpt. 6.
Analytically determining SC’s are shown to be capable of investigating more parameters
than are capable in MCNP. Multiple behaviors are found to appear across each material
in the cask; 1) the values of S, y, are shown to be controlled by the group-wise absorption
cross section with the highest value (the thermal group cross section), 2) the values
of Sy x, is controlled by the in-group scattering cross section matching the group with
the highest neutron flux, 3) the values of Sy, initially have positive values before
becoming negative, showing that scattering acts to preserve the flux before leakage and
thermalization physics occur, 4) even though the materials are scattering dominated, the
SC’s pertaining to the absorption cross section tend to be more important that those
pertaining to the scattering cross section.

8.2 Recommendations for Future Work

In addition to this necessary program of study, there appears to be a nearly limitless
sequence of higher-fidelity analytical fuel cask models in which the G-derivative formalism
may be brought to bear. Candidate analytical models along these lines include but are not
necessarily limited to multi-group neutron diffusion models, multi-group Pn or Sn neutron
transport models, and multi-group integral or integro-differential neutron transport
models. Depending on the physical processes of interest, each of these models may be
formulated as static or time-dependent, in various representative geometries, and featuring
any number of multi-material regions. Again, the ultimate intent of analytical sensitivity
analysis studies within any of these formalisms is to enable comparison to complementary

computational results.
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The results assessment methodology is not limited to spent fuel casks. The proposed
methodology is compatible with other areas in nuclear science and engineering, such as
radiation detections and shielding, reactor physics modeling (including next-generation
reactors), and nuclear medicine. The proposed methodology is appropriate anywhere
analytic models can be developed.

From the conclusion in Chpt. 7, an energy group grid refinement study should be
conducted to find the minimum number of energy groups required to gain agreement
between the SC’s of the multigroup analytic and detailed models. Comparing values of the
analytically calculated and computationally derived SC’s showed an insufficiency in the
energy grid refinement. In some materials, the concrete annulus and the carbon steel shell,
a 30-group model may be adequate for capturing first derivative information. However, in
the fuel region and MPC, a 30 energy group mesh had not sufficiently converged to the
asymptotic range. Further, more analysis is required to identify the physics controlling
behavior in Sy, and Sy, .

Finally, programs of sensitivity analysis as applied to computational models of spent
nuclear fuel casks appears to be an area ripe for further advancement in research and
development. This being the case, and in tandem with the aforementioned potential for
new, analogous analytical treatments, there also appears to be ample opportunity for the
computational evaluation of not only local sensitivity information as pertaining to spent

fuel casks, but also the more complete global metrics.
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