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How Level Set, Enriched Finite Element 
Methods Can Help us do Our Job Better

Fundamental Motivations
 Conformal mesh generation is typically more expensive than analysis (approximately 80% of total 

effort for complex models)
 Arbitrary Lagrangian Eulerian (ALE) is extremely powerful but cannot capture topological change

– Precludes interfacial breakup and merging

Level Set Methods Have Promise
 To help us simulate complex geometries without conformal meshes 

– Do the complex simulations we do now with faster turnaround time and with less analyst time

 To enable us to simulate physics we cannot currently address
– We cannot use ALE to simulate the merging and breakup that occur in laser welding and foam 

decomposition

Problem Class: Dynamic Interface Problems
 Typical application area for level set methods
 Examples: multiphase flow and phase change problems like laser welding, drop dynamics, mold 

filling, and foam decomposition
 Benefits

– Difficult, if not impossible, to address using ALE

Problem Class: Topologically Complex, but Stationary Interfaces
 A less obvious application area
 Examples: conduction in composite materials, single phase flow in porous media
 Benefits

– Avoid conformal mesh generation
– Avoid contact between disparate meshes



Finite Element Methods for Interfaces 
in Fluid/Thermal Applications

Boundary Fitted Meshes
 Supports wide variety of interfacial conditions accurately
 Requires boundary fitted mesh generation
 Not feasible for arbitrary topological evolution (ALE)

– Mesh quality degrades with evolution, phase breakup and merging are precluded.

eXtended Finite Element Methods (XFEM)
 Dolbow et al. (2000), Belytchko et al. (2001)
 Successfully applied to numerous problems ranging from crack propagation to phase change to 

multiphase flow
 Supports weak conditions accurately, mixed and Dirichlet conditions are actively researched 

(Dolbow et al.)
 Avoids boundary fitted mesh generation
 Supports general topological evolution (subject to resolution requirements)
 Requires modified matrix structure and element assembly including interpolation and integration

– Modified quadrature rules being actively researched

Generalized Finite Element Methods (GFEM)
 Strouboulis et al. (2000)
 Combination of standard finite element and partition of unity enrichment

Immersed Finite Element Methods
 Li et al. (2003)
 Supports selected jumps across material boundaries (discontinuous gradient or value)

Conformal Decomposition Finite Element Method (CDFEM)
 Enrichment by adding nodes along interfaces



Low capillary number flow into a 
microchannel (Ca=0.01)

 Complex interfacial physics
– Surface tension dominated flow
– Wetting model plays critical role

 ALE simulations require frequent 
remeshing

– Expensive analyst time, 
introduces inaccuracy

 Level set simulation performed in 
one simulation

Dynamic Interface Example: Flow in a 
Microchannel



Material joining by intense localized 
heating

 Extremely complex interfacial physics
– Radially distributed laser heating
– Vapor recoil pressure
– Vaporization heat loss
– Radiation and convection heat loss
– Critical role of surface tension

 ALE simulations require frequent 
remeshing

– Expensive analyst time, introduces 
inaccuracy

 Level set - XFEM simulations capture 
topological change

– Complete set of interfacial conditions 
applied along level set interface 
cutting through elements

Dynamic Interface Example: Laser 
Welding



Dynamic Interface Example: REF 
Modeling

Foam Removed by Surface Reaction 
and Flow
 Complex interfacial physics

– First-order surface reaction
– Foam modeled as viscous liquid
– Surface velocity include flow and 

reaction components

 ALE simulations not feasible
– Despite relatively slow interfacial 

motion, changing topology makes 
remeshing difficult, if not impossible

 Level set - XFEM simulations capture 
topological change

– Complete set of interfacial conditions 
applied along level set interface 
cutting through elements



Conformal mesh approach
 Current method of choice whenever 

feasible
 Requires generating conformal mesh

– Expensive in terms of analyst time
– Sometimes impossible for 

quadrilateral or hexahedral meshes
– May require separate mesh and 

contact bc’s if modeling physics in 
solids

Level set method
 Accurate, cost effective approach 

that should be pursued
 Non-conforming mesh more easily 

generated
– Geometry description used to 

generate level set function rather 
than conformal mesh

– Allows much faster prototyping and 
parameter studies including 
geometry modification

Topologically Complex Interfaces 
Example: Flow in Random Media



Conformal mesh approach
 Current method of choice whenever 

feasible
 Requires generating conformal mesh

– Expensive in terms of analyst time
– Sometimes impossible for 

quadrilateral or hexahedral meshes
– May require separate mesh and 

contact bc’s if modeling physics in 
solids

Level set method
 Accurate, cost effective approach 

that should be pursued
 Non-conforming mesh more easily 

generated
– Geometry description used to 

generate level set function rather 
than conformal mesh

– Allows much faster prototyping and 
parameter studies including 
geometry modification

Topologically Complex Interfaces 
Example: Conduction in Composites

Cylindrical inclusions with 1000x higher 
conductivity



Solve for signed distance from interface

Interface normal and curvature computed

Interfacial discontinuities accounted for by modifying stress tensor, 
heat flux, species flux for elements along interface

 Stress Tensor term

– Delta function may be sharp

or diffuse function of distance

 Similar for Heat, Species Flux

Technical Approach:
Interfacial Motion Modeling
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Extended Finite Element: Finite Element Method for Embedded 
Interfacial Jumps

 Dolbow et al (2000)

Enrich elements containing discontinuities

 Add extra degrees of freedom, ai

 Basis functions for extended dofs have two parts

 Standard continuous variation within element, Ni

 Discontinuous extending function, gi

 Typical form for discontinuous value

 Typical form for discontinuous gradient

Level Sets in Finite Elements:
Extended Finite Element Method
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Features

 Enforces continuity across element faces 
– Enrichment is nodal

 Element contributions are discontinuous

Element contribution to residual

becomes

– Weight functions are discontinuous

– Gradients are discontinuous

– Requires conformal integration

Extended Finite Element Method
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Case Study: XFEM Study of Laser 
Welding in GOMA

Process Characteristics
 Topological change

– Weld pool formation and deformation
– Weld pool merging and undesirable void formation

 Surface dominated physics
– Surface laser heat flux
– Surface heat loss by conduction and radiation
– Strong surface tension effects (including Marangoni)

Resulting Simulation Requirements
 Eulerian method required to capture discontinuities as the move across 

fixed grid
 Finite element method desirable for material property variation and 

natural description of interfacial fluxes
 eXtended Finite Element Method (XFEM) required to account for 

interfacial discontinuities



Implementation – Applying XFEM to 
Laser Welding

Problem Discretization
 Fixed unstructured mesh
 Solid-liquid interface described by enthalpy method

– Specific heat is temperature dependent to account for latent heat

– Viscosity sharp function of temperature around between solidus and liquidus

 Liquid-vapor interface described by level set method

Variable Enrichment
 Variables allowed to be discontinuous across liquid-vapor interface

Subelement Integration
 Required to integrate discontinuous quantities resulting from discontinuous variables and trial 

functions

Interfacial conditions
 XFEM approach produces natural mechanism for applying interfacial fluxes
 Several options discussed in literature for handling surface tension

Coupling
 Implemented in code designed for fully coupled, Newton’s method
 Choice of surface tension application made this impossible

– Final algorithm involves loosely coupling the level set evolution to the mass, momentum, and energy 
evolution



Implementation – Enriched Quantities

Discontinuous quantities
 Surface tension produces sharply discontinuous pressure across the interface

– Pressure is enriched with Heaviside function

 Velocity gradient is discontinuous due to jump in viscosity
– The is a secondary effect compared to pressure discontinuity
– Experiments with gradient-type enrichment have not yielded significant differences
– Currently, velocity is not enriched

One-sided quantities
 Temperature in vapor is irrelevant since surface heat transfer is better described 

using laser heat input and radiative boundary conditions
– Variable itself is not enriched, but trial function is multiplied by Heaviside function
– This truncation of the integration domain produces boundary integral due to integration by 

part of diffusive terms
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Implementation Issue: XFEM 
Integration

Modified Element Quadrature
 Basis and trial functions are now discontinuous

 For XFEM-Level set methods, functions become 
generalized functions of the level set variable

– Heaviside and Dirac delta functions

Moderately Invasive Feature in XFEM Codes
 Quadrature rule depends on level set variable
 Coupling issues, time derivative evaluation

Several Solutions
 Diffuse integration

– Smoothed generalized functions

 Subelement integration
– Subdivide elements into conformal subelements
– Implementation issues

 Develop new integration rules for generalized functions
– Derive new integration rules that account for generalized functions
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XFEM Subelement Integration - Issues

Basics
 Decompose non-conformal element into 

conformal subelements

 Perform standard Gauss integration over 

subelements

Important Implementation Details
 What is definition of subelements?

– Option 1: Coordinates of subelements are 

parametric coordinates for owning element

– Option 2: Coordinates of subelements are real 
coordinates

 What order are the subelements?

– Are linear sides sufficient for obtaining optimal 
rates of convergence?



XFEM Subelement Integration - Issues

Subelements in Parametric Coordinates
 Low order subelements with linear sides

– Figure: desired surface vs. actual surface
– Suboptimal accuracy

 Higher order subelements with parabolic sides
– Figure: actual surface (thin black curve nearly 

coincident with desired surface)

– More costly quadrature
– Must use root finder for internal nodes

– Achieves optimal convergence rate

Subelements in Real Coordinates
 Low order subelements with linear sides

– Must solve simple but nonlinear system for 
every quadrature point, every time step

– Achieves optimal convergence rate
– 3D: How are non-planar hex faces handled?



Integration Rules for Elements with 
Generalized Functions - Motivation

Philosophical
 Integration rules designed to exactly integrate finite element 

functions
– Enriched functions need modified quadrature rules

Pragmatic When Compared with Alternatives
 Diffuse methods

– Simple but inaccurate, inconsistent
 Subelement methods 

– Must be carefully implemented
– Must specifically account for degenerate cases

Allows Advanced Capabilities
 Provides analytical Jacobian information

– Required by full Newton codes
– Make interfacial optimization possible

Possible Disadvantages
 Possibly increases number of quadrature points for same 

element
 Difficult, if not impossible to derive for higher order elements



Generalized Function Quadrature -
Method

Approach
 Develop quadrature rules capable of exactly integrating finite element 

functions including a generalized function of the level set variable
– Piecewise polynomial times Heaviside or Dirac delta function

 Form:

 Mapping:
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 Form linear system for weights

– Require all monomials in a quadratic function be exactly integrated

– Select quadrature point locations
– Valid quadrature rules yield nonsingular matrix,

– Normally quadrature point locations considered unknowns that are 
selected such that integration achieves desired order with minimal 
number of points

– Arbitrary interface location makes fortuitous point selection impossible

– Simplest valid quadrature rules involve points on the nodes and edges

Generalized Function Quadrature -
Method
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Generalized Function Quadrature -
Method

 Form linear system for weights, cont’d
– Analytically evaluate integrals as function of nodal level set values

 Solve for weights as functions of nodal level set values

Results
 Weights are continuous functions of nodal level set values

– Allows analytical Jacobian formation
– All degenerate cases handled without special consideration

 Weights are not positive definite
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Generalized Function Quadrature –
Test Problem

Conduction in Annulus and Spherical Shell
 Poisson equation, k = 1, q = 1

 Boundary conditions
– Insulated inner surface
– Robin-type output surface, h = 10

Discretization
 Linear triangle and tetrahedral elements, 

linear temperature, linear level set function
 Randomly perturbed nodes of structured 

mesh
– Rigorous test for deformed meshes

Validation
 Compare against exact solutions
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Generalized Function Quadrature – 2D 
Test

Results
 Visualization - Elements that use 

ghost nodes and exterior nodes are 
removed

 Sharp discontinuities captured along 
inner and outer surfaces

 2nd order accuracy demonstrated 
over multiple decades
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Beyond XFEM: Conformal Decomposition 
Finite Element Methods (CDFEM)

Simple Concept
 Decompose non-conformal elements into conformal ones
 Obtain solution on conformal elements

Related Work
 Li et al. (2003) FEMCGAN: FEM on Cartesian Grid with Added 

Nodes
– Focus on Cartesian Grid.  Considered undesirable because it lost 

original matrix structure.

 Mathematical works: Chen and Zhou (1998), Riviere and Girault 
(2006) 

 Others?

Properties
 Supports wide variety of interfacial conditions accurately (identical 

to boundary fitted mesh)
 Avoids boundary fitted mesh generation
 Supports general topological evolution (subject to resolution 

requirements)
 Requires modified matrix structure (additional elements)

– Similar to finite element adaptivity

 Uses standard finite element assembly including data structures, 
interpolation, and quadrature

Questions
 Accuracy? Conformal elements can have vanishing quality.
 Relationship to XFEM?

 Low quality 
elements are 
generated by 
conformal 
decomposition



XFEM – CDFEM Comparison

XFEM Approximation

CDFEM Approximation

 Identical IFF interfacial nodes in CDFEM are constrained 
to match XFEM values at nodal locations

 CDFEM space contains XFEM space

+

+



XFEM – CDFEM Comparison, cont’d

Approximation
 CDFEM space contains XFEM space

– Accuracy of CDFEM no less than XFEM? Li et al. (2003)
– CDFEM can recover XFEM solution by constraining interfacial nodes

– Separate linear algebra step outside of element assembly routines

Boundary Conditions
 CDFEM readily handles interfacial Dirichlet conditions

– Simply apply Dirichlet conditions to interfacial nodes
 Gives another view of difficulty with Dirichlet conditions in XFEM

– CDFEM recovers XFEM when interfacial nodes constrained to XFEM 
space

– CDFEM provides optimal solution for Dirichlet problem when interfacial 
nodes are given by Dirichlet conditions

– Attempting to satisfy both sets of constraints simultaneously over-
constrains the problem

Implementation
 Conformal decomposition can be performed external to all assembly 

routines
– For stationary interfaces the decomposition can be performed once on the 

input mesh



CDFEM Implementation

For Steady State Problems
 Stationary Interfaces

– Conformal decomposition can be performed 
once

– Non-conformal mesh input, KRINO performs 
conformal decomposition, ARIA solves transport

– Provides test of accuracy, performance, and 
implementation

For Transient Problems 
 Must perform decomposition based on current 

interface location
– Level set provides convenient description

 Similar requirements to adaptive refinement
– Dynamic data structures, matrix graph

– Prolongation of solution to new nodes

 Transparent to physics code (Element 
assembly)



Moving CDFEM Goals

 How do we handle the moving interface?

 What do we do when nodes change sign?

 Goals
– Try to recover moving mesh case for moving interface

– Try to preserve minima, maxima

 Proposal
– Prolongation: Set “old” value to value of nearest point on interface

– Dynamics: Use ALE style (u-dxdt) for advection term



CDFEM Verification

 Two-Dimensional Potential Flow About a Cylinder (static)
– Analytical solution provides quantitative measure of accuracy

– Accuracy of velocity potential and its gradient computed in volume and on interface

– Allows experiments with various boundary conditions

 Three-Dimensional Potential Flow About a Sphere (static)
– Analytical solution provides quantitative measure of accuracy

– Accuracy of velocity potential and its gradient computed in volume and on interface

– Allows experiments with various boundary conditions

 Two-Dimensional Viscous, Incompressible Couette Flow (static)
– Analytical solution provides quantitative measure of accuracy

– Test of conformal decomposition for viscous, incompressible flow

 Three-Dimensional Viscous Flow about a Periodic Array of Spheres (static)
– Comparison with Boundary Element results

– Examines behavior of decomposition up to sphere overlap

 Advection of Weak Discontinuity (dynamic)
– Shows ability to capture discontinuities

– Analytical solution provides quantitative measure of accuracy

 Solidification of 1-D Bar (dynamic)
– Shows ability to capture discontinuities

– Analytical solution provides quantitative measure of accuracy



CDFEM Simulation of Steady, Potential 
Flow about a Circular Cylinder

 Embedded curved boundaries

 Dirichlet BC on outer surface, Natural BC on inner surface

 Optimal convergence rates for solution and gradient both on volume and boundaries



CDFEM Simulation of Steady, Potential 
Flow about a Sphere

 Embedded curved boundaries
 Dirichlet BC on outer surface, Natural BC on inner surface

 Optimal convergence rates for solution and gradient both on volume and 
boundaries



CDFEM Simulation of Steady, Fluid-
Fluid Interface Problem: Couette Flow

 Two-Phase Flow between concentric 
cylinders

– Counter-rotating cylinders
– 4:1 viscosity ratio
– No surface tension

 Dirichlet conditions on inner and outer 
surfaces, weak discontinuity along 
interface

 Cut regular, unstructured mesh along 
outer, inner, and interfacial radii



CDFEM Simulation of Steady, Fluid-
Fluid Interface Problem: Couette Flow

 Embedded curved boundaries

 Dirichlet BC on inner and outer surface

 Weak discontinuity in velocity captured sharply and accurately

 Optimal convergence rates for solution and gradient both on volume and boundaries



CDFEM Simulation of Steady, Viscous Flow 
about a Periodic Array of Spheres

 Embedded curved boundaries
 Dirichlet BC on sphere surface

 Accurate results right up to close packing limit
 Sum of nodal residuals provides accurate/convergent measure of drag force



Dynamic CDFEM: 1-D Advection of a 
Piecewise Linear Field

 Exact preservation of linear field
 Does not pollute Max-Min



Dynamic CDFEM: 1-D Phase Change
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Summary and Conclusions

XFEM is Powerful Tool for Multiphase Dynamics
 Simulations in realistic geometries reveal important physics not seen in ALE simulations
 Combination of discontinuous variables and one-sided variables make powerful technique 
 Wide variety of weak integrated conditions implemented on level set surface 

Care Must be Taken When Using Subelement Integration
 Definition of subelements – Parametric coordinates?

– Accuracy: Low order subelements can lead to suboptimal convergence
– Performance: Higher order subelements involve over-integration and root finding for internal nodes

 Definition of subelements – Real coordinates?
– Performance: Quadrature point location inversion
– Accuracy: Element face conformity for hexes in 3D?

Analytic Integration for Generalized Functions
 Can be used to formulate fixed point integration rules with weights that depend continuously on nodal 

level set values
 Provides analytic Jacobian information
 Handles degenerate cases smoothly without special consideration
 Higher order elements not practical

CDFEM
 Simple method for handling arbitrary interfacial discontinuities

– Transparent to underlying finite element assembly

 Recovers XFEM when added nodes are constrained to lie in XFEM space
 Demonstrates optimal rates of convergence for both Neumann and Dirichlet BC on curved surfaces


