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Motivation
— Why interface capturing instead of moving mesh (ALE)
— Why enriched finite elements
— Relevant applications
Description
— eXtended Finite Element Method (XFEM)

Case Study: XFEM investigation of laser welding

Implementation issue: quadrature for discontinuous integrands

Beyond XFEM: Application independent dynamic interfaces
using Conformal Decomposition Finite Element (CDFEM)
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How Level Set, Enriched Finite Element
Methods Can Help us do Our Job Better

Fundamental Motivations

e Conformal mesh generation is typically more expensive than analysis (approximately 80% of total
effort for complex models)

e Arbitrary Lagrangian Eulerian (ALE) is extremely powerful but cannot capture topological change
— Precludes interfacial breakup and merging
Level Set Methods Have Promise
e To help us simulate complex geometries without conformal meshes
— Do the complex simulations we do now with faster turnaround time and with less analyst time
e To enable us to simulate physics we cannot currently address

— Wecannot use ALE to simulate the merging and breakup that occur in laser welding and foam
decomposition

Problem Class: Dynamic Interface Problems
e Typical application area for level set methods

e Examples: multiphase flow and phase change problems like laser welding, drop dynamics, mold
filling, and foam decomposition

e Benefits
— Difficult, if not impossible, to address using ALE
Problem Class: Topologically Complex, but Stationary Interfaces
e Aless obvious application area
e Examples: conduction in composite materials, single phase flow in porous media

e Benefits
— Avoid conformal mesh generation

— Avoid contact between disparate meshes Sandia
National
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te Element Methods for Interfaces
in Fluid/Thermal Applications

Boundary Fitted Meshes
e Supports wide variety of interfacial conditions accurately
e Requires boundary fitted mesh generation
¢ Not feasible for arbitrary topological evolution (ALE)
— Mesh quality degrades with evolution, phase breakup and merging are precluded.
eXtended Finite Element Methods (XFEM)
Dolbow et al. (2000), Belytchko et al. (2001)

e Successfully applied to numerous problems ranging from crack propagation to phase change to
multiphase flow

e Supports weak conditions accurately, mixed and Dirichlet conditions are actively researched
(Dolbow et al.)

e Avoids boundary fitted mesh generation
Supports general topological evolution (subject to resolution requirements)
Requires modified matrix structure and element assembly including interpolation and integration
— Modified quadrature rules being actively researched

Generalized Finite Element Methods (GFEM)
e Strouboulis et al. (2000)
e Combination of standard finite element and partition of unity enrichment
Immersed Finite Element Methods
e Lietal. (2003)
e Supports selected jumps across material boundaries (discontinuous gradient or value)
Conformal Decomposition Finite Element Method (CDFEM)
e Enrichment by adding nodes along interfaces
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Dynamic Interface Example: Flow in a
Microchannel

Low capillary number flow into a
microchannel (Ca=0.01)
e Complex interfacial physics
— Surface tension dominated flow
— Wetting model plays critical role

e ALE simulations require frequent
remeshing

— Expensive analyst time,
introduces Inaccuracy
e Level set simulation performed in
one simulation
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Dynamic Interface Example: Laser
Welding

Material joining by intense localized
heating

e Extremely complex interfacial physics
— Radially distributed laser heating
— Vapor recoil pressure
— Vaporization heat loss
— Radiation and convection heat loss
— Critical role of surface tension
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e ALE simulations require frequent
remeshing

— Expensive analyst time, introduces
inaccuracy
e Level set - XFEM simulations capture
topological change

— Complete set of interfacial conditions
applied along level set interface
cutting through elements
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- Dynamic Interface Example: REF
Modeling

Foam Removed by Surface Reaction
and Flow

e Complex interfacial physics
— First-order surface reaction
— Foam modeled as viscous liquid

— Surface velocity include flow and
reaction components

e ALE simulations not feasible

— Despite relatively slow interfacial
motion, changing topology makes
remeshing difficult, if not impossible

e Level set - XFEM simulations capture
topological change

— Complete set of interfacial conditions
applied along level set interface
cutting through elements
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- Topologically Complex Interfaces

Example: Flow in Random Media

Conformal mesh approach

e Current method of choice whenever
feasible

e Requires generating conformal mesh
— Expensive in terms of analyst time
— Sometimes impossible for
quadrilateral or hexahedral meshes
— May require separate mesh and

contact bc’s if modeling physics in
solids

Level set method

e Accurate, cost effective approach
that should be pursued

e Non-conforming mesh more easily
generated

— Geometry description used to
generate level set function rather
than conformal mesh

— Allows much faster prototyping and
parameter studies including
geometry modification
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Conformal mesh approach

e Current method of choice whenever
feasible

e Requires generating conformal mesh
— Expensive in terms of analyst time

— Sometimes impossible for
quadrilateral or hexahedral meshes

— May require separate mesh and
colr]éact bc’s if modeling physics in
solids

Level set method

e Accurate, cost effective approach
that should be pursued

e Non-conforming mesh more easily
generated

— Geometry description used to
generate level set function rather
than conformal mesh

— Allows much faster prototyping and
parameter studies including
geometry modification

Topologically Complex Interfaces
Example: Conduction in Composites

A~
A Bl
N \

.—-—’l

Cylindrical inclusions with 1000x higher
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Technical Approach:
Interfacial Motion Modeling

Solve for signed distance from interface

Phase Boundary
% 4 yvg—0 ==
Ot / |
Interface normal and curvature computed \ :
i=Vo,k=V-Vo

Interfacial discontinuities accounted for by modifying stress tensor,
heat flux, species flux for elements along interface

e Stress Tensor term Level Set Representation
v, =08 ()| 5, —nn, |
— Delta function may be sharp
or diffuse function of distance
e Similar for Heat, Species Flux
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Level Sets in Finite Elements:
Extended Finite Element Method

Extended Finite Element: Finite Element Method for Embedded
Interfacial Jumps

e Dolbow et al (2000)

Enrich elements containing discontinuities
o Add extra degrees of freedom, g,

T= ZNZZ +2Nigiai
e Basis funci[ions forlextended dofs have two parts
e Standard continuous variation within element, N,

e Discontinuous extending function, g;
e Typical form for discontinuous value

gi(x)zH(qb(x))—H(qbi), ¢, =¢(x)

e Typical form for discontinuous gradient

8 (x) = ‘¢(x)‘ -9,
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Extended Finite Element Method

Features

e Enforces continuity across element faces
— Enrichment is nodal

e Element contributions are discontinuous
Element contribution to residual

R =—[ VN, kVTdQ
Q

becomes

R ==[VN,-kVTdQ~ [ VN,-kVT dQ
_ J

Q

~[N/n-Q dQ+[Nn-Q dQ

r r

— Weight functions are discontinuous
— Gradients are discontinuous
— Requires conformal integration
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- Case Study: XFEM Study of Laser
Welding in GOMA

Process Characteristics

e Topological change
— Weld pool formation and deformation
— Weld pool merging and undesirable void formation

e Surface dominated physics
— Surface laser heat flux
— Surface heat loss by conduction and radiation
— Strong surface tension effects (including Marangoni)

Resulting Simulation Requirements
e Eulerian method required to capture discontinuities as the move across
fixed grid
e Finite element method desirable for material property variation and
natural description of interfacial fluxes

e eXtended Finite Element Method (XFEM) required to account for
interfacial discontinuities
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Implementation — Applying XFEM to
Laser Welding

Problem Discretization
e Fixed unstructured mesh
e Solid-liquid interface described by enthalpy method
—  Specific heat is temperature dependent to account for latent heat
—  Viscosity sharp function of temperature around between solidus and liquidus
e Liquid-vapor interface described by level set method
Variable Enrichment
e Variables allowed to be discontinuous across liquid-vapor interface
Subelement Integration

e Required to integrate discontinuous quantities resulting from discontinuous variables and trial
functions

Interfacial conditions
e XFEM approach produces natural mechanism for applying interfacial fluxes
e Several options discussed in literature for handling surface tension
Coupling
e Implemented in code designed for fully coupled, Newton’s method

e Choice of surface tension application made this impossible

—  Final algorithm involves loosely coupling the level set evolution to the mass, momentum, and energy
evolution
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' Implementation — Enriched Quantities

Discontinuous quantities

e Surface tension produces sharply discontinuous pressure across the interface
— Pressure is enriched with Heaviside function

P(x) = ZR N, (x)+Zai N, (x)gi (x)
g (x) =Il{(¢(x))—H(¢i), ¢, =¢(x,)

e Velocity gradient is discontinuous due to jump in viscosity
— Theis a secondary effect compared to pressure discontinuity
— Experiments with gradient-type enrichment have not yielded significant differences
—  Currently, velocity is not enriched

One-sided quantities
e Temperature in vapor is irrelevant since surface heat transfer is better described
using laser heat input and radiative boundary conditions
— Variable itself is not enriched, but trial function is multiplied by Heaviside function

— This truncation of the integration domain produces boundary integral due to integration by
part of diffusive terms
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Implementation Issue: XFEM
Integration

Modified Element Quadrature
e Basis and trial functions are now discontinuous

R =—=[ VN, kVTdQ
R = —ﬂj’ VN, -k VT dQ- [ VN -k'VT*dQ—-[N/n-Q dQ+ [N;n-Q dQ
Q Qf r r

e For XFEM-Level set methods, functions become
generalized functions of the level set variable
— Heauviside and Dirac delta functions
Moderately Invasive Feature in XFEM Codes
e Quadrature rule depends on level set variable
e Coupling issues, time derivative evaluation
Several Solutions
e Diffuse integration
— Smoothed generalized functions
e Subelement integration
— Subdivide elements into conformal subelements
— Implementation issues
e Develop new integration rules for generalized functions
— Derive new integration rules that account for generalized functions @ Sandia
National
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Basics

e Decompose non-conformal element into
conformal subelements

e Perform standard Gauss integration over
subelements

Important Implementation Detalils

e \What is definition of subelements?
— Option 1: Coordinates of subelements are
parametric coordinates for owning element
— Option 2: Coordinates of subelements are real
coordinates
e \What order are the subelements?

— Are linear sides sufficient for obtaining optimal
rates of convergence?

XFEM Subelement Integration - Issues

()
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XFEM Subelement Integration - Issues

Subelements in Parametric Coordinates

e Low order subelements with linear sides
— Figure: desired surface vs. actual surface
— Suboptimal accuracy
e Higher order subelements with parabolic sides

— Figure: actual surface (thin black curve nearly
coincident with desired surface)

— More costly quadrature
— Must use root finder for internal nodes ——
— Achieves optimal convergence rate * Maxemr

Subelements in Real Coordinates

e Low order subelements with linear sides

— Must solve simple but nonlinear system for
every quadrature point, every time step -

— Achieves optimal convergence rate

— 3D: How are non-planar hex faces handled?

-3 -2 -1
10 10 10
1in=
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Integration Rules for Elements with
Generalized Functions - Motivation

Philosophical
e Integration rules designed to exactly integrate finite element
functions
— Enriched functions need modified quadrature rules
Pragmatic When Compared with Alternatives
e Diffuse methods
— Simple but inaccurate, inconsistent
e Subelement methods
— Must be carefully implemented
— Must specifically account for degenerate cases
Allows Advanced Capabilities
e Provides analytical Jacobian information
— Required by full Newton codes
— Make interfacial optimization possible
Possible Disadvantages
e Possibly increases number of quadrature points for same
element
e Difficult, if not impossible to derive for higher order elements
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- Generalized Function Quadrature -
Method

Approach

e Develop quadrature rules capable of exactly integrating finite element
functions including a generalized function of the level set variable

— Piecewise polynomial times Heaviside or Dirac delta function
e Form:

Jemdo, = Yw@ex)J(x)  [gdl, = Y @)Ve(x)

e Mapping:

g(x,)J(x,)

r={r,s}

V=LY, W)
X29¢29W2 |

<
X = {x, v} 2> ¥y, My

¢ = {¢19¢27¢3}

X4 W,y

Xl’ ¢1’ Wl
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- Generalized Function Quadrature -
Method

e Form linear system for weight6s
) = [f0dQ, = Y m @)/ (x)
A i=1

Am*(y) = I'(y)
— Require all monomials in a quadratic function be exactly integrated

11 o1 1 1 1 |[maw] [ W
oo oo 1 1 ||my(w) I3 (y)
Si Sy Sy Sy S5 S ||[mb(w)| |1 2(w)
51 1Sy 1383 TaSq 1585 TeSe || mf (w) 15 (w)
A S A mi(y) | |1 fz (W)

2 2 2 22 2
ST S S Se S5 Se | mg(w) | [ 15 (w)

— Select quadrature point locations
— Valid quadrature rules yield nonsingular matrix,

— Normally quadrature point locations considered unknowns that are
selected such that integration achieves desired order with minimal
number of points

— Arbitrary interface location makes fortuitous point selection impossible
— Simplest valid quadrature rules involve points on the nodes and edges
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Method

e Form linear system for weights, cont’d

— Analytically evaluate integrals as function of nodal level set values

2
A £
Ihtw)= 2A5, Ay,

3
1M () =—22

1M (y)=—22

4
1A () =03

24 A3, A3, A =
1A (w) = wl I
W23 A
3153 Ay, = yi-y,
A 8
I -
52 (\I’) 12A31 Agz

e Solve for weights as functions of nodal level set values

m® (y) functional form

my* () —1 (W) + 215 ()

my (¥) —12(y) + 215 (w)

my (W) 1P (w) =30 (W) =313 (@) + 415 (w) + 215 (W) + 215 (w)
my () 4155 (w)

ms () A3 ()~ T (W)= 15(w)

mg (W) AL (W) = L (W) =15 (W)

Results

e Weights are continuous functions of nodal level set values
— Allows analytical Jacobian formation
— All degenerate cases handled without special consideration
e Weights are not positive definite

- Generalized Function Quadrature -
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Generalized Function Quadrature —
Test Problem

Conduction in Annulus and Spherical Shell
e Poisson equation, k=1,g=1 ”
V-kVT + q= 0 08

e Boundary conditions o
— Insulated inner surface
— Robin-type output surface, 7 =10

-, -kVT =h(T-0) ”

outer

0e

Discretization

e Linear triangle and tetrahedral elements, 0
linear temperature, linear level set function

e Randomly perturbed nodes of structured

mesh o
— Rigorous test for deformed meshes
Validation R T A R T CE
e Compare against exact solutions
_q q qR;
T2D(r)—4—k(R02 —r*)+ i (R —Rf)—z—k(log(Ro)—log(r))

T°" (r) = 3}3{2 (R: —Rf’)—%(;ﬁ + 2Rf)+#(Rj +2R) @ sandia

Laboratories



'},_

Results

Visualization - Elements that use
ghost nodes and exterior nodes are
removed

Sharp discontinuities captured along
inner and outer surfaces

2"d order accuracy demonstrated
over multiple decades

eneralized Function Quadrature — 2D

Test
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Simple Concept
e Decompose non-conformal elements into conformal ones
e Obtain solution on conformal elements

Related Work

J kli eat al. (2003) FEMCGAN: FEM on Cartesian Grid with Added
odes

— Focus on Cartesian Grid. Considered undesirable because it lost
original matrix structure.

e Mathematical works: Chen and Zhou (1998), Riviere and Girault

(2006)
e Others?
Properties

e Supports wide variety of interfacial conditions accurately (identical
to boundary fitted mesh)

e Avoids boundary fitted mesh generation

e Supports general topological evolution (subject to resolution
requirements)

e Requires modified matrix structure (additional elements)
—  Similar to finite element adaptivity

e Uses standard finite element assembly including data structures,
interpolation, and quadrature

Questions

e Accuracy? Conformal elements can have vanishing quality.
e Relationship to XFEM?

Beyond XFEM: Conformal Decomposition
Finite Element Methods (CDFEM)

Low quality
elements are
generated by
conformal
decomposition
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} '~ XFEM - CDFEM Comparison

XFEM Approximation

N S

CDFEM Approximation

Nl P Y

e l|dentical IFF interfacial nodes in CDFEM are constrained
to match XFEM values at nodal locations

e CDFEM space contains XFEM space @ ﬁg?igi?al
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XFEM - CDFEM Comparison, cont’d

Approximation
e CDFEM space contains XFEM space
— Accuracy of CDFEM no less than XFEM? Li et al. (2003)
— CDFEM can recover XFEM solution by constraining interfacial nodes
— Separate linear algebra step outside of element assembly routines
Boundary Conditions
o CDFEM readily handles interfacial Dirichlet conditions
— Simply apply Dirichlet conditions to interfacial nodes
e Gives another view of difficulty with Dirichlet conditions in XFEM

— CDFEM recovers XFEM when interfacial nodes constrained to XFEM
space

— CDFEM provides optimal solution for Dirichlet problem when interfacial
nodes are given by Dirichlet conditions

— Attempting to satisfy both sets of constraints simultaneously over-
constrains the problem

Implementation

e Conformal decomposition can be performed external to all assembly
routines

— For stationary interfaces the decomposition can be performed once on the

input mesh
Sandia
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CDFEM Implementation
For Steady State Problems

e Stationary Interfaces

— Conformal decomposition can be performed
once

— Non-conformal mesh input, KRINO performs
conformal decomposition, ARIA solves transport

— Provides test of accuracy, performance, and
implementation

For Transient Problems
e Must perform decomposition based on current
interface location
— Level set provides convenient description
e Similar requirements to adaptive refinement
— Dynamic data structures, matrix graph
— Prolongation of solution to new nodes

e Transparent to physics code (Element
assembly)
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Moving CDFEM Goals

How do we handle the moving interface?

What do we do when nodes change sign?

Goals
— Try to recover moving mesh case for moving interface
— Try to preserve minima, maxima
Proposal
— Prolongation: Set “old” value to value of nearest point on interface
— Dynamics: Use ALE style (u-dxdt) for advection term @ Sandia
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CDFEM Verification

Two-Dimensional Potential Flow About a Cylinder (static)
— Analytical solution provides quantitative measure of accuracy
— Accuracy of velocity potential and its gradient computed in volume and on interface
— Allows experiments with various boundary conditions
Three-Dimensional Potential Flow About a Sphere (static)
— Analytical solution provides quantitative measure of accuracy
— Accuracy of velocity potential and its gradient computed in volume and on interface
— Allows experiments with various boundary conditions
Two-Dimensional Viscous, Incompressible Couette Flow (static)
— Analytical solution provides quantitative measure of accuracy
— Test of conformal decomposition for viscous, incompressible flow
Three-Dimensional Viscous Flow about a Periodic Array of Spheres (static)
— Comparison with Boundary Element results
— Examines behavior of decomposition up to sphere overlap
Advection of Weak Discontinuity (dynamic)
— Shows ability to capture discontinuities
— Analytical solution provides quantitative measure of accuracy
Solidification of 1-D Bar (dynamic)
— Shows ability to capture discontinuities
— Analytical solution provides quantitative measure of accuracy
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Relative Error
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CDFEM Simulation of Steady, Potential
Flow about a Circular Cylinder

Embedded curved boundaries
Dirichlet BC on outer surface, Natural BC on inner surface
Optimal convergence rates for solution and gradient both on volume and boundaries
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CDFEM Simulation of Steady, Potential
Flow about a Sphere

Embedded curved boundaries

e Dirichlet BC on outer surface, Natural BC on inner surface
e Optimal convergence rates for solution and gradient both on volume and

Relative Error

boundaries
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CDFEM Simulation of Steady, Fluid-
Fluid Interface Problem: Couette Flow

e Two-Phase Flow between concentric
cylinders
— Counter-rotating cylinders
— 4:1 viscosity ratio
— No surface tension
e Dirichlet conditions on inner and outer
surfaces, weak discontinuity along
interface
e Cut regular, unstructured mesh along
outer, inner, and interfacial radii
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Relative Error

CDFEM Simulation of Steady, Fluid-
Fluid Interface Problem: Couette Flow

e Embedded curved boundaries
e Dirichlet BC on inner and outer surface
o Weak discontinuity in velocity captured sharply and accurately

e Optimal convergence rates for solution and gradient both on volume and boundaries
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CDFEM Simulation of Steady, Viscous Flow
about a Periodic Array of Spheres

Embedded curved boundaries

Dirichlet BC on sphere surface

Accurate results right up to close packing limit

Sum of nodal residuals provides accurate/convergent measure of drag force
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3 — Curve Fit to Zick & Homsy (1982)
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 Dynamic CDFEM: 1-D Advection of a
Piecewise Linear Field
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e Exact preservation of linear field
e Does not pollute Max-Min
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e Great agreement with exact solution

Error in Front Position

Dynamic CDFEM: 1-D Phase Change
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Summary and Conclusions

XFEM is Powerful Tool for Multiphase Dynamics
e Simulations in realistic geometries reveal important physics not seen in ALE simulations
e Combination of discontinuous variables and one-sided variables make powerful technique
e Wide variety of weak integrated conditions implemented on level set surface
Care Must be Taken When Using Subelement Integration
e Definition of subelements — Parametric coordinates?
— Accuracy: Low order subelements can lead to suboptimal convergence
— Performance: Higher order subelements involve over-integration and root finding for internal nodes
e Definition of subelements — Real coordinates?
— Performance: Quadrature point location inversion
— Accuracy: Element face conformity for hexes in 3D?

Analytic Integration for Generalized Functions

e Can be used to formulate fixed point integration rules with weights that depend continuously on nodal
level set values

e Provides analytic Jacobian information
e Handles degenerate cases smoothly without special consideration
e Higher order elements not practical
CDFEM
e Simple method for handling arbitrary interfacial discontinuities
— Transparent to underlying finite element assembly
e Recovers XFEM when added nodes are constrained to lie in XFEM space
e Demonstrates optimal rates of convergence for both Neumann and Dirichlet BC on curved surfaces
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