

Enriched Finite Element Methods in ARIA and GOMA for Thermal/Fluids Applications

David R. Noble, Jeremy Lechman, Rekha Rao, Elijah
Newren

Sandia National Laboratories
Albuquerque, New Mexico

This work was performed at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

Outline

- Motivation
 - Why interface capturing instead of moving mesh (ALE)
 - Why enriched finite elements
 - Relevant applications
- Description
 - eXtended Finite Element Method (XFEM)
- Case Study: XFEM investigation of laser welding
- Implementation issue: quadrature for discontinuous integrands
- Beyond XFEM: Application independent dynamic interfaces using Conformal Decomposition Finite Element (CDFEM)

How Level Set, Enriched Finite Element Methods Can Help us do Our Job Better

Fundamental Motivations

- Conformal mesh generation is typically more expensive than analysis (approximately 80% of total effort for complex models)
- Arbitrary Lagrangian Eulerian (ALE) is extremely powerful but cannot capture topological change
 - Precludes interfacial breakup and merging

Level Set Methods Have Promise

- To help us simulate complex geometries without conformal meshes
 - Do the complex simulations we do now with faster turnaround time and with less analyst time
- To enable us to simulate physics we cannot currently address
 - We cannot use ALE to simulate the merging and breakup that occur in laser welding and foam decomposition

Problem Class: Dynamic Interface Problems

- Typical application area for level set methods
- Examples: multiphase flow and phase change problems like laser welding, drop dynamics, mold filling, and foam decomposition
- Benefits
 - Difficult, if not impossible, to address using ALE

Problem Class: Topologically Complex, but Stationary Interfaces

- A less obvious application area
- Examples: conduction in composite materials, single phase flow in porous media
- Benefits
 - Avoid conformal mesh generation
 - Avoid contact between disparate meshes

Finite Element Methods for Interfaces in Fluid/Thermal Applications

Boundary Fitted Meshes

- Supports wide variety of interfacial conditions accurately
- Requires boundary fitted mesh generation
- Not feasible for arbitrary topological evolution (ALE)
 - Mesh quality degrades with evolution, phase breakup and merging are precluded.

eXtended Finite Element Methods (XFEM)

- Dolbow et al. (2000), Belytchko et al. (2001)
- Successfully applied to numerous problems ranging from crack propagation to phase change to multiphase flow
- Supports weak conditions accurately, mixed and Dirichlet conditions are actively researched (Dolbow et al.)
- Avoids boundary fitted mesh generation
- Supports general topological evolution (subject to resolution requirements)
- Requires modified matrix structure and element assembly including interpolation and integration
 - Modified quadrature rules being actively researched

Generalized Finite Element Methods (GFEM)

- Strouboulis et al. (2000)
- Combination of standard finite element and partition of unity enrichment

Immersed Finite Element Methods

- Li et al. (2003)
- Supports selected jumps across material boundaries (discontinuous gradient or value)

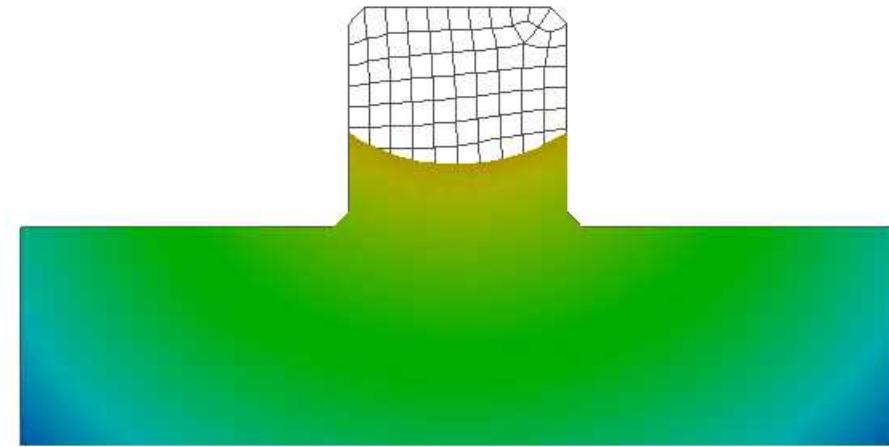
Conformal Decomposition Finite Element Method (CDFEM)

- Enrichment by adding nodes along interfaces

Dynamic Interface Example: Flow in a Microchannel

Low capillary number flow into a microchannel ($Ca=0.01$)

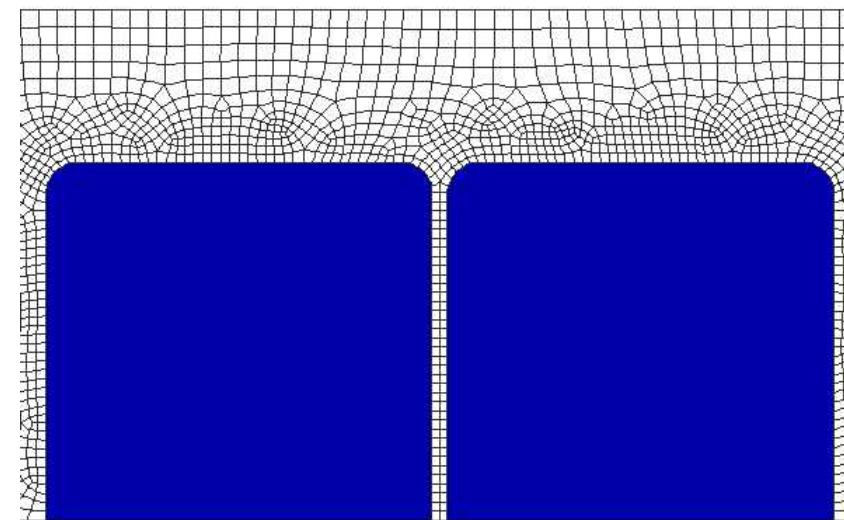
- Complex interfacial physics
 - Surface tension dominated flow
 - Wetting model plays critical role
- ALE simulations require frequent remeshing
 - Expensive analyst time, introduces inaccuracy
- Level set simulation performed in one simulation



Dynamic Interface Example: Laser Welding

Material joining by intense localized heating

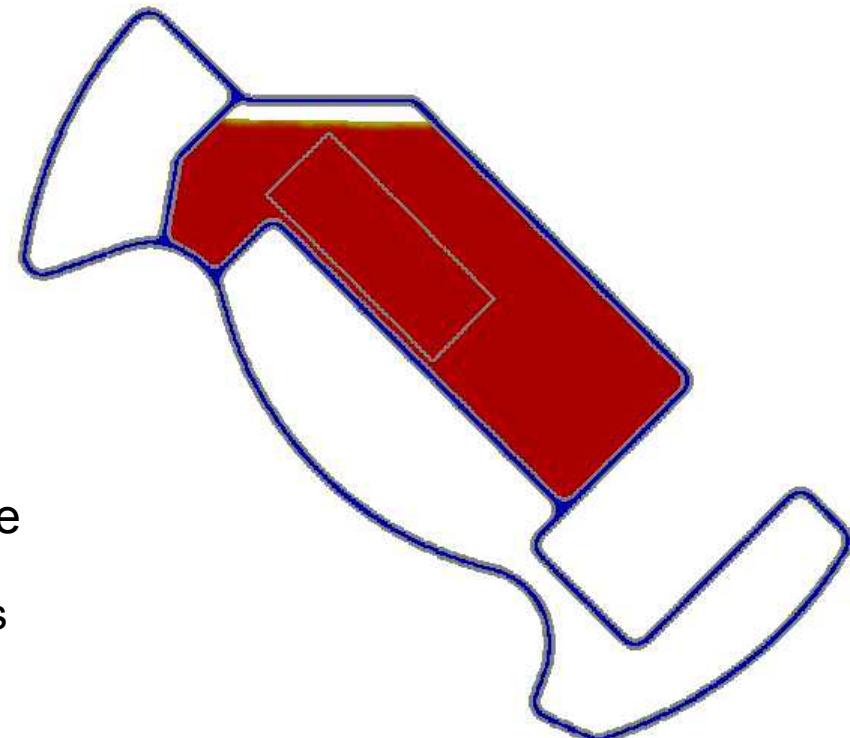
- Extremely complex interfacial physics
 - Radially distributed laser heating
 - Vapor recoil pressure
 - Vaporization heat loss
 - Radiation and convection heat loss
 - Critical role of surface tension
- ALE simulations require frequent remeshing
 - Expensive analyst time, introduces inaccuracy
- Level set - XFEM simulations capture topological change
 - Complete set of interfacial conditions applied along level set interface cutting through elements



Dynamic Interface Example: REF Modeling

Foam Removed by Surface Reaction and Flow

- Complex interfacial physics
 - First-order surface reaction
 - Foam modeled as viscous liquid
 - Surface velocity include flow and reaction components
- ALE simulations not feasible
 - Despite relatively slow interfacial motion, changing topology makes remeshing difficult, if not impossible
- Level set - XFEM simulations capture topological change
 - Complete set of interfacial conditions applied along level set interface cutting through elements



Topologically Complex Interfaces

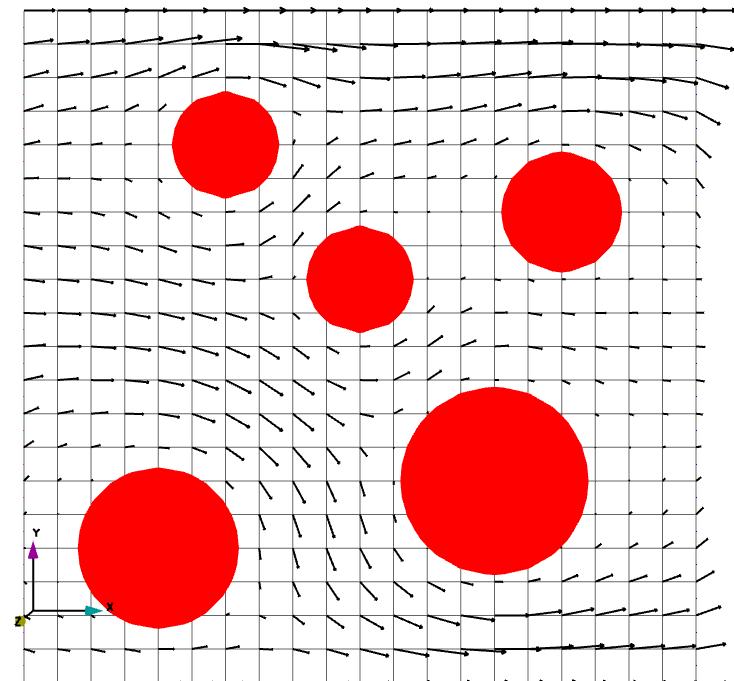
Example: Flow in Random Media

Conformal mesh approach

- Current method of choice whenever feasible
- Requires generating conformal mesh
 - Expensive in terms of analyst time
 - Sometimes impossible for quadrilateral or hexahedral meshes
 - May require separate mesh and contact bc's if modeling physics in solids

Level set method

- Accurate, cost effective approach that should be pursued
- Non-conforming mesh more easily generated
 - Geometry description used to generate level set function rather than conformal mesh
 - Allows much faster prototyping and parameter studies including geometry modification



Topologically Complex Interfaces

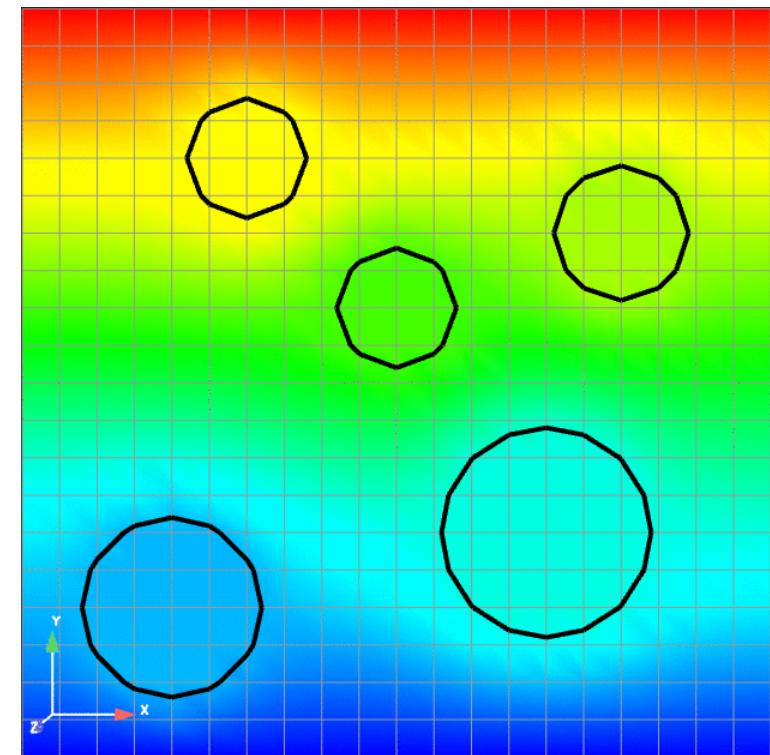
Example: Conduction in Composites

Conformal mesh approach

- Current method of choice whenever feasible
- Requires generating conformal mesh
 - Expensive in terms of analyst time
 - Sometimes impossible for quadrilateral or hexahedral meshes
 - May require separate mesh and contact bc's if modeling physics in solids

Level set method

- Accurate, cost effective approach that should be pursued
- Non-conforming mesh more easily generated
 - Geometry description used to generate level set function rather than conformal mesh
 - Allows much faster prototyping and parameter studies including geometry modification



Cylindrical inclusions with 1000x higher conductivity

Technical Approach: Interfacial Motion Modeling

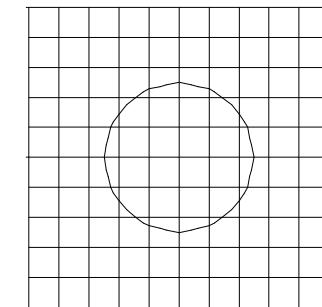
Solve for signed distance from interface

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = 0$$

Interface normal and curvature computed

$$\vec{n} = \nabla \phi, \kappa = \nabla \cdot \nabla \phi$$

Phase Boundary



Interfacial discontinuities accounted for by modifying stress tensor, heat flux, species flux for elements along interface

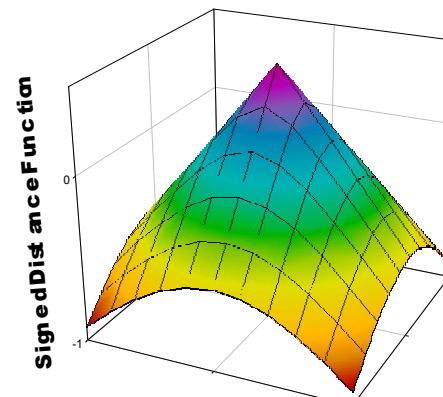
- Stress Tensor term

$$\tau_{ij} = \sigma \delta(\phi) [\delta_{ij} - n_i n_j]$$

- Delta function may be sharp or diffuse function of distance

- Similar for Heat, Species Flux

Level Set Representation



Level Sets in Finite Elements: Extended Finite Element Method

Extended Finite Element: Finite Element Method for Embedded Interfacial Jumps

- Dolbow et al (2000)

Enrich elements containing discontinuities

- Add extra degrees of freedom, a_i

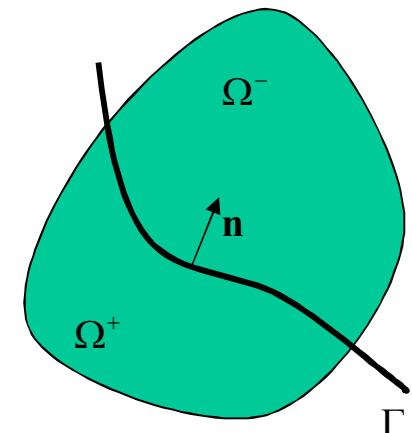
$$T = \sum_i N_i T_i + \sum_i N_i g_i a_i$$

- Basis functions for extended dofs have two parts
- Standard continuous variation within element, N_i
- Discontinuous extending function, g_i
- Typical form for discontinuous value

$$g_i(x) = H(\phi(x)) - H(\phi_i), \quad \phi_i \equiv \phi(x_i)$$

- Typical form for discontinuous gradient

$$g_i(x) = |\phi(x)| - |\phi_i|$$



Extended Finite Element Method

Features

- Enforces continuity across element faces
 - Enrichment is nodal
- Element contributions are discontinuous

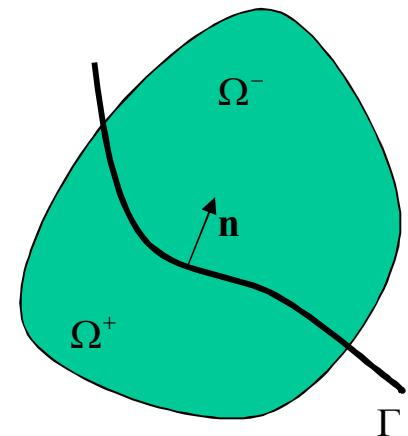
Element contribution to residual

$$R_i = - \int_{\Omega} \nabla N_i \cdot k \nabla T \, d\Omega$$

becomes

$$\begin{aligned} R_i = & - \int_{\Omega^-} \nabla N_i \cdot k \nabla T \, d\Omega - \int_{\Omega^+} \nabla N_i \cdot k \nabla T \, d\Omega \\ & - \int_{\Gamma} N_i^+ \mathbf{n} \cdot \mathbf{Q}^+ \, d\Omega + \int_{\Gamma} N_i^- \mathbf{n} \cdot \mathbf{Q}^- \, d\Omega \end{aligned}$$

- Weight functions are discontinuous
- Gradients are discontinuous
- Requires conformal integration



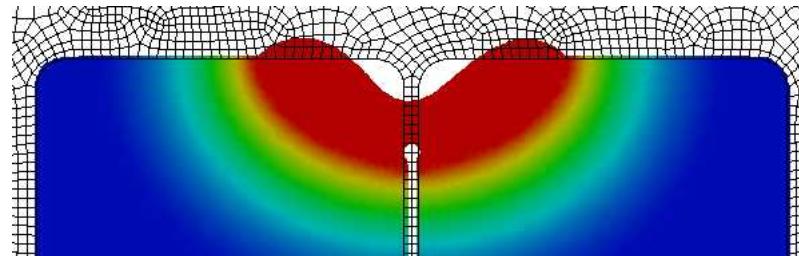
Case Study: XFEM Study of Laser Welding in GOMA

Process Characteristics

- Topological change
 - Weld pool formation and deformation
 - Weld pool merging and undesirable void formation
- Surface dominated physics
 - Surface laser heat flux
 - Surface heat loss by conduction and radiation
 - Strong surface tension effects (including Marangoni)

Resulting Simulation Requirements

- Eulerian method required to capture discontinuities as the move across fixed grid
- Finite element method desirable for material property variation and natural description of interfacial fluxes
- eXtended Finite Element Method (XFEM) required to account for interfacial discontinuities



Implementation – Applying XFEM to Laser Welding

Problem Discretization

- Fixed unstructured mesh
- Solid-liquid interface described by enthalpy method
 - Specific heat is temperature dependent to account for latent heat
 - Viscosity sharp function of temperature around between solidus and liquidus
- Liquid-vapor interface described by level set method

Variable Enrichment

- Variables allowed to be discontinuous across liquid-vapor interface

Subelement Integration

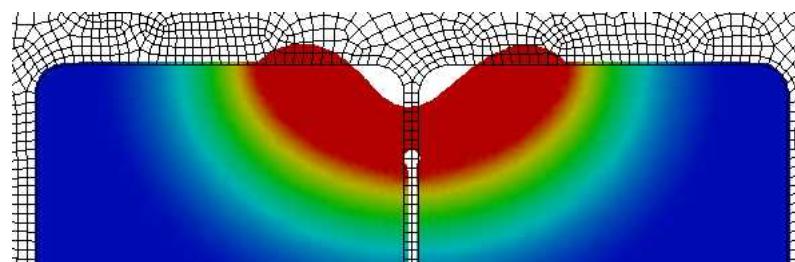
- Required to integrate discontinuous quantities resulting from discontinuous variables and trial functions

Interfacial conditions

- XFEM approach produces natural mechanism for applying interfacial fluxes
- Several options discussed in literature for handling surface tension

Coupling

- Implemented in code designed for fully coupled, Newton's method
- Choice of surface tension application made this impossible
 - Final algorithm involves loosely coupling the level set evolution to the mass, momentum, and energy evolution



Implementation – Enriched Quantities

Discontinuous quantities

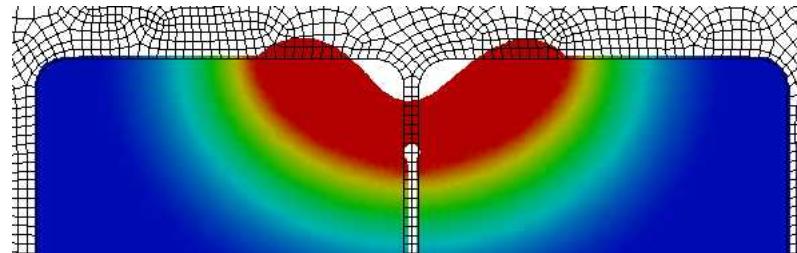
- Surface tension produces sharply discontinuous pressure across the interface
 - Pressure is enriched with Heaviside function

$$P(\mathbf{x}) = \sum P_i N_i(\mathbf{x}) + \sum a_i N_i(\mathbf{x}) g_i(\mathbf{x})$$
$$g_i(\mathbf{x}) = H(\phi(\mathbf{x})) - H(\phi_i), \quad \phi_i \equiv \phi(\mathbf{x}_i)$$

- Velocity gradient is discontinuous due to jump in viscosity
 - This is a secondary effect compared to pressure discontinuity
 - Experiments with gradient-type enrichment have not yielded significant differences
 - Currently, velocity is not enriched

One-sided quantities

- Temperature in vapor is irrelevant since surface heat transfer is better described using laser heat input and radiative boundary conditions
 - Variable itself is not enriched, but trial function is multiplied by Heaviside function
 - This truncation of the integration domain produces boundary integral due to integration by part of diffusive terms



Implementation Issue: XFEM Integration

Modified Element Quadrature

- Basis and trial functions are now discontinuous

$$R_i = - \int_{\Omega} \nabla N_i \cdot k \nabla T d\Omega$$

$$R_i = - \int_{\Omega^-} \nabla N_i^- \cdot k^- \nabla T^- d\Omega - \int_{\Omega^+} \nabla N_i^+ \cdot k^+ \nabla T^+ d\Omega - \int_{\Gamma} N_i^+ \mathbf{n} \cdot \mathbf{Q}^+ d\Omega + \int_{\Gamma} N_i^- \mathbf{n} \cdot \mathbf{Q}^- d\Omega$$

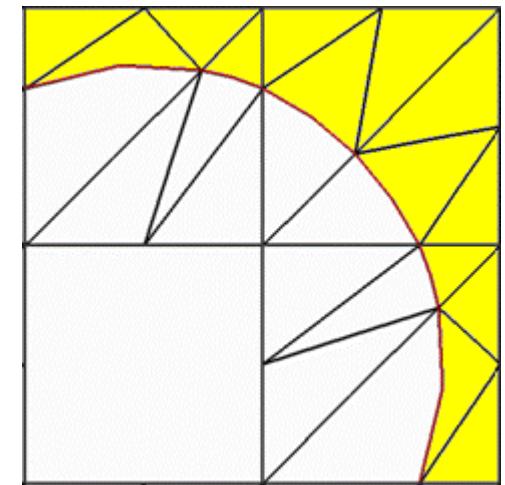
- For XFEM-Level set methods, functions become generalized functions of the level set variable
 - Heaviside and Dirac delta functions

Moderately Invasive Feature in XFEM Codes

- Quadrature rule depends on level set variable
- Coupling issues, time derivative evaluation

Several Solutions

- Diffuse integration
 - Smoothed generalized functions
- Subelement integration
 - Subdivide elements into conformal subelements
 - Implementation issues
- Develop new integration rules for generalized functions
 - Derive new integration rules that account for generalized functions



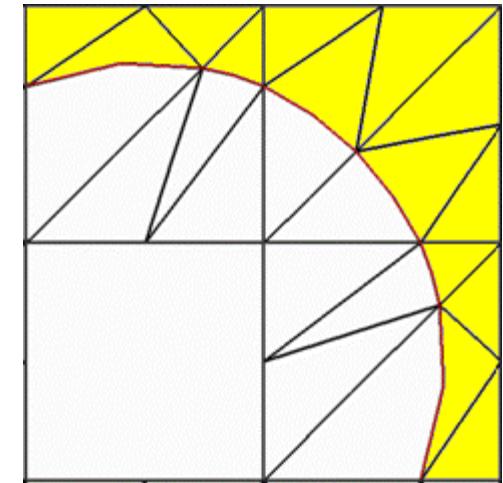
XFEM Subelement Integration - Issues

Basics

- Decompose non-conformal element into conformal subelements
- Perform standard Gauss integration over subelements

Important Implementation Details

- What is definition of subelements?
 - Option 1: Coordinates of subelements are parametric coordinates for owning element
 - Option 2: Coordinates of subelements are real coordinates
- What order are the subelements?
 - Are linear sides sufficient for obtaining optimal rates of convergence?



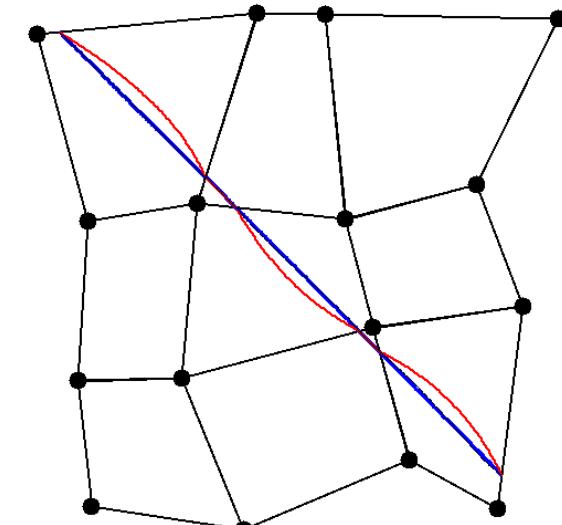
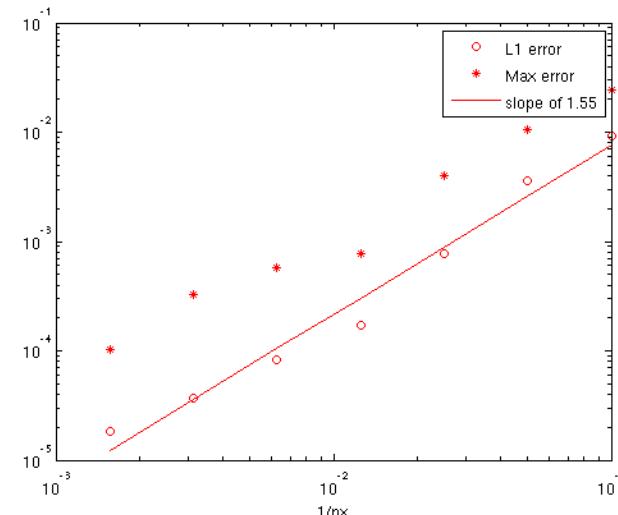
XFEM Subelement Integration - Issues

Subelements in Parametric Coordinates

- Low order subelements with linear sides
 - Figure: **desired surface** vs. **actual surface**
 - Suboptimal accuracy
- Higher order subelements with parabolic sides
 - Figure: actual surface (thin black curve nearly coincident with desired surface)
 - More costly quadrature
 - Must use root finder for internal nodes
 - Achieves optimal convergence rate

Subelements in Real Coordinates

- Low order subelements with linear sides
 - Must solve simple but nonlinear system for every quadrature point, every time step
 - Achieves optimal convergence rate
 - 3D: How are non-planar hex faces handled?



Sandia
National
Laboratories

Integration Rules for Elements with Generalized Functions - Motivation

Philosophical

- Integration rules designed to exactly integrate finite element functions
 - Enriched functions need modified quadrature rules

Pragmatic When Compared with Alternatives

- Diffuse methods
 - Simple but inaccurate, inconsistent
- Subelement methods
 - Must be carefully implemented
 - Must specifically account for degenerate cases

Allows Advanced Capabilities

- Provides analytical Jacobian information
 - Required by full Newton codes
 - Make interfacial optimization possible

Possible Disadvantages

- Possibly increases number of quadrature points for same element
- Difficult, if not impossible to derive for higher order elements

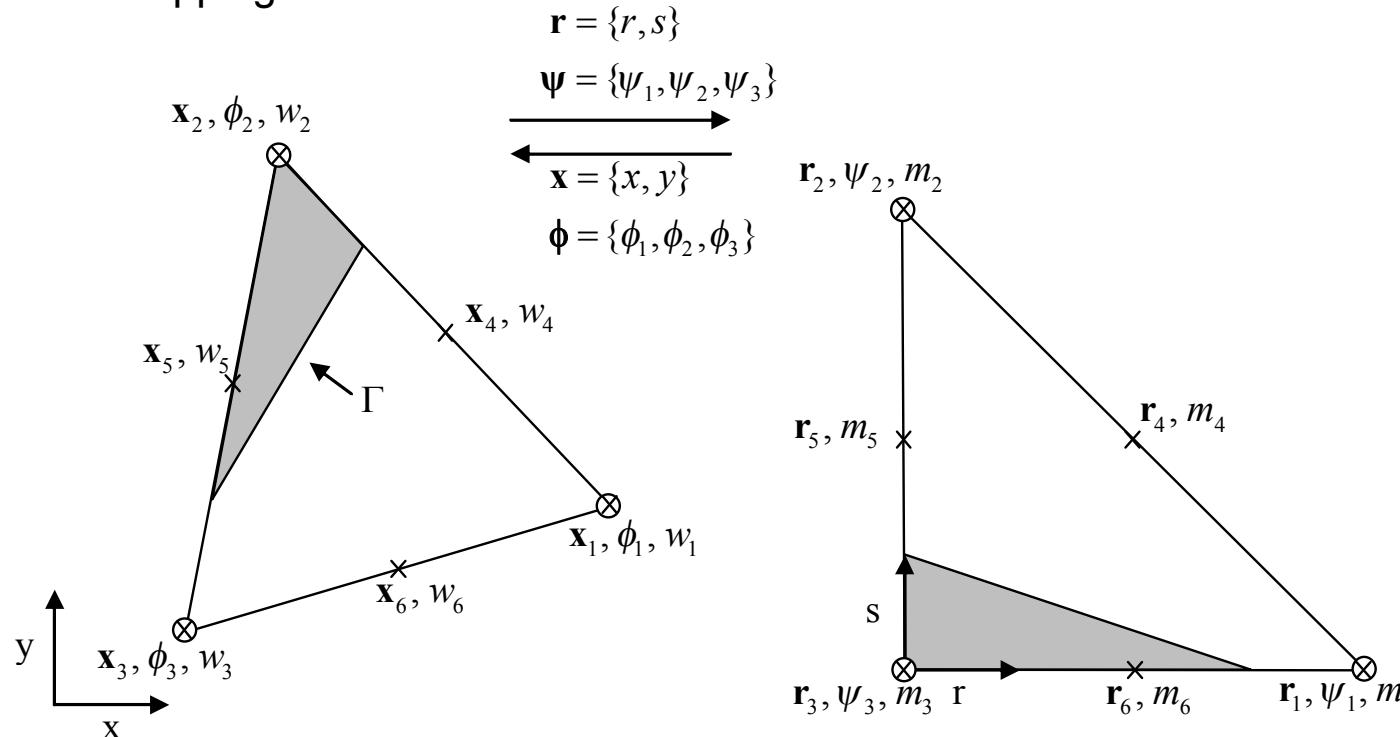
Generalized Function Quadrature - Method

Approach

- Develop quadrature rules capable of exactly integrating finite element functions including a generalized function of the level set variable
 - Piecewise polynomial times Heaviside or Dirac delta function
- Form:

$$\int_{\Omega^+} g(\mathbf{x}) d\Omega_{\mathbf{x}} = \sum_{i=1}^6 w_i^+ (\phi) g(\mathbf{x}_i) J(\mathbf{x}_i) \quad \int_{\Gamma} g d\Gamma_{\mathbf{x}} = \sum_{i=1}^6 w_i^\Gamma (\phi) |\nabla \phi(\mathbf{x}_i)| g(\mathbf{x}_i) J(\mathbf{x}_i)$$

- Mapping:



Generalized Function Quadrature - Method

- Form linear system for weights

$$I_f^\Delta(\psi) \equiv \int_{\Delta} f(\mathbf{r}) d\Omega_{\mathbf{r}} = \sum_{i=1}^6 m_i^\Delta(\phi) f(\mathbf{r}_i)$$

$$\mathbf{A} \mathbf{m}^\Delta(\psi) = \mathbf{I}^\Delta(\psi)$$

- Require all monomials in a quadratic function be exactly integrated

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ r_1 & r_2 & r_3 & r_4 & r_5 & r_6 \\ s_1 & s_2 & s_3 & s_4 & s_5 & s_6 \\ r_1 s_1 & r_2 s_2 & r_3 s_3 & r_4 s_4 & r_5 s_5 & r_6 s_6 \\ r_1^2 & r_2^2 & r_3^2 & r_4^2 & r_5^2 & r_6^2 \\ s_1^2 & s_2^2 & s_3^2 & s_4^2 & s_5^2 & s_6^2 \end{bmatrix} \begin{bmatrix} m_1^\Delta(\psi) \\ m_2^\Delta(\psi) \\ m_3^\Delta(\psi) \\ m_4^\Delta(\psi) \\ m_5^\Delta(\psi) \\ m_6^\Delta(\psi) \end{bmatrix} = \begin{bmatrix} I_1^\Delta(\psi) \\ I_r^\Delta(\psi) \\ I_s^\Delta(\psi) \\ I_{rs}^\Delta(\psi) \\ I_{r^2}^\Delta(\psi) \\ I_{s^2}^\Delta(\psi) \end{bmatrix}$$

- Select quadrature point locations
 - Valid quadrature rules yield nonsingular matrix,
 - Normally quadrature point locations considered unknowns that are selected such that integration achieves desired order with minimal number of points
 - Arbitrary interface location makes fortuitous point selection impossible
 - Simplest valid quadrature rules involve points on the nodes and edges

Generalized Function Quadrature - Method

- Form linear system for weights, cont'd
 - Analytically evaluate integrals as function of nodal level set values

$$I_1^\Delta(\psi) = \frac{\psi_3^2}{2\Delta_{31}\Delta_{32}} \quad I_{rs}^\Delta(\psi) = \frac{\psi_3^4}{24\Delta_{31}^2\Delta_{32}^2}$$

$$I_r^\Delta(\psi) = \frac{\psi_3^3}{6\Delta_{31}^2\Delta_{32}} \quad I_{r^2}^\Delta(\psi) = \frac{\psi_3^4}{12\Delta_{31}^3\Delta_{32}} \quad \Delta_{31} \equiv \psi_3 - \psi_1$$

$$I_s^\Delta(\psi) = \frac{\psi_3^3}{6\Delta_{31}^2\Delta_{32}} \quad I_{s^2}^\Delta(\psi) = \frac{\psi_3^4}{12\Delta_{31}\Delta_{32}^3} \quad \Delta_{32} \equiv \psi_3 - \psi_2$$

- Solve for weights as functions of nodal level set values

$m_i^\Delta(\psi)$	functional form
$m_1^\Delta(\psi)$	$-I_r^\Delta(\psi) + 2I_{r^2}^\Delta(\psi)$
$m_2^\Delta(\psi)$	$-I_s^\Delta(\psi) + 2I_{s^2}^\Delta(\psi)$
$m_3^\Delta(\psi)$	$I_1^\Delta(\psi) - 3I_r^\Delta(\psi) - 3I_s^\Delta(\psi) + 4I_{rs}^\Delta(\psi) + 2I_{r^2}^\Delta(\psi) + 2I_{s^2}^\Delta(\psi)$
$m_4^\Delta(\psi)$	$4I_{rs}^\Delta(\psi)$
$m_5^\Delta(\psi)$	$4(I_s^\Delta(\psi) - I_{rs}^\Delta(\psi) - I_{s^2}^\Delta(\psi))$
$m_6^\Delta(\psi)$	$4(I_r^\Delta(\psi) - I_{rs}^\Delta(\psi) - I_{r^2}^\Delta(\psi))$

Results

- Weights are continuous functions of nodal level set values
 - Allows analytical Jacobian formation
 - All degenerate cases handled without special consideration
- Weights are not positive definite

Generalized Function Quadrature – Test Problem

Conduction in Annulus and Spherical Shell

- Poisson equation, $k = 1, q = 1$

$$\nabla \cdot k \nabla T + q = 0$$
- Boundary conditions
 - Insulated inner surface
 - Robin-type output surface, $h = 10$

$$-\mathbf{n}_{\text{outer}} \cdot k \nabla T = h(T - 0)$$

Discretization

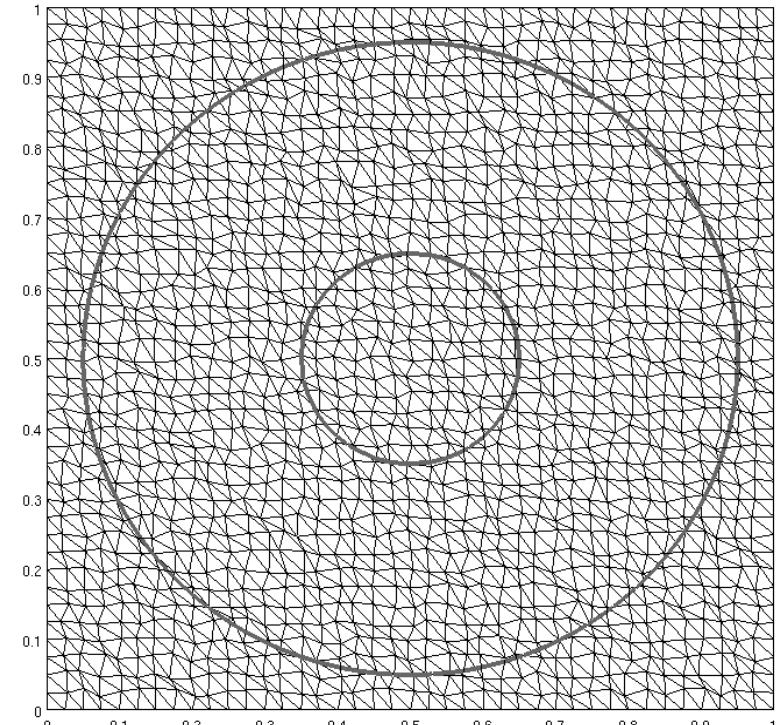
- Linear triangle and tetrahedral elements, linear temperature, linear level set function
- Randomly perturbed nodes of structured mesh
 - Rigorous test for deformed meshes

Validation

- Compare against exact solutions

$$T^{2D}(r) = \frac{q}{4k} (R_o^2 - r^2) + \frac{q}{2hR_o} (R_o^2 - R_i^2) - \frac{qR_i^2}{2k} (\log(R_o) - \log(r))$$

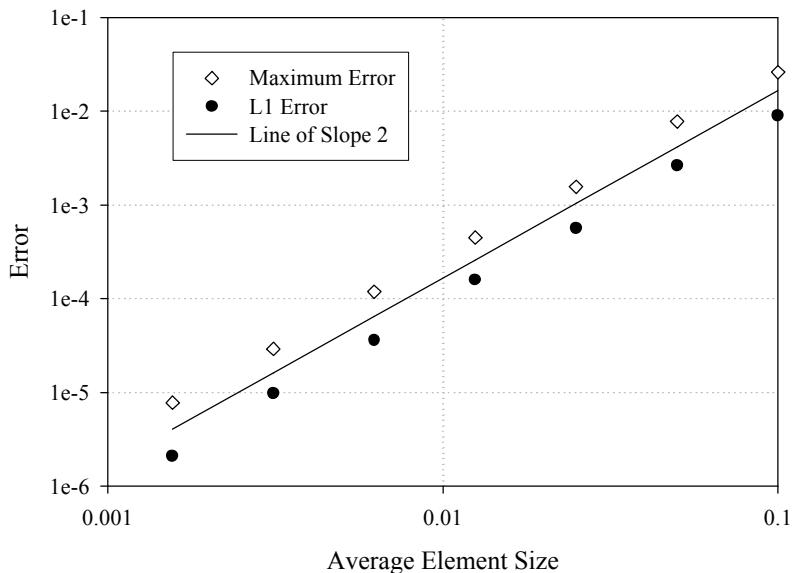
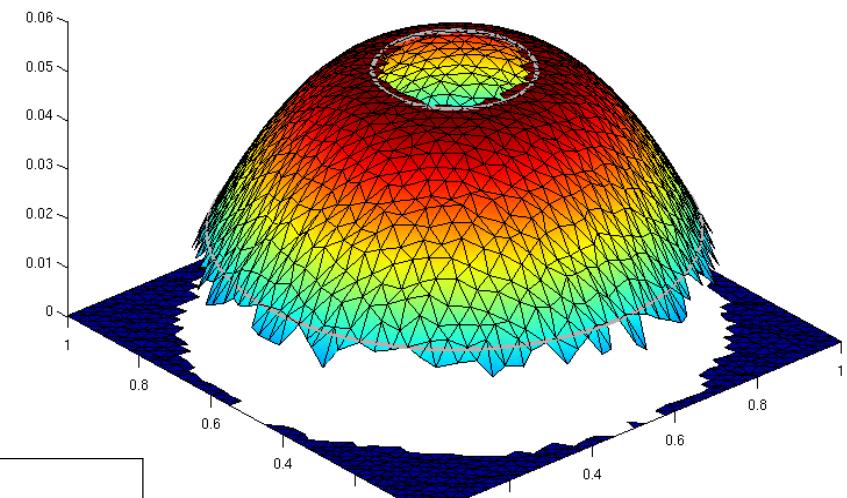
$$T^{3D}(r) = \frac{q}{3hR_o^2} (R_o^3 - R_i^3) - \frac{q}{6kr} (r^3 + 2R_i^3) + \frac{q}{6kR_o} (R_o^3 + 2R_i^3)$$



Generalized Function Quadrature – 2D Test

Results

- Visualization - Elements that use ghost nodes and exterior nodes are removed
- Sharp discontinuities captured along inner and outer surfaces
- 2nd order accuracy demonstrated over multiple decades



Beyond XFEM: Conformal Decomposition Finite Element Methods (CDFEM)

Simple Concept

- Decompose non-conformal elements into conformal ones
- Obtain solution on conformal elements

Related Work

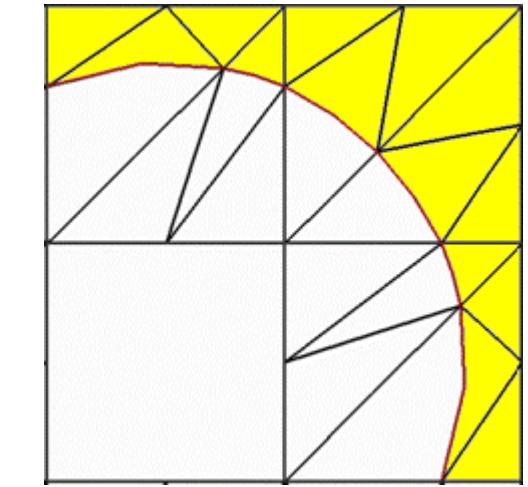
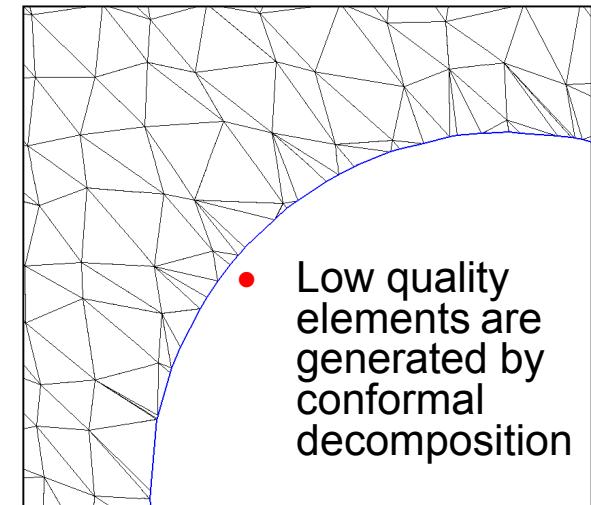
- Li et al. (2003) FEMCGAN: FEM on Cartesian Grid with Added Nodes
 - Focus on Cartesian Grid. Considered undesirable because it lost original matrix structure.
- Mathematical works: Chen and Zhou (1998), Riviere and Girault (2006)
- Others?

Properties

- Supports wide variety of interfacial conditions accurately (identical to boundary fitted mesh)
- Avoids boundary fitted mesh generation
- Supports general topological evolution (subject to resolution requirements)
- Requires modified matrix structure (additional elements)
 - Similar to finite element adaptivity
- Uses standard finite element assembly including data structures, interpolation, and quadrature

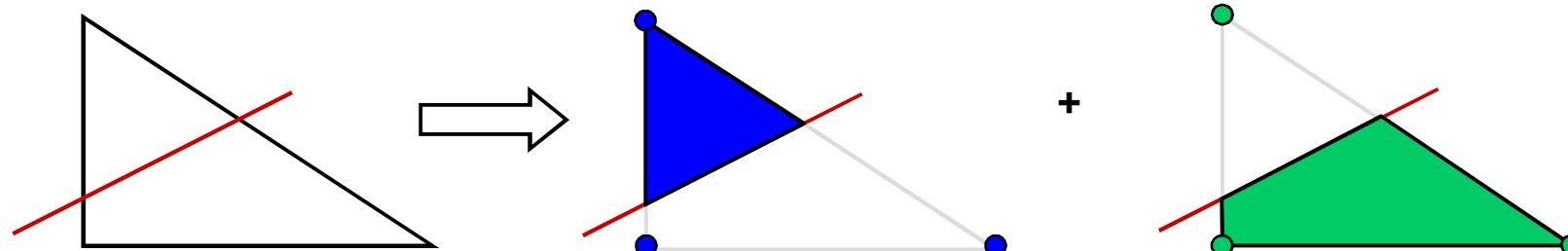
Questions

- Accuracy? Conformal elements can have vanishing quality.
- Relationship to XFEM?

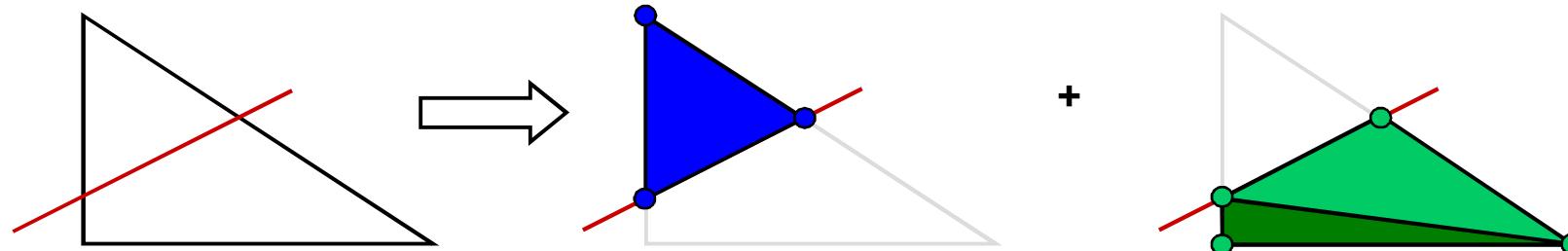


XFEM – CDFEM Comparison

XFEM Approximation



CDFEM Approximation



- Identical IFF interfacial nodes in CDFEM are constrained to match XFEM values at nodal locations
- CDFEM space contains XFEM space

XFEM – CDFEM Comparison, cont'd

Approximation

- CDFEM space contains XFEM space
 - Accuracy of CDFEM no less than XFEM? Li et al. (2003)
 - CDFEM can recover XFEM solution by constraining interfacial nodes
 - Separate linear algebra step outside of element assembly routines

Boundary Conditions

- CDFEM readily handles interfacial Dirichlet conditions
 - Simply apply Dirichlet conditions to interfacial nodes
- Gives another view of difficulty with Dirichlet conditions in XFEM
 - CDFEM recovers XFEM when interfacial nodes constrained to XFEM space
 - CDFEM provides optimal solution for Dirichlet problem when interfacial nodes are given by Dirichlet conditions
 - Attempting to satisfy both sets of constraints simultaneously over-constrains the problem

Implementation

- Conformal decomposition can be performed external to all assembly routines
 - For stationary interfaces the decomposition can be performed once on the input mesh

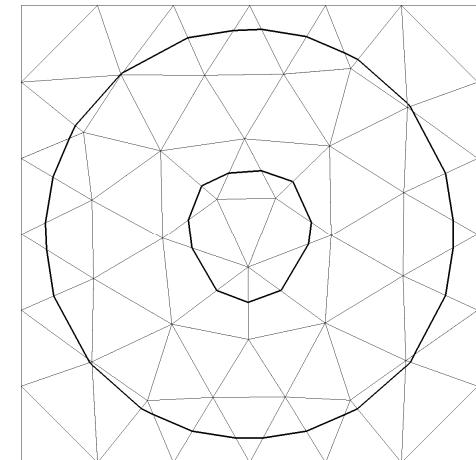
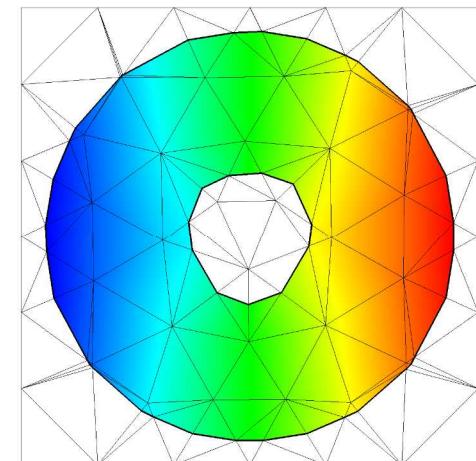
CDFEM Implementation

For Steady State Problems

- Stationary Interfaces
 - Conformal decomposition can be performed once
 - Non-conformal mesh input, KRINO performs conformal decomposition, ARIA solves transport
 - Provides test of accuracy, performance, and implementation

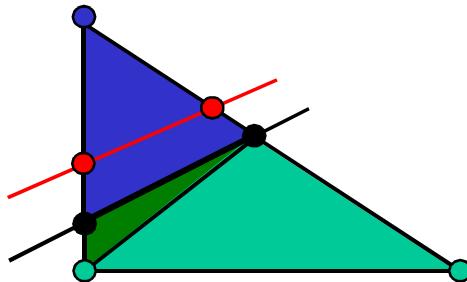
For Transient Problems

- Must perform decomposition based on current interface location
 - Level set provides convenient description
- Similar requirements to adaptive refinement
 - Dynamic data structures, matrix graph
 - Prolongation of solution to new nodes
- Transparent to physics code (Element assembly)

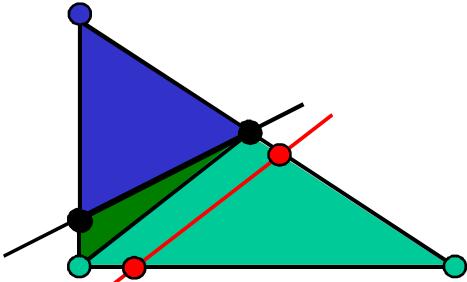


Moving CDFEM Goals

- How do we handle the moving interface?



- What do we do when nodes change sign?



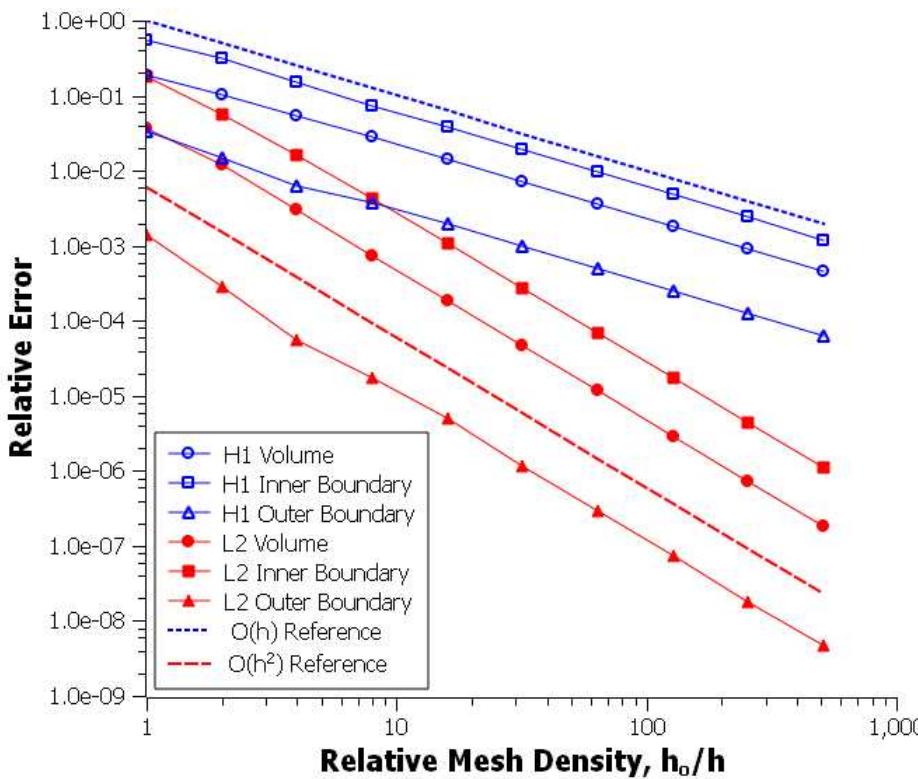
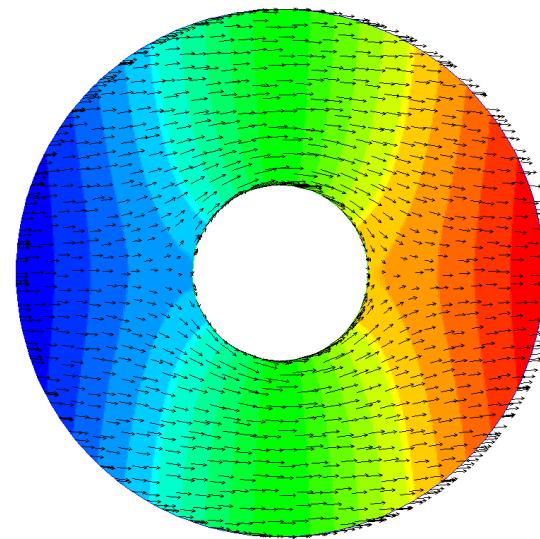
- Goals
 - Try to recover moving mesh case for moving interface
 - Try to preserve minima, maxima
- Proposal
 - Prolongation: Set “old” value to value of nearest point on interface
 - Dynamics: Use ALE style ($u - dx/dt$) for advection term

CDFEM Verification

- Two-Dimensional Potential Flow About a Cylinder (static)
 - Analytical solution provides quantitative measure of accuracy
 - Accuracy of velocity potential and its gradient computed in volume and on interface
 - Allows experiments with various boundary conditions
- Three-Dimensional Potential Flow About a Sphere (static)
 - Analytical solution provides quantitative measure of accuracy
 - Accuracy of velocity potential and its gradient computed in volume and on interface
 - Allows experiments with various boundary conditions
- Two-Dimensional Viscous, Incompressible Couette Flow (static)
 - Analytical solution provides quantitative measure of accuracy
 - Test of conformal decomposition for viscous, incompressible flow
- Three-Dimensional Viscous Flow about a Periodic Array of Spheres (static)
 - Comparison with Boundary Element results
 - Examines behavior of decomposition up to sphere overlap
- Advection of Weak Discontinuity (dynamic)
 - Shows ability to capture discontinuities
 - Analytical solution provides quantitative measure of accuracy
- Solidification of 1-D Bar (dynamic)
 - Shows ability to capture discontinuities
 - Analytical solution provides quantitative measure of accuracy

CDFEM Simulation of Steady, Potential Flow about a Circular Cylinder

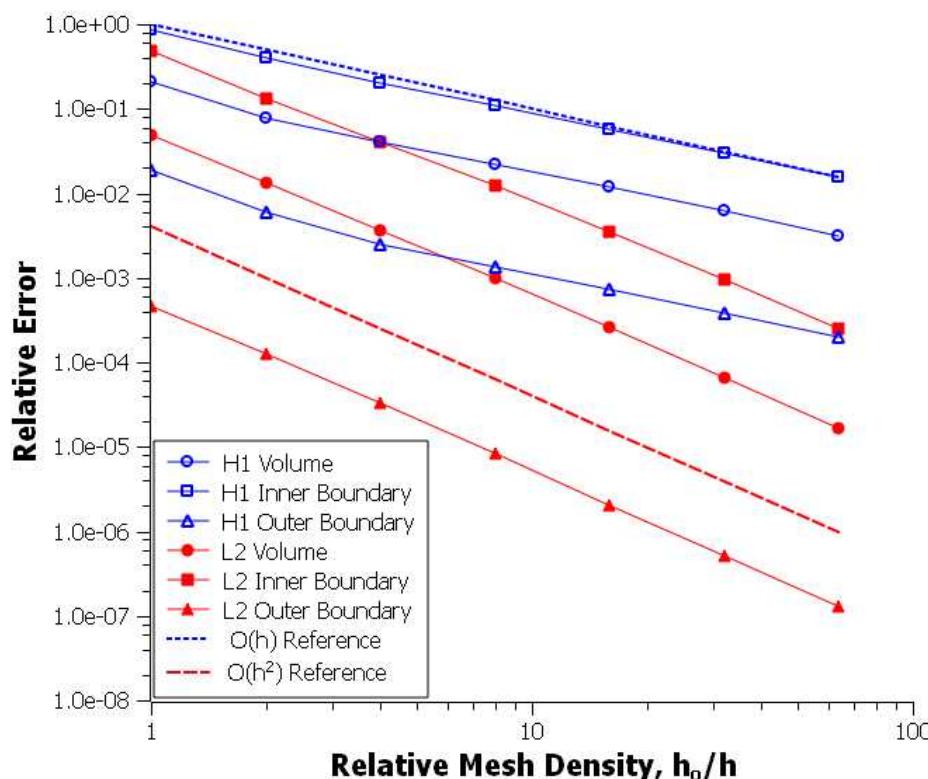
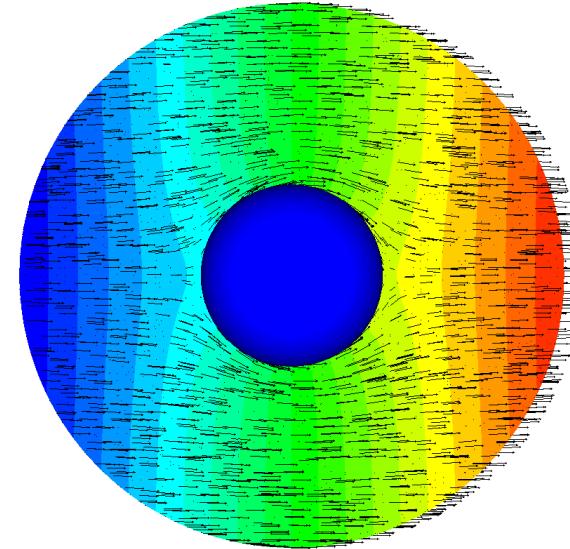
- Embedded curved boundaries
- Dirichlet BC on outer surface, Natural BC on inner surface
- Optimal convergence rates for solution and gradient both on volume and boundaries



Sandia
National
Laboratories

CDFEM Simulation of Steady, Potential Flow about a Sphere

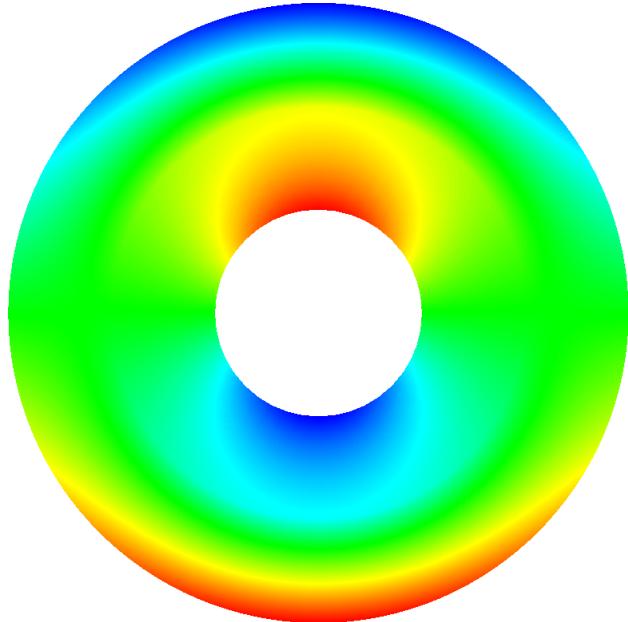
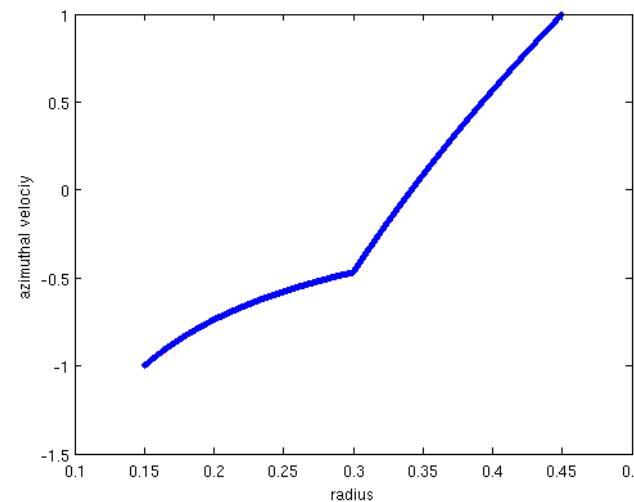
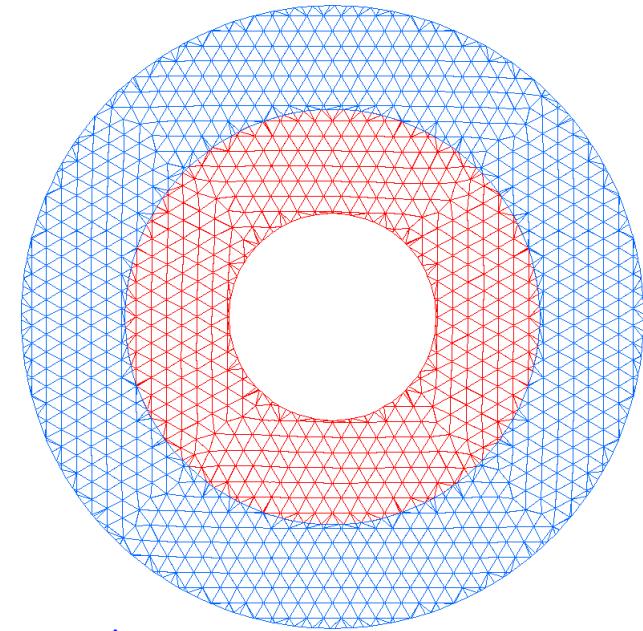
- Embedded curved boundaries
- Dirichlet BC on outer surface, Natural BC on inner surface
- Optimal convergence rates for solution and gradient both on volume and boundaries



Sandia
National
Laboratories

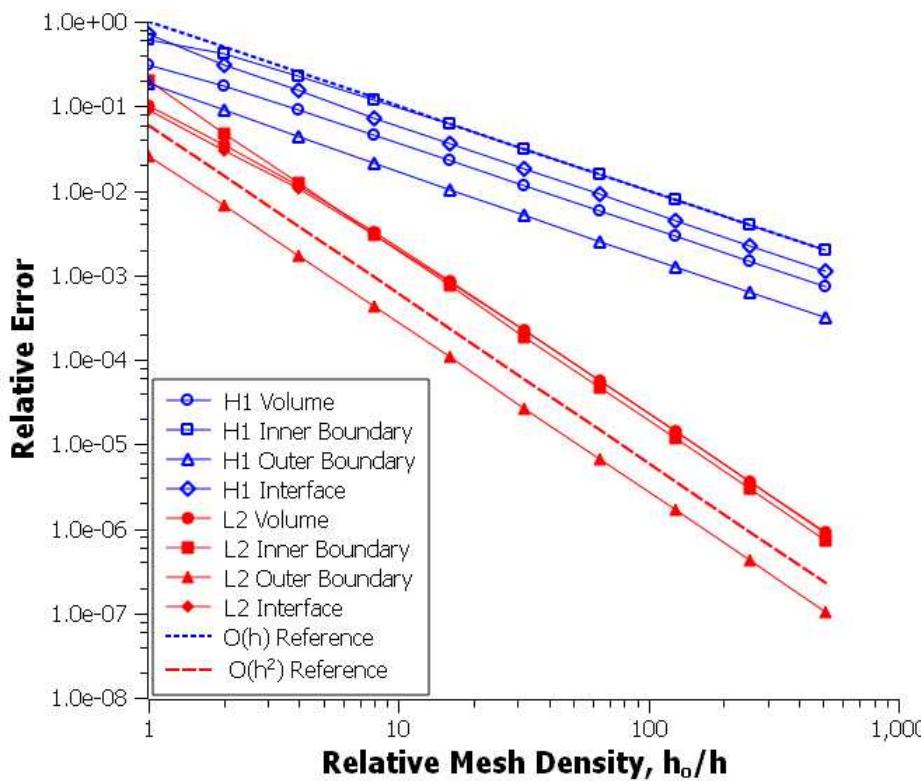
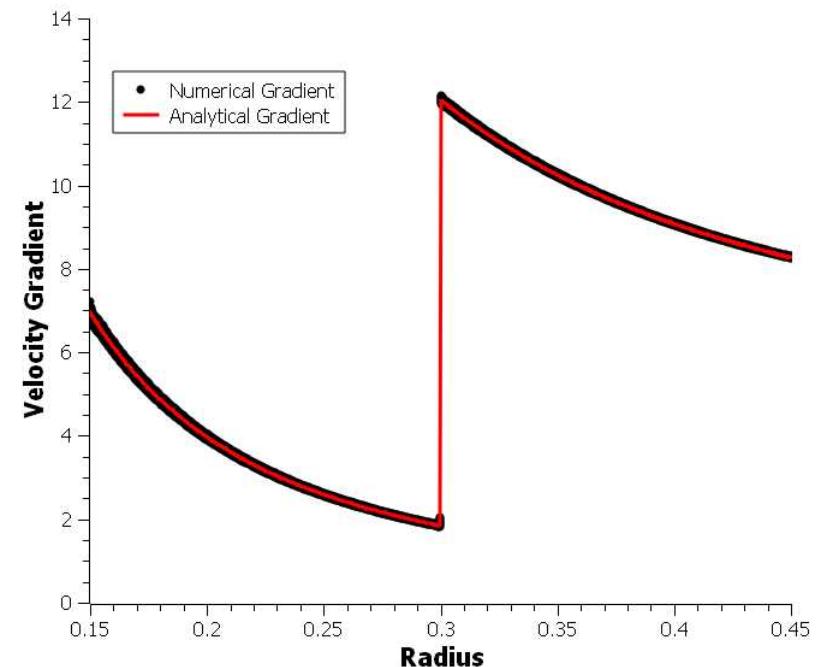
CDFEM Simulation of Steady, Fluid-Fluid Interface Problem: Couette Flow

- Two-Phase Flow between concentric cylinders
 - Counter-rotating cylinders
 - 4:1 viscosity ratio
 - No surface tension
- Dirichlet conditions on inner and outer surfaces, weak discontinuity along interface
- Cut regular, unstructured mesh along outer, inner, and interfacial radii



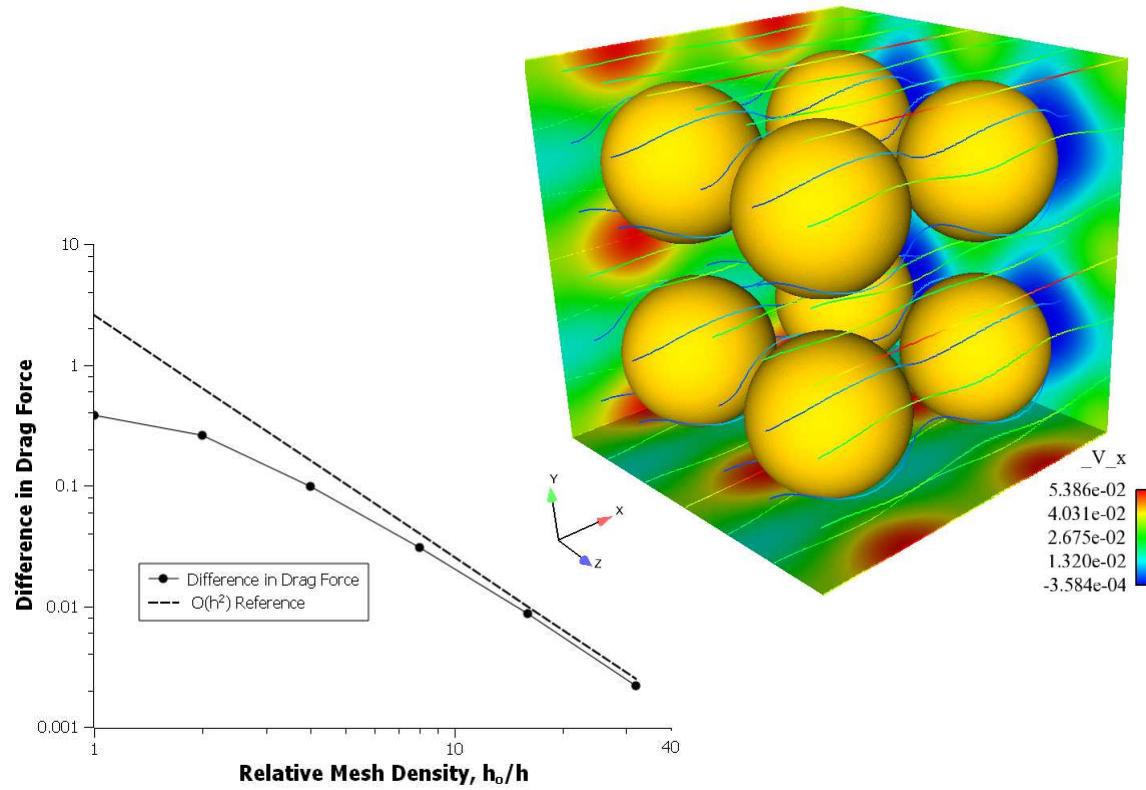
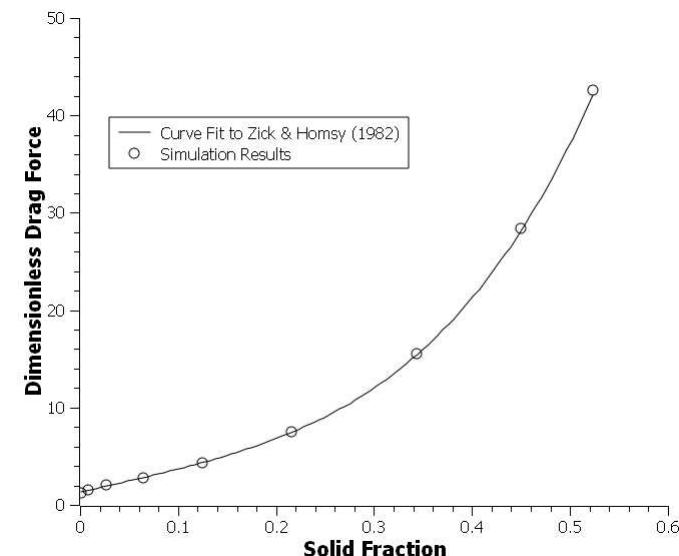
CDFEM Simulation of Steady, Fluid-Fluid Interface Problem: Couette Flow

- Embedded curved boundaries
- Dirichlet BC on inner and outer surface
- Weak discontinuity in velocity captured sharply and accurately
- Optimal convergence rates for solution and gradient both on volume and boundaries



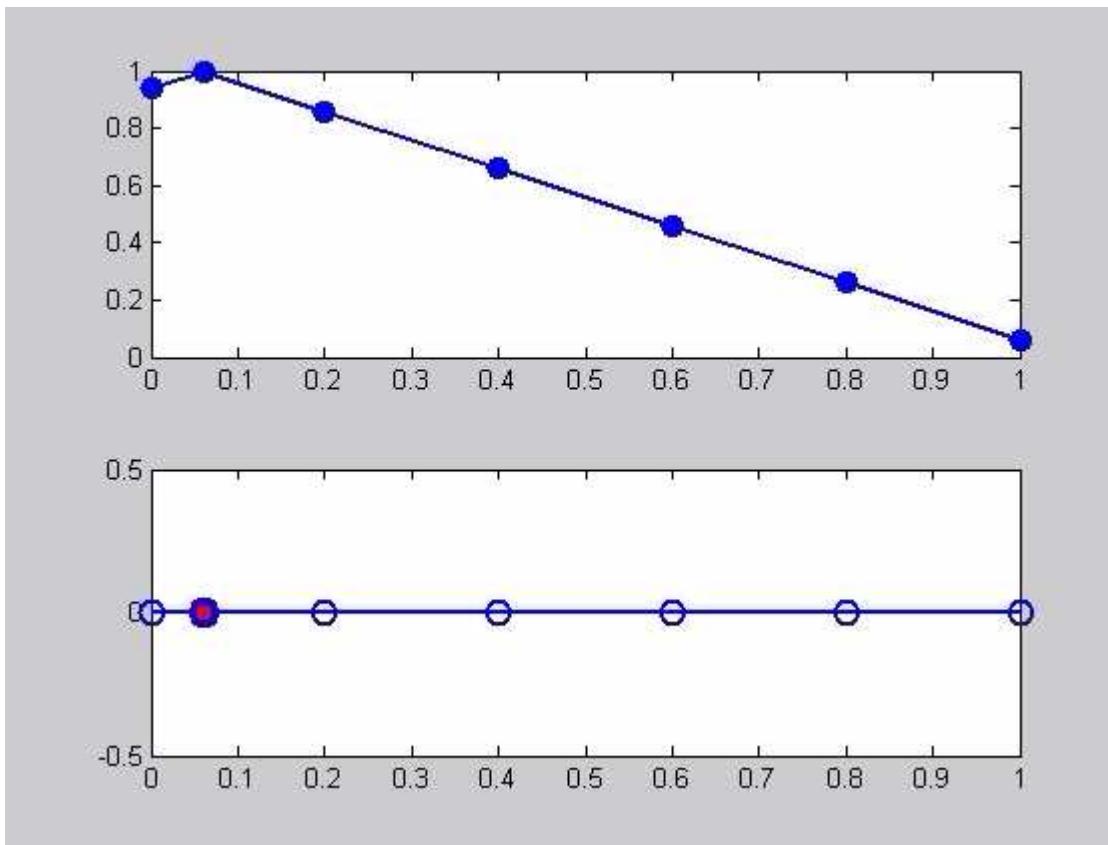
CDFEM Simulation of Steady, Viscous Flow about a Periodic Array of Spheres

- Embedded curved boundaries
- Dirichlet BC on sphere surface
- Accurate results right up to close packing limit
- Sum of nodal residuals provides accurate/convergent measure of drag force



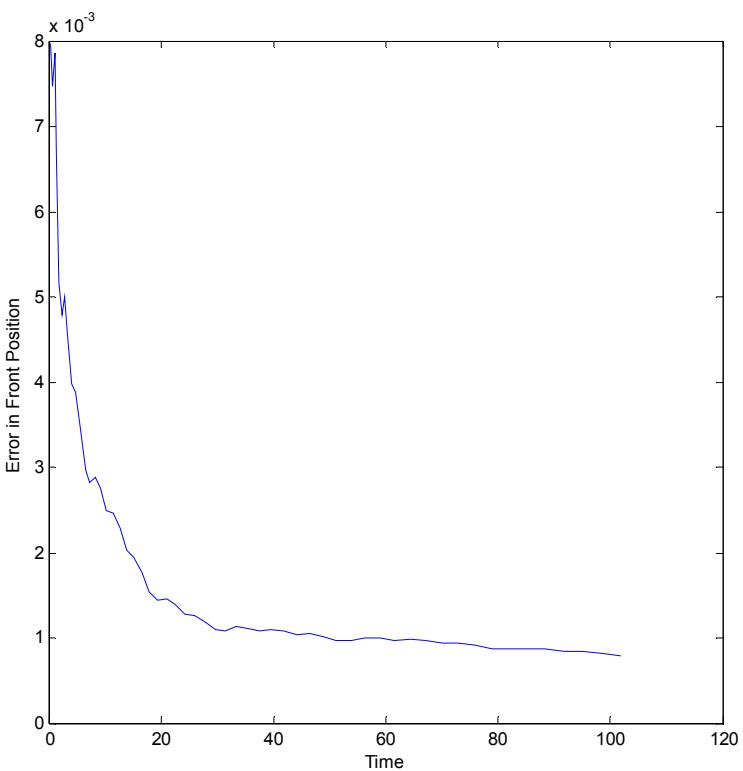
Sandia
National
Laboratories

Dynamic CDFEM: 1-D Advection of a Piecewise Linear Field



- Exact preservation of linear field
- Does not pollute Max-Min

Dynamic CDFEM: 1-D Phase Change



- Great agreement with exact solution

Summary and Conclusions

XFEM is Powerful Tool for Multiphase Dynamics

- Simulations in realistic geometries reveal important physics not seen in ALE simulations
- Combination of discontinuous variables and one-sided variables make powerful technique
- Wide variety of weak integrated conditions implemented on level set surface

Care Must be Taken When Using Subelement Integration

- Definition of subelements – Parametric coordinates?
 - Accuracy: Low order subelements can lead to suboptimal convergence
 - Performance: Higher order subelements involve over-integration and root finding for internal nodes
- Definition of subelements – Real coordinates?
 - Performance: Quadrature point location inversion
 - Accuracy: Element face conformity for hexes in 3D?

Analytic Integration for Generalized Functions

- Can be used to formulate fixed point integration rules with weights that depend continuously on nodal level set values
- Provides analytic Jacobian information
- Handles degenerate cases smoothly without special consideration
- Higher order elements not practical

CDFEM

- Simple method for handling arbitrary interfacial discontinuities
 - Transparent to underlying finite element assembly
- Recovers XFEM when added nodes are constrained to lie in XFEM space
- Demonstrates optimal rates of convergence for both Neumann and Dirichlet BC on curved surfaces