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Waste Isolation Pilot Plant (WIPP)

• The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of 
Energy deep-geologic repository for defense-related transuranic
waste

• It is located in southeast New Mexico at a depth of 655 m in the 
Salado Formation, a Permian bedded-salt formation
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•Waste contains 
cellulose, plastic and 
rubber that could 
microbially degrade to 
produce CO2, which 
would acidify any brine 
present and dissolve / 
complex with actinides in 
the waste



MgO is emplaced with the waste

• Functions as an engineered barrier by consuming CO2 from possible microbial 

activity generated by the biodegradation of cellulosic, plastic, and rubber materials, 
thereby decreasing actinide solubilities

– MgO reacts with CO2 and H2O in brine and water vapor to form hydrous and, 
eventually, anhydrous Mg carbonates

5Mg(OH)2(s) + 4CO2 ⇌ Mg5(CO3)4(OH)2•4H2O(s)

Mg(OH)2(s) + CO2 ⇌ MgCO3(s) + H2O

– Will keep pH at mildly alkaline range

Mg(OH)2 ⇌ Mg2+ + 2OH-
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Objective of this study

• Obtain experimental evidence for the functional 
form of the CO2 sequestration rate-law by Mg in 
concentrated brines under well-mixed laboratory 
conditions

– Sum of a series of first order processes?
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Previous Work

• Smithson and Bakhski, 1973

– Measured amount of Mg-carbonate precipitated versus time in 
a flow-through reactor.

– Recognized two distinct stages in carbonation reaction

1. Supersaturation of solution with Mg-bicarbonate complex

Mg(OH)2(s) + 2 CO2 ↔ Mg(HCO3)2(aq)

2. Precipitation of magnesium carbonate

Mg(HCO3)2(aq) ↔ Mg-Carbonate(s)
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Summary of Experimental Method

• Filled HDPE serum bottles with 20mL of 5m NaCl brine and 0.4 g Mg(OH)2

• Bottle headspace was charged with 5% CO2 

• Bottles were then capped with rubber septa and crimped with Al caps

• Bottles were placed on a stir plate and stirred continuously

• Headspace gas-phase CO2 concentration was monitored versus time by 
Varian 3900/2100T GC/MS

– Capable of measuring down to < 1 PPM
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Results in De-Ionized H2O
(started at laboratory PCO2 ~ 10-3.4 Atm)
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y = -0.109x - 3.4555
R² = 0.8347

y = -0.0027x - 4.5589
R² = 0.8568
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Results in 5m NaCl
(started at PCO2 ~ 10-1.3 Atm)
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y = -0.1118x - 1.3082
R² = 0.9979

y = -0.0068x - 3.9824
R² = 0.9832
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XRD of solids after 2 runs (in 5m NaCl)
(enough CO2 for 6 mol % of Mg)
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Summary of Results

• Directly observed fast and slow timescale behaviors

– Fast timescale 

• Supersaturation of brine with aqueous carbonate complex 

Mg(OH)2 (s) + 2CO2(aq) ↔ Mg(HCO3)2(aq)

– Slow timescale

• Precipitation of carbonate solids from solution and/or phase changes

4Mg(HCO3)2(aq) + Mg(OH)2 ↔ Mg5(CO3)4(OH)2•4H2O(s) + 4CO2
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Summary of Results Contd.

• Obtained experimental evidence for the 
functional form of the carbonation rate law

– Sum of two first-order processes

• In 5m NaCl brine:

– kfast = 0.31 ± 0.05 hours-1

– kslow= 0.01 ± 0.005 hours-1

– B = 10-4.2 ± 0.2 Atm
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Future Work

• Repeat methodology on the liquid phase

– Should observe fast increase in carbonate 
concentration followed by slow decline that mirrors 
behavior in gas phase

• Try adding hydromagnesite

• Look at XRD at different times

• Repeat on the analogous Fe2+ system

• Tie model obtained here to long-term carbonation 
experiments underway at SNL

12



Backup Slides
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Why is understanding the Mg 
carbonation rate law important?

• DOE is required to predict the performance of the 
repository for 10,000 years into the future

– Need to be able to model carbonation reaction

– Understand the kinetics and rate-controlling steps in 
CO2 consumption
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Experimental

• Fisher ACS-grade brucite Mg(OH)2

– Twice purified to remove carbonate forming cations (other 
than Mg2+)

• Brine: 5m NaCl prepared from DI H2O and Fisher ACS grade 
NaCl.

– Sparged with laboratory air to saturate with CO2 and 
precipitate any carbonate forming cations

• 20 mL of Brine (or DI H2O) + 0.4 g of Mg(OH)2 were placed in 
125 mL HDPE serum bottles (Wheaton)

• 5 % CO2 (Airgas) was bubbled through the serum bottles for 5 
minutes at a flow rate of 1 L/min.  The bottles were then capped 
and crimped with rubber septa and aluminum caps
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Experimental Contd.

• Bottles were stirred continuously at a high rate on a stir plate

• Temperature was maintained at 25 ± 3 °C

• Blanks containing only brine + 5% CO2 and blanks containing 
only 5 % CO2 were prepared to show that the brine and bottle 
weren’t significant sources of CO2 sequestration

• CO2 concentrations in the headspace of the bottles were 
obtained using a Varian 3900 GC coupled to a Varian 2100T 
ion-trap MS using a CP-SilicaPlot column

• The experiments were repeated twice on the same bottles, with 
4 replicates per run for a total of 8 experiments
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Results in 5m NaCl (series 1.1)
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y = -0.161t + 1.6364
R² = 0.9951

y = -0.007t - 4.3132
R² = 0.6524
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Results in 5m NaCl (series 1.2)
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Phydromag = 10-5.5 Atm



y = -0.1183t - 1.1094
R² = 0.9998

y = -0.0044t - 4.3105
R² = 0.6119
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Results in 5m NaCl (series 2.1)
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Phydromag = 10-5.5 Atm


