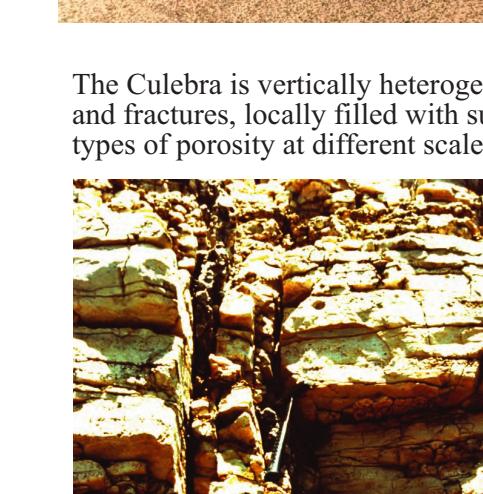


Integration of Thirty Years of Hydrogeological Investigations at the Waste Isolation Pilot Plant Site

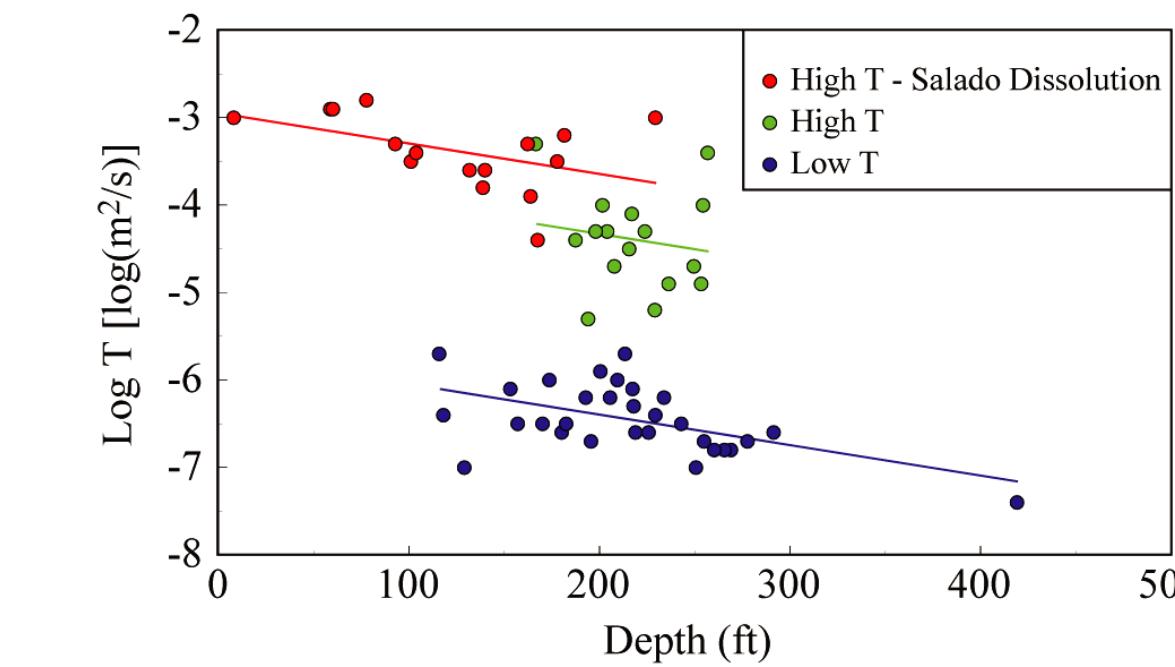
H53E-1108

Richard L. Beauheim¹, Paul S. Domski², Robert M. Holt³, and Dennis W. Powers⁴¹Sandia National Laboratories, Carlsbad, NM, ²S.M. Stoller Corporation, Broomfield, CO, ³University of Mississippi, University, MS, ⁴Consulting Geologist, Anthony, TX


The University of Mississippi

ABSTRACT

Hydrogeological research has been going on at the Waste Isolation Pilot Plant (WIPP), the U.S. Department of Energy's deep geological repository for transuranic and mixed waste in southeastern New Mexico, for over thirty years. The main focus of the research has been on the Culebra Dolomite Member of the Rustler Formation, a 7-m-thick fractured unit that would be the primary groundwater pathway for radionuclides released from the WIPP repository by inadvertent human intrusion. Since 1977, 90 wells have been completed to the Culebra on 63 drilling pads. Hydraulic tests have been performed in all of the wells, ranging from single-well slug and pumping tests to long-term (19-121 days) pumping tests with observation wells up to 9.5 km away. These tests have shown that Culebra transmissivity (T) varies over 10 orders of magnitude. Single-well injection-withdrawal, two-well recirculating, and multowell convergent-flow tracer tests have been performed at six locations. Fluid electrical conductivity logging has been performed to identify the most transmissive sections of the Culebra, and a colloidal borescope has been used to identify specific flowing fractures. In addition to studies focused on groundwater flow and transport, geological, sedimentological, hydrogeochemical, and geophysical investigations have also been performed. Variations in Culebra T have been related to dissolution of the underlying Salado Formation, the presence/absence of gypsum cements, the presence or absence of halite in Rustler members above and below the Culebra, and overburden thickness. Different types of porosity (fractures, vugs, interparticle, intercrystalline) have been found to be significant for both flow and transport. Culebra water chemistry shows significant spatial variation, with total dissolved solids ranging from 3,000 to 300,000 mg/L. Five distinct hydrogeochemical facies have been identified, ranging from high ionic strength syndepositional Na-Mg Cl brines to low ionic strength CaSO₄ waters, thought to represent relatively recent recharge through gypsum karst, to brines contaminated with potash-processing effluent. Geophysical logs from an abundance of oil and gas wells around the WIPP site have been used to map facies boundaries within other Rustler members that can be related to Culebra hydrology. The results of these three decades of study have been integrated into a conceptual model for Culebra hydrology. Some of these studies have been carried out in collaboration with university researchers, and all of the data from these investigations are freely available.


OBJECTIVE

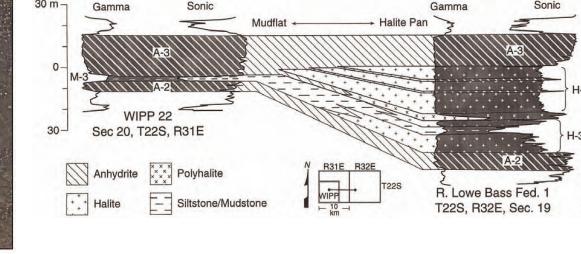
The objective of this study was to develop a conceptual model of Culebra hydrology that could be used to support modeling of flow and radionuclide transport. The conceptual model was developed by integrating data collected from a variety of studies conducted over 30 years.

Location of WIPP**WIPP stratigraphy**

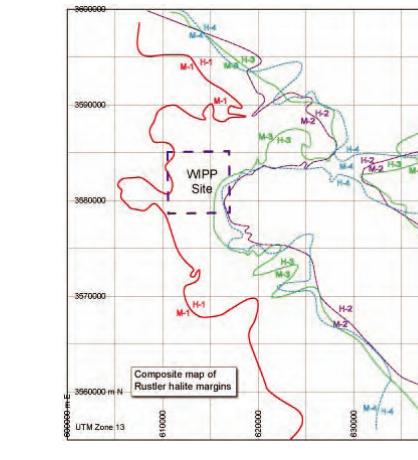
Culebra transmissivity was found to be related to three geologic factors:

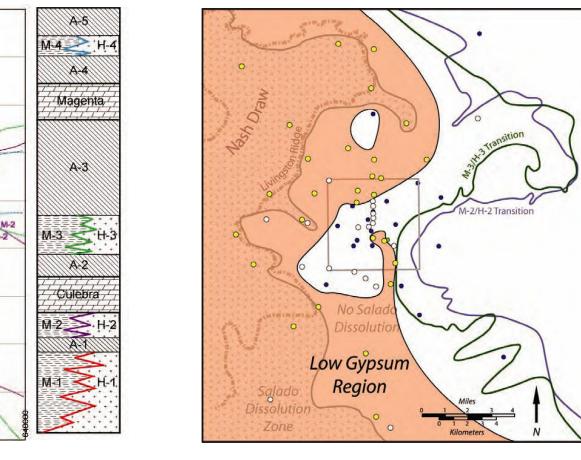
- Salado dissolution
- Overburden thickness
- Gypsum cements

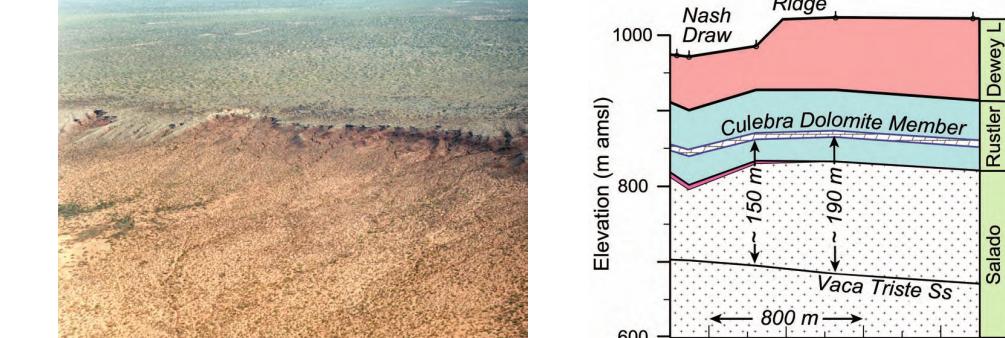
Wells

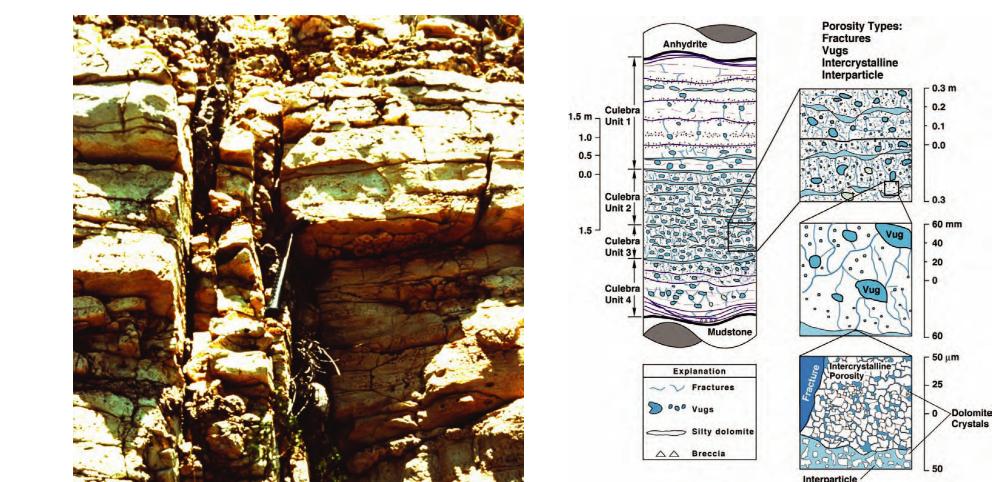

A fourth factor, halite bounding (and cementing) the Culebra, causes much lower T east of the Rustler mudstone-halite margins.

GEOLOGY

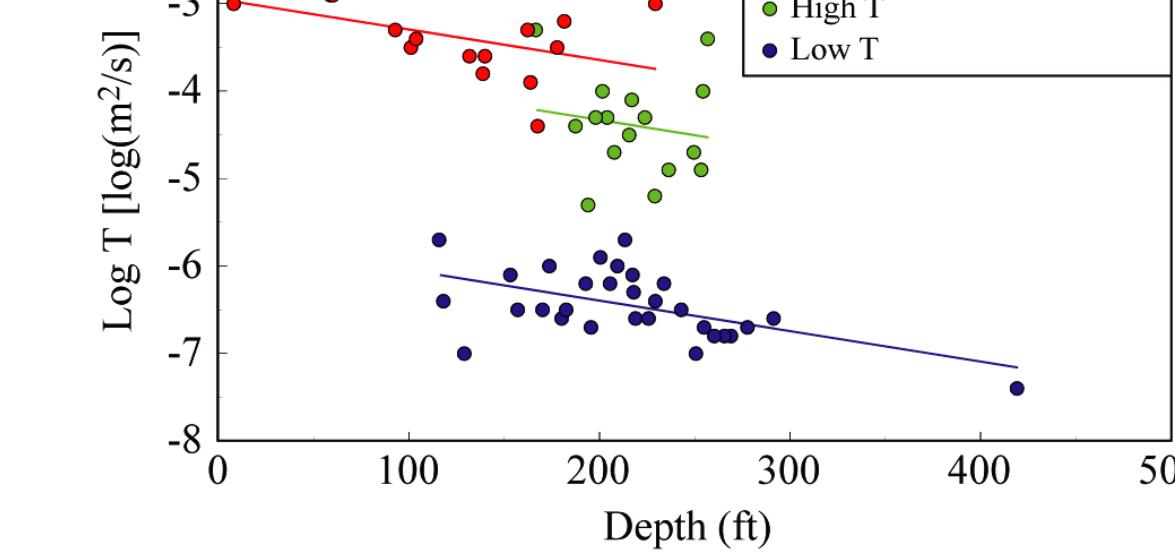

Geologic studies have focused on the depositional environment during the Permian, dissolution, and other factors affecting Culebra transmissivity such as overburden thickness and distribution of gypsum pore cements. Hundreds of oil and gas and potash exploration holes around the WIPP site provide extensive stratigraphic information.


Non-dolomite members of the Rustler Formation show transition from halite pan deposits to the east to mudflat facies to the west.


The WIPP site is located near the depositional margins of Rustler halite.

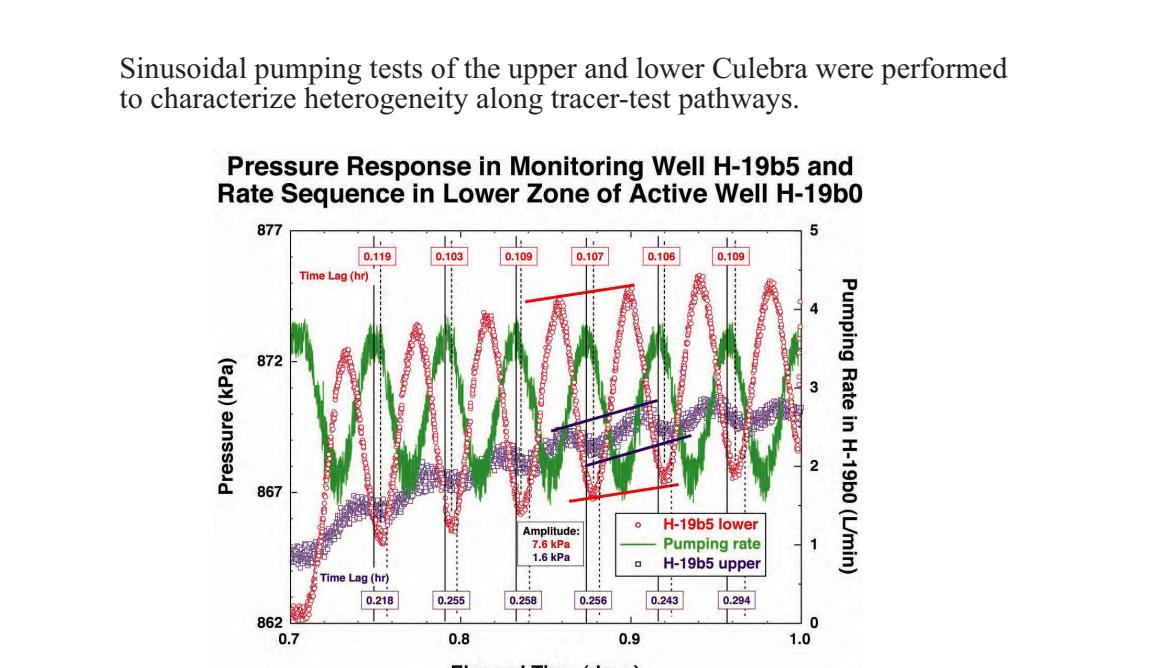
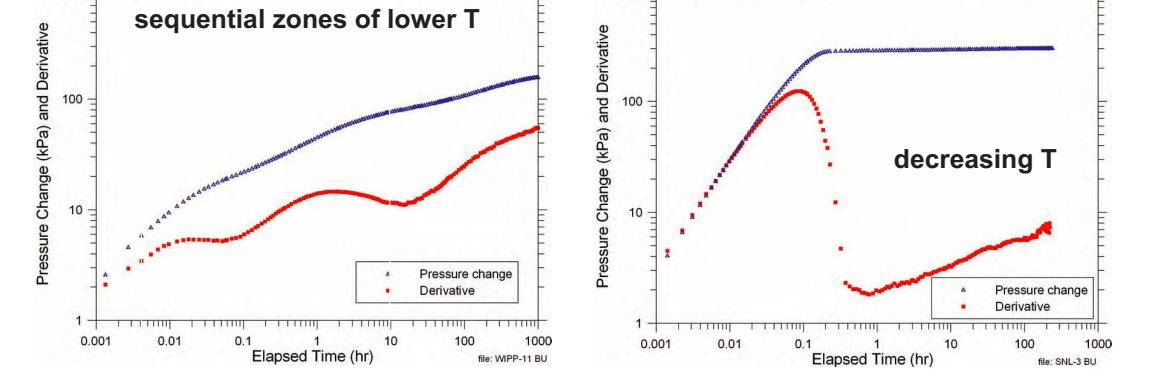
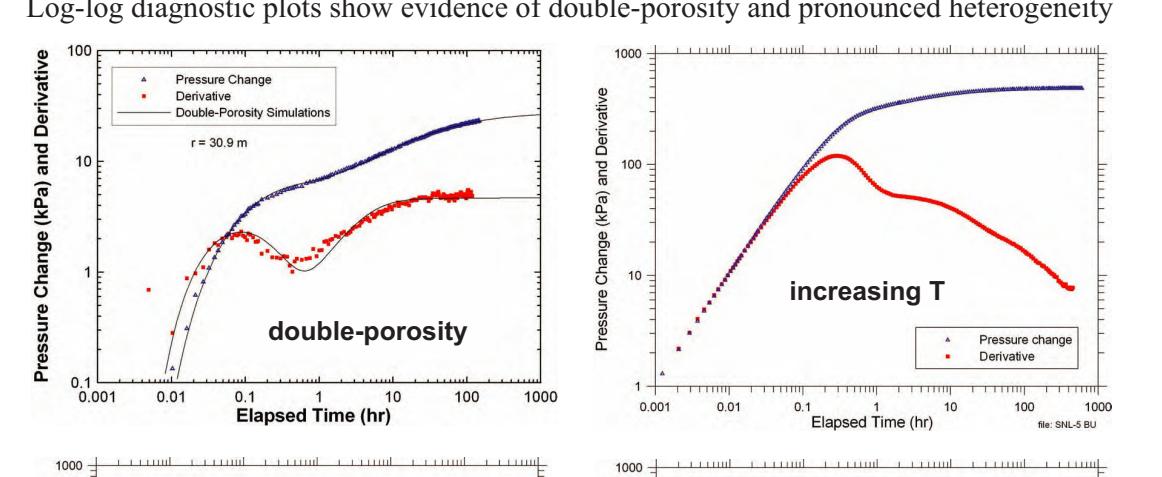
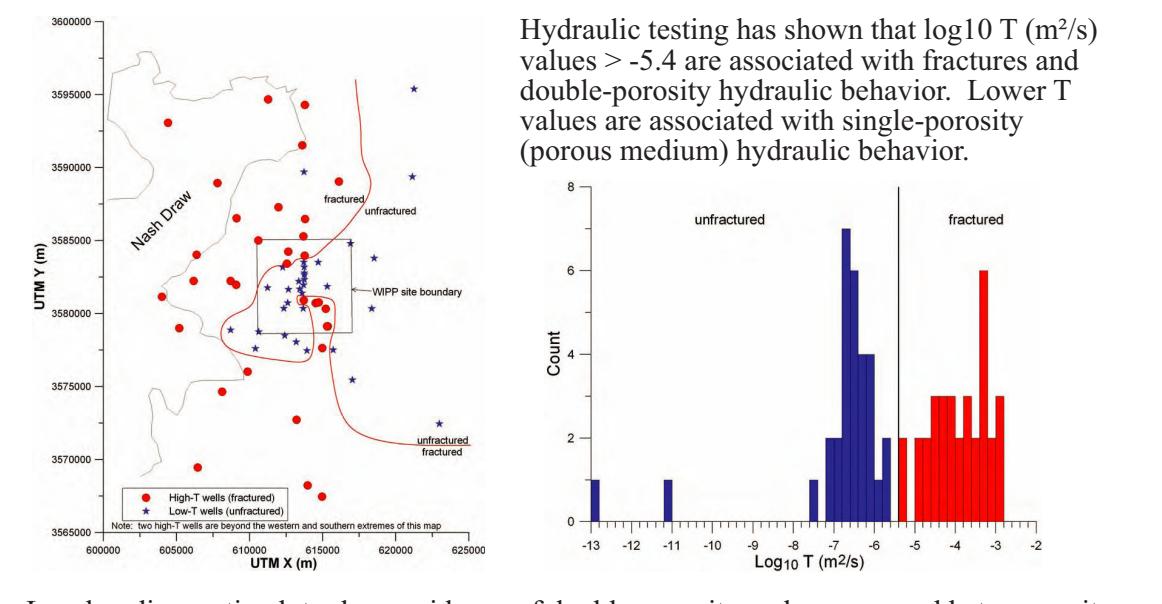

Culebra fractures and primary porosity are filled with gypsum to the east.

Dissolution of the upper Salado has created a subsidence trough west of the WIPP site known as Nash Draw.



The Culebra is vertically heterogeneous, exhibiting different amounts of vugs and fractures, locally filled with sulfate and/or halite cements. It has multiple types of porosity at different scales.

A linear correlation was developed relating T to these factors:





$$\text{Log } T = -5.7 - (3.5 \times 10^{-3} \times \text{depth}) + (2.1 \times \text{gypsum indicator}) + (0.7 \times \text{dissolution indicator})$$

Wells

A fourth factor, halite bounding (and cementing) the Culebra, causes much lower T east of the Rustler mudstone-halite margins.

HYDROLOGY

Hydrologic studies have focused on characterizing heterogeneity in the Culebra at all scales. Ninety wells have been completed to the Culebra to support extensive hydraulic and tracer testing programs. Additional specialized studies have been performed to understand flow through the Culebra.

Model using single rate of matrix diffusion cannot capture tailing behavior

Model using multiple rates of matrix diffusion matches entire tracer-recovery curves

Continuous fluid-pressure monitoring in wells in Nash Draw, combined with rainfall monitoring, has shown some wells respond to rainfall where evaporite karst is present above Culebra. This provides a source of relatively fresh water to the Culebra important in interpretation of the hydrogeochemistry.

Mixing calculations show the feasibility of obtaining observed water chemistries by mixing of a few end members

Normative phases resulting from mixing SNL-15 and WQSP-4 waters. DOE-1 salt norm is also shown.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and SNORM types, and poikilotopic gypsum cements. Mixing of facies E brines with lower ionic strength (but still gypsum-saturated) waters (e.g., facies B or C) would have led to precipitation of gypsum, causing low T, and the variable water chemistry observed.

Central WIPP area is characterized by low T, variable groundwater facies and