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The water quality clustering analysis consists of two major processes: analysis of 
historical water quality data to create a library of water quality change patterns and real-
time comparison of water quality events with the template library.  The following 
sections describe in detail the processes used to analyze the historical data and populate 
the pattern library in CANARY.  The real-time analysis requires connection to the PUB 
SCADA system and this is connection is underway at this time. 

1 Creation and Clustering of Water Quality Template 
Libraries

The analysis of the historical water quality data to create water quality template libraries 
is a multi-step process.  The key steps in this process are:

1. Identification of water quality events in historical data;
2. Creating a template library that consists of coefficients for regression models of 

water quality signals immediately preceding events; 
3. Clustering events to identify similar and repeated water quality changes;
4. Calculating cluster statistics.

The clustering approach developed here provides a summary of common water quality 
patterns against which any new water quality pattern that is seen can be quickly 
compared. 

1.1 Identification of Water Quality Events

Before describing the process that CANARY uses to identify water quality events, it is 
necessary to give a very brief description about some of CANARY’s objectives and 
outputs.  CANARY requires a set of water quality signals for a particular location and 
period of time as input.  The code analyzes the data, and the software uses the signal data 
from previous time steps to predict what the signal will be at the current time step.  The 
prediction is compared with the actual signal data when it is observed to determine if the 
difference between the two values is “significant.”  Based upon the number of significant 
differences that occur in a moving window, CANARY calculates the probability that a 
water quality event has occurred.  In this document, that probability is denoted as PC(t), 
and the dependence on time is explicitly noted.  For a detailed description of this process, 
the reader is referred to Hart and McKenna (2008) 

CANARY is being extended here to include a step in the process described above where 
significant differences between the predicted and observed water quality are assessed to 
determine if they are due to a change in the water quality that has been previously 
identified. The final goal is to be able to use CANARY with relatively sensitive 
parameter settings that will lead to increased probability of detecting anomalous water 
quality.  The common disadvantage of increasing sensitivity is an increase in the number 
of false alarms.  If the water quality patterns that create false alarms occur with some 
relatively common frequency, then it should be possible to identify these patterns, 
maintain them in a “pattern library” and assess any new water quality pattern that causes 
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an alarm against the existing patterns.  If a match is found, then the current water quality 
is causing a false alarm and the alarm is cancelled.  

The first step in the creation of water quality event template libraries is the identification 
of the events that will populate the library.  To do so, the user is required to input a 
threshold probability, denoted Pthresh, in the input configuration file. CANARY compares 
the event probability with the threshold probability, and for the purposes of creating the 
template library, an event is defined to occur at the first time step in a continuous interval 
of time steps during which the event probability exceeds the threshold probability (PC(t) 
> Pthresh). Table 1 contains hypothetical data to illustrate this process.

Table 1.  An illustrative example to describe how events are identified: two events begin 
at time steps 3 and 7 and are colored red.
Pthresh 0.5
PC(t) 0 0.2 0.6 0.8 0.1 0.2 0.6 0.8 1 1 1 0
PC(t)>Pthresh? N N Y Y N N Y Y Y Y Y N
Initiation of 
event?

N N Y N N N Y N N N N N

Time Step 1 2 3 4 5 6 7 8 9 10 11 12

1.2 Creation of the Template Libraries

For each event CANARY fits a series of low order regression models to the water quality 
signals that are considered in the calculation of the event probability.  For a particular 
signal, a regression model is determined for the data points that immediately precede the 
initiation of an event.  CANARY removes any NaNs and zeros that denote missing or bad 
data from the dataset and then uses the MATLAB® function polyfit to perform the 
regression on the remaining data1.

The CANARY user specifies in the configuration file the orders of the regression models 
and the numbers of data points to which the models are fit.  The orders and number of 
data points may vary across different signal types, but they are constant across events.  
The regression coefficients for an event are stored in a matrix that is termed the template 
library.  That is, the template library is an  NE by OTotal matrix, where NE is the total 
number of events identified in the historical data and OTotal is the sum, over all of the
water quality signals, of the orders of polynomial regression plus the number of signals 
considered (since a nth order polynomial has n+1 coefficients).  Figure 1 contains a flow 
chart of how the template library is created.

For example, we typically consider residual chlorine, pH, and conductivity signals when 
determining event probabilities.  Empirical trials have determined that 3rd to 5th order 

                                               
1 For some signals, “2”s are removed from the regression data since SCADA systems sometimes report 
powers of 2 for signals (e.g., pH) when there are SCADA errors.



4

regression models typically work well when considering 90 data points.  If each signal is 
fit with a 3rd order polynomial, then the first four entries of a row in the template library 
row contain regression coefficients for residual chlorine data, the fifth through eighth 
entries are regression coefficients for pH, and the last four row entries are regression 
coefficients for conductivity data.  Thus, the template library would have twelve columns. 
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Figure 1. Flow Diagram for Creating the Water Quality Template Library.
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1.3 Water Quality Change Clustering

Following the creation of the template library, the water quality change events are 
clustered.  Recognizing that it is the pattern of the water quality change, not the actual 
water quality values during the change that must be identified, a trajectory clustering 
methodology has been implemented in CANARY.  The algorithm simultaneously 
clusters the regression coefficients for all signals rather than the actual data values 
corresponding to the events.  This section outlines the methods that CANARY uses to 
cluster the events in the water quality change template library.

CANARY uses the fuzzy c-means (FCM) algorithm to cluster the regression coefficients.  
The FCM algorithm is an iterative clustering algorithm developed by Dunn (1973) and 
further refined by Bezdek (1981).  It is a “soft” clustering algorithm that permits events 
(or in this case, sets of regression coefficients) to belong to multiple clusters and, thus, 
differs from “hard” clustering techniques like the k-means algorithm (Hartigan and Wong 
1978) that assigns events to a single cluster.  For each event, the FCM algorithm 
calculates the degree to which each event belongs to each cluster.

The basis of the FCM algorithm is the minimization of the following objective function:

2
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where
 EN denotes the number of events being clustered;

 CN denotes the number of clusters;

 ix denotes the events that are being clustered;

 jc denotes the cluster center for the jth cluster;

 iju is the degree of membership of ix to cluster j.  Note 0 1iju  , and 
1

1
CN

ij
j

u


 ; 

 is a norm for measuring the distance of events from cluster centers; and

 m is a “fuzziness” parameter that can be adjusted to affect  cluster membership.  
This parameter must be assigned a value greater than 1, and larger values lead to 
more overlap of the clusters.

As previously mentioned, the FCM algorithm is an iterative algorithm, and it is 
composed of the following steps:

1. Initialize the cluster membership matrix 0U , i.e., the matrix that contains iju .

2. At the kth step, calculate the cluster centers k
jc using the cluster membership 

matrix KU in the following equation
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3. Update the cluster membership matrix KU with the following equation
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4. Repeat steps 2 through 5 until 1k k

U
U U   or termk N . The term is a 

positive constant used to establish convergence criteria for the FCM algorithm, 
and termN is a positive integer that establishes additional termination criteria. The 

notation 
U

is used to represent a matrix norm.  

It is common practice to assign m a value of 2, and the CANARY implementation of the 
FCM algorithm follows this convention.  Sensitivity analyses were conducted to 
determine other FCM parameter values.  Table 2 lists parameter values that are assigned 
in CANARY’s implementation of the FCM algorithm.

Table 2. Fuzzy C-Means clustering algorithm parameters in CANARY.
Parameter m 

termN
U

Value 2 0.1 100


for matrices

Several considerations had to be made when implementing the FCM algorithm in 
CANARY.  The distance norm that was implemented is defined as follows:

2

1

l
i

i i

v
v

sd

 
  

 


where
 l is the length of the vector;

 iv denotes the ith element of the vector v ;and

 isd denotes the standard deviation of all of the events’ ith regression coefficients 

that are being clustered.

The norm is defined in this manner to equally weight the regression coefficients from all 
of the signals since the coefficients for all signals are clustered simultaneously.  Often,
specific conductivity values are 1 to 2 orders of magnitude larger than the other water 
quality signals, and if the standard Euclidian distance is used to define the norm in the 



8

FCM algorithm, the clustering algorithm will more heavily weight the patterns in 
conductivity signals than patterns in the other signals.  (The clustering methodology was 
tested on data in which residual chlorine values typically ranged between 1 and 3 mg/l, 
pH values varied between 7 and 9, and conductivity values were in ranges of 90 to 120 
and 170 to 200 s/cm.)

The FCM algorithm also requires an “initial guess” for the degree of cluster memberships 

( 0U in Step 1 of the algorithm).  It is common practice to assign random values to this 
matrix, but the efficiency of the algorithm may be sensitive to the initial guess.  Thus, we 
implemented a different approach for assigning initial cluster membership values.  To do 
this, the template library was initially clustered using MATLAB®’s hierarchical 
clustering function clusterdata.  Hierarchical clustering is a “hard” clustering 
technique in which events are assigned to a single cluster.  If an event was assigned to a 
particular cluster using the hierarchical clustering approach, the initial cluster 
membership degree for that event to the cluster was assigned a value of  , and the 
degrees of membership for that event to all the other clusters were assigned a value equal 
to
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The parameter  is assigned a value of 0.8 in CANARY’s FCM algorithm.  This value 
was determined through trial and error.  

Finally, the FCM algorithm requires that the analyst determine the number of clusters a 
priori.  This can be difficult if the data are difficult to visualize or a large number of 
events are being clustered.  At best, relying on the analyst’s judgment is a subjective 
process.  Thus, CANARY uses the PBM-index (Pakhira et al. 2003) to determine the 
optimal number of clusters.  The PBM-index is defined as follows:
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Note that ix , jc , iju , and are defined in the same manner as they were in the FCM 

algorithm.  

Pakhira et al. (2003) assert that the positive integer that maximizes the PBM-index is 
optimal in the sense that it minimizes the number of clusters while increasing 
compactness and separation between clusters.  Hence, CANARY assigns the parameter 
representing the number of clusters in the FCM algorithm to the integer value between 2 
and 10 (inclusive) that maximizes the PBM index.  The upper bound on the number of 
clusters is arbitrarily set to 10 since most examples that have been analyzed optimize the 
PBM index with 3 to 6 clusters. 

1.4 Calculating Cluster Statistics

In order to perform real-time comparison of water quality events with an existing 
template library, it is necessary calculate cluster statistics.  We assume that the events in 
the clusters are normally distributed and use the following equations to calculate the 
cluster means and covariance matrices:
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The subscript j denotes the cluster number.

2 Comparison of Incoming Data with the Template 
Library

Creation and clustering of a water quality change template library from historical data 
can be performed in an off-line mode.  When CANARY has a real-time link to a SCADA 
water quality monitoring system, it can monitor incoming data and assess whether water 
quality changes are sufficiently similar to patterns already contained in the template 
library and, therefore, are unlikely to indicate serious problems (true alarms).  Typically, 
water quality changes due to changes in operations of the utility are responsible for the 
most common patterns.  Or, CANARY can assess if the changes are significantly 
different from the template library and merit further investigation.  This section describes 
the process that CANARY uses to compare the real-time signals with the template library.
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In its on-line mode, CANARY will be connected to a SCADA system that transmits 
water quality signals to the software.  If the event probability calculated by CANARY 
exceeds the user-defined probability threshold described in Section 1.1, the software will 
perform polynomial regression fits to the same signals considered in the template library.  
This regression step must use all of the same parameters that were used to create the 
template library.  The following calculations are then performed for each cluster:

   1T

j RT j j RT jxval x COV x   

 
121j DOF jp xval


    

where RTx denotes the regression coefficients for the new event and 
12

DOF


   denotes 

the inverse cumulative distribution function (CDF) for the chi-squared distribution with 
degrees of freedom equal to the total number of regression coefficients.  Under the 
assumption that the clusters are multivariate normal distributions, the term jp denotes 

the percentile of each cluster’s distribution to which RTx corresponds.  If no jp values are 

less than a user defined tolerance level, a new cluster is added to the template library.  
This operation means that if the new event does not fall within a certain percentile of any 
cluster, then it is necessary to add a new cluster.  The regression coefficients associated 
with the new event are the mean of the new cluster, and a user-specified covariance 

matrix is assigned to the cluster.  If any jp is less than the tolerance level, no new clusters 

are added to the template library.  Rather, the regression coefficients corresponding to the 
new event are added to the library, and the FCM algorithm is re-run with on the entire 
supplemented library.  Means and covariance matrices are then calculated for each cluster 
as described in Section 1.4. 
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3 Example Calculations 
Several example calculations are provided in this section to demonstrate how the 
clustering and pattern matching tools within CANARY work.  Data from the Chestnut II 
water works are used to demonstrate the pattern identification and matching process 
within CANARY.

Figure 2 shows the results of processing 6 months, January through June of 2008, of 
water quality data through the event detection process within CANARY.  The basic 
output of CANARY is the probability of an event at each time step and this is shown in
Figure 2.  Parameters within CANARY control the calculation of this probability and for 
this analysis these parameters have been set to be conservative such that high probability 
of events occur frequently (Figure 2) leading to a large number of alarms. 

Figure 3 shows the three surrogate parameters: total residual chlorine (TRC), pH and 
specific conductivity (CDTY) for the six-month period.  The PUB threshold limits for the 
Chestnut II location are: TRC: 2.0 and 2.5 mg/l and pH 7.8 to 8.3.  The major drops in 
TRC and associated rises in pH and CDTY are indicative of the periods when the 
Chestnut II plant is not producing output.

The red dots in Figure 3 indicate the time steps at which the probability of an event as 
calculated by CANARY first exceeds 0.75.  There are a total of 59 red dots in Figure 3
and each red dot indicates a water quality event.  The 90 time steps prior to the start of 
each event are then used in the pattern matching approach.  An example of a single event 
and the patterns created by the data in the 90 time steps prior to the event are shown in 
the left side of Figure 4.  These data are then fit with a relatively low order polynomial 
using a least squares regression model.  In these examples a third-order polynomial was 
used.  The regression models fit to the data are shown in the images on the right side of
Figure 4.  

Multivariate clustering as described above is applied to the coefficients of the regression 
models to classify the water quality data into groups of distinct patterns.  The raw water 
quality data and the resulting regression models for four different sets of water quality 
patterns are shown in Figure 5 and Figure 6.  The data and regression model patterns in 
these figures demonstrate several significant aspects of the pattern identification process.  
One of these aspects is that the regression models do not necessarily match every aspect 
of the raw water quality data.  The regression models are smoothed representations of the 
water quality data.  It is not necessary for the regression models to be completely accurate 
when compared to the observed data; it is only necessary to capture the differences in the 
water quality patterns in a consistent manner across all time steps in the data set.

Secondly, the absolute values of the water quality that end up in the same cluster can be 
quite variable.  This result is due to the fractional degree of membership that is applied to 
each pattern in the cluster.  Those water quality signal traces that are significantly 



12

different from the other traces are still members of the same cluster, but will have a lower 
degree of membership than those traces near the mean trace of the cluster.  

These results show an example of constructing water quality patterns from multivariate 
data using the Chestnut II water quality plant.  We have examined water quality patterns 
at a number of monitoring stations within the PUB network and these results indicate that 
the most distinctive patterns occur at the outlets of the water works.  The service 
reservoirs generally contain more stable water quality signals and have relatively fewer 
distinct patterns.  Based on these results, we feel that the pattern matching algorithm will 
provide the most benefit to real-time water quality monitoring at the water works 
monitoring stations.  However, additional data have been received from PUB that contain 
flow rate information for the service reservoirs and also water quality and flow rate 
information for the inlets to the service reservoirs.  These data are being examined now 
and it is possible that distinct patterns in the service reservoir data may be found.  
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Figure 2: Probabilities from CANARY.  When the blue line crosses the green probability 
threshold (0.75), an event is identified.
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Figure 3. The timing of events that were identified in Figure 1 are used to identify signal 
data for analysis.   TOP=Cl, MIDDLE= pH, BOTTOM= conductivity
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Figure 4.  For each event, a regression polynomial is fit for each data signal. TOP=TRC, 
MIDDLE= pH, BOTTOM= CDTY.  
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Figure 5.  Two sets of water quality patterns.  For each set, the upper images show the 
regression models fit to the water quality data and the lower images show the raw water 
quality data.  TRC, ph and CDTY are shown from left to right.  
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Figure 6.  Two sets of water quality patterns.  For each set, the upper images show the 
regression models fit to the water quality data and the lower images show the raw water 
quality data.  TRC, ph and CDTY are shown from left to right.  
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