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The water quality clustering analysis consists of two major processes: analysis of
historical water quality data to create a library of water quality change patterns and real-
time comparison of water quality events with the template library. The following
sections describe in detail the processes used to analyze the historical data and populate
the pattern library in CANARY. The real-time analysis requires connection to the PUB
SCADA system and this is connection is underway at this time.

1 Creation and Clustering of Water Quality Template
Libraries

The analysis of the historical water quality data to create water quality template libraries
is a multi-step process. The key steps in this process are:
1. Identification of water quality events in historical data;
2. Creating a template library that consists of coefficients for regression models of
water quality signals immediately preceding events;
3. Clustering events to identify similar and repeated water quality changes;
4. Calculating cluster statistics.

The clustering approach developed here provides a summary of common water quality
patterns against which any new water quality pattern that is seen can be quickly
compared.

1.1 Identification of Water Quality Events

Before describing the process that CANARY uses to identify water quality events, it is
necessary to give a very brief description about some of CANARY’s objectives and
outputs. CANARY requires a set of water quality signals for a particular location and
period of time as input. The code analyzes the data, and the software uses the signal data
from previous time steps to predict what the signal will be at the current time step. The
prediction is compared with the actual signal data when it is observed to determine if the
difference between the two values is “significant.” Based upon the number of significant
differences that occur in a moving window, CANARY calculates the probability that a
water quality event has occurred. In this document, that probability is denoted as Pc(t),
and the dependence on time is explicitly noted. For a detailed description of this process,
the reader is referred to Hart and McKenna (2008)

CANARY is being extended here to include a step in the process described above where
significant differences between the predicted and observed water quality are assessed to
determine if they are due to a change in the water quality that has been previously
identified. The final goal is to be able to use CANARY with relatively sensitive
parameter settings that will lead to increased probability of detecting anomalous water
quality. The common disadvantage of increasing sensitivity is an increase in the number
of false alarms. If the water quality patterns that create false alarms occur with some
relatively common frequency, then it should be possible to identify these patterns,
maintain them in a “pattern library” and assess any new water quality pattern that causes



an alarm against the existing patterns. If a match is found, then the current water quality
is causing a false alarm and the alarm is cancelled.

The first step in the creation of water quality event template libraries is the identification
of the events that will populate the library. To do so, the user is required to input a
threshold probability, denoted Piyresh, in the input configuration file. CANARY compares
the event probability with the threshold probability, and for the purposes of creating the
template library, an event is defined to occur at the first time step in a continuous interval
of time steps during which the event probability exceeds the threshold probability (Pc(t)
> Puresn). Table 1 contains hypothetical data to illustrate this process.

Table 1. An illustrative example to describe how events are identified: two events begin
at time steps 3 and 7 and are colored red.

Pthresh 0.5

Pc(t) 0 02 0.6 |08 |0.1 |02 ]0.6 |08 |1 1 1 0
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event?
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1.2 Creation of the Template Libraries

For each event CANARY fits a series of low order regression models to the water quality
signals that are considered in the calculation of the event probability. For a particular
signal, a regression model is determined for the data points that immediately precede the
initiation of an event. CANARY removes any NaNs and zeros that denote missing or bad
data from the dataset and then uses the MATLAB® function poly£fit to perform the
regression on the remaining data'.

The CANARY user specifies in the configuration file the orders of the regression models
and the numbers of data points to which the models are fit. The orders and number of
data points may vary across different signal types, but they are constant across events.
The regression coefficients for an event are stored in a matrix that is termed the template
library. That is, the template library is an Ng by Oroal matrix, where N is the total
number of events identified in the historical data and Oy 1S the sum, over all of the
water quality signals, of the orders of polynomial regression plus the number of signals
considered (since a n™ order polynomial has n+1 coefficients). Figure 1 contains a flow
chart of how the template library is created.

For example, we typically consider residual chlorine, pH, and conductivity signals when
determining event probabilities. Empirical trials have determined that 3™ to 5™ order

' For some signals, “2”s are removed from the regression data since SCADA systems sometimes report
powers of 2 for signals (e.g., pH) when there are SCADA errors.



regression models typically work well when considering 90 data points. If each signal is
fit with a 3" order polynomial, then the first four entries of a row in the template library
row contain regression coefficients for residual chlorine data, the fifth through eighth
entries are regression coefficients for pH, and the last four row entries are regression
coefficients for conductivity data. Thus, the template library would have twelve columns.
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1.3 Water Quality Change Clustering

Following the creation of the template library, the water quality change events are
clustered. Recognizing that it is the pattern of the water quality change, not the actual
water quality values during the change that must be identified, a trajectory clustering
methodology has been implemented in CANARY. The algorithm simultaneously
clusters the regression coefficients for all signals rather than the actual data values
corresponding to the events. This section outlines the methods that CANARY uses to
cluster the events in the water quality change template library.

CANARY uses the fuzzy c-means (FCM) algorithm to cluster the regression coefficients.
The FCM algorithm is an iterative clustering algorithm developed by Dunn (1973) and
further refined by Bezdek (1981). It is a “soft” clustering algorithm that permits events
(or in this case, sets of regression coefficients) to belong to multiple clusters and, thus,
differs from “hard” clustering techniques like the k-means algorithm (Hartigan and Wong
1978) that assigns events to a single cluster. For each event, the FCM algorithm
calculates the degree to which each event belongs to each cluster.

The basis of the FCM algorithm is the minimization of the following objective function:
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where
e N, denotes the number of events being clustered;
e N, denotes the number of clusters;
e x denotes the events that are being clustered;

e ¢, denotes the cluster center for the ™ cluster;
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e u, is the degree of membership of x; to cluster j. Note 0 <u; <1, and Zu” =1;
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e ||| is a norm for measuring the distance of events from cluster centers; and

e m is a “fuzziness” parameter that can be adjusted to affect cluster membership.
This parameter must be assigned a value greater than 1, and larger values lead to
more overlap of the clusters.

As previously mentioned, the FCM algorithm is an iterative algorithm, and it is
composed of the following steps:
1. Initialize the cluster membership matrix U°, i.e., the matrix that contains u -

2. At the k" step, calculate the cluster centers ¢! using the cluster membership

matrix U" in the following equation



3. Update the cluster membership matrix U* with the following equation
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positive constant used to establish convergence criteria for the FCM algorithm,
and N, is a positive integer that establishes additional termination criteria. The

term

notation || ||U is used to represent a matrix norm.

It is common practice to assign m a value of 2, and the CANARY implementation of the
FCM algorithm follows this convention. Sensitivity analyses were conducted to
determine other FCM parameter values. Table 2 lists parameter values that are assigned
in CANARY’s implementation of the FCM algorithm.

Table 2. Fuzzy C-Means clustering algorithm parameters in CANARY.

Parameter m 2 N term || ||U

Value 2 0.1 | 100 || ||w for matrices

Several considerations had to be made when implementing the FCM algorithm in
CANARY. The distance norm that was implemented is defined as follows:

where
e [ is the length of the vector;
e v denotes the i™ element of the vector v ;and

e sd denotes the standard deviation of all of the events’ i" regression coefficients
that are being clustered.

The norm is defined in this manner to equally weight the regression coefficients from all
of the signals since the coefficients for all signals are clustered simultaneously. Often,
specific conductivity values are 1 to 2 orders of magnitude larger than the other water
quality signals, and if the standard Euclidian distance is used to define the norm in the



FCM algorithm, the clustering algorithm will more heavily weight the patterns in
conductivity signals than patterns in the other signals. (The clustering methodology was
tested on data in which residual chlorine values typically ranged between 1 and 3 mg/I,
pH values varied between 7 and 9, and conductivity values were in ranges of 90 to 120

and 170 to 200 ps/cm.)

The FCM algorithm also requires an “initial guess” for the degree of cluster memberships
(U’in Step 1 of the algorithm). It is common practice to assign random values to this
matrix, but the efficiency of the algorithm may be sensitive to the initial guess. Thus, we
implemented a different approach for assigning initial cluster membership values. To do
this, the template library was initially clustered using MATLAB®’s hierarchical
clustering function clusterdata. Hierarchical clustering is a “hard” clustering
technique in which events are assigned to a single cluster. If an event was assigned to a
particular cluster using the hierarchical clustering approach, the initial cluster
membership degree for that event to the cluster was assigned a value of & , and the
degrees of membership for that event to all the other clusters were assigned a value equal

to
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The parameter 6 is assigned a value of 0.8 in CANARY’s FCM algorithm. This value
was determined through trial and error.

Finally, the FCM algorithm requires that the analyst determine the number of clusters a
priori. This can be difficult if the data are difficult to visualize or a large number of
events are being clustered. At best, relying on the analyst’s judgment is a subjective
process. Thus, CANARY uses the PBM-index (Pakhira et al. 2003) to determine the
optimal number of clusters. The PBM-index is defined as follows:
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Note that x,, ¢ s Uy and || || are defined in the same manner as they were in the FCM

algorithm.

Pakhira et al. (2003) assert that the positive integer that maximizes the PBM-index is
optimal in the sense that it minimizes the number of clusters while increasing
compactness and separation between clusters. Hence, CANARY assigns the parameter
representing the number of clusters in the FCM algorithm to the integer value between 2
and 10 (inclusive) that maximizes the PBM index. The upper bound on the number of
clusters is arbitrarily set to 10 since most examples that have been analyzed optimize the
PBM index with 3 to 6 clusters.

1.4 Calculating Cluster Statistics

In order to perform real-time comparison of water quality events with an existing
template library, it is necessary calculate cluster statistics. We assume that the events in
the clusters are normally distributed and use the following equations to calculate the
cluster means and covariance matrices:

The subscript j denotes the cluster number.

2 Comparison of Incoming Data with the Template
Library

Creation and clustering of a water quality change template library from historical data

can be performed in an off-line mode. When CANARY has a real-time link to a SCADA
water quality monitoring system, it can monitor incoming data and assess whether water
quality changes are sufficiently similar to patterns already contained in the template
library and, therefore, are unlikely to indicate serious problems (true alarms). Typically,
water quality changes due to changes in operations of the utility are responsible for the
most common patterns. Or, CANARY can assess if the changes are significantly
different from the template library and merit further investigation. This section describes
the process that CANARY uses to compare the real-time signals with the template library.



In its on-line mode, CANARY will be connected to a SCADA system that transmits
water quality signals to the software. If the event probability calculated by CANARY
exceeds the user-defined probability threshold described in Section 1.1, the software will
perform polynomial regression fits to the same signals considered in the template library.
This regression step must use all of the same parameters that were used to create the
template library. The following calculations are then performed for each cluster:

xval, = (xRT — U, )T COV;1 (xRT - ,u_/.)
py=1=[2bor | (val,)
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where x,, denotes the regression coefficients for the new event and [ xf)OF] denotes

the inverse cumulative distribution function (CDF) for the chi-squared distribution with
degrees of freedom equal to the total number of regression coefficients. Under the
assumption that the clusters are multivariate normal distributions, the term p; denotes

the percentile of each cluster’s distribution to which x,, corresponds. If no p, values are

less than a user defined tolerance level, a new cluster is added to the template library.
This operation means that if the new event does not fall within a certain percentile of any
cluster, then it is necessary to add a new cluster. The regression coefficients associated
with the new event are the mean of the new cluster, and a user-specified covariance

matrix is assigned to the cluster. If any p; is less than the tolerance level, no new clusters
are added to the template library. Rather, the regression coefficients corresponding to the
new event are added to the library, and the FCM algorithm is re-run with on the entire

supplemented library. Means and covariance matrices are then calculated for each cluster
as described in Section 1.4.
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3 Example Calculations

Several example calculations are provided in this section to demonstrate how the
clustering and pattern matching tools within CANARY work. Data from the Chestnut II
water works are used to demonstrate the pattern identification and matching process
within CANARY.

Figure 2 shows the results of processing 6 months, January through June of 2008, of
water quality data through the event detection process within CANARY. The basic
output of CANARY is the probability of an event at each time step and this is shown in
Figure 2. Parameters within CANARY control the calculation of this probability and for
this analysis these parameters have been set to be conservative such that high probability
of events occur frequently (Figure 2) leading to a large number of alarms.

Figure 3 shows the three surrogate parameters: total residual chlorine (TRC), pH and
specific conductivity (CDTY) for the six-month period. The PUB threshold limits for the
Chestnut II location are: TRC: 2.0 and 2.5 mg/l and pH 7.8 to 8.3. The major drops in
TRC and associated rises in pH and CDTY are indicative of the periods when the
Chestnut II plant is not producing output.

The red dots in Figure 3 indicate the time steps at which the probability of an event as
calculated by CANARY first exceeds 0.75. There are a total of 59 red dots in Figure 3
and each red dot indicates a water quality event. The 90 time steps prior to the start of
each event are then used in the pattern matching approach. An example of a single event
and the patterns created by the data in the 90 time steps prior to the event are shown in
the left side of Figure 4. These data are then fit with a relatively low order polynomial
using a least squares regression model. In these examples a third-order polynomial was
used. The regression models fit to the data are shown in the images on the right side of
Figure 4.

Multivariate clustering as described above is applied to the coefficients of the regression
models to classify the water quality data into groups of distinct patterns. The raw water
quality data and the resulting regression models for four different sets of water quality
patterns are shown in Figure 5 and Figure 6. The data and regression model patterns in
these figures demonstrate several significant aspects of the pattern identification process.
One of these aspects is that the regression models do not necessarily match every aspect
of the raw water quality data. The regression models are smoothed representations of the
water quality data. It is not necessary for the regression models to be completely accurate
when compared to the observed data; it is only necessary to capture the differences in the
water quality patterns in a consistent manner across all time steps in the data set.

Secondly, the absolute values of the water quality that end up in the same cluster can be

quite variable. This result is due to the fractional degree of membership that is applied to
each pattern in the cluster. Those water quality signal traces that are significantly
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different from the other traces are still members of the same cluster, but will have a lower
degree of membership than those traces near the mean trace of the cluster.

These results show an example of constructing water quality patterns from multivariate
data using the Chestnut II water quality plant. We have examined water quality patterns
at a number of monitoring stations within the PUB network and these results indicate that
the most distinctive patterns occur at the outlets of the water works. The service
reservoirs generally contain more stable water quality signals and have relatively fewer
distinct patterns. Based on these results, we feel that the pattern matching algorithm will
provide the most benefit to real-time water quality monitoring at the water works
monitoring stations. However, additional data have been received from PUB that contain
flow rate information for the service reservoirs and also water quality and flow rate
information for the inlets to the service reservoirs. These data are being examined now
and it is possible that distinct patterns in the service reservoir data may be found.

12
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Figure 2: Probabilities from CANARY. When the blue line crosses the green probability
threshold (0.75), an event is identified.
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Figure 3. The timing of events that were identified in Figure 1 are used to identify signal

data for analysis. TOP=Cl, MIDDLE= pH, BOTTOM= conductivity
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Figure 4. For each event, a regression polynomial is fit for each data signal. TOP=TRC,
MIDDLE= pH, BOTTOM= CDTY.
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Figure 5. Two sets of water quality patterns. For each set, the upper images show the
regression models fit to the water quality data and the lower images show the raw water
quality data. TRC, ph and CDTY are shown from left to right.
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Figure 6. Two sets of water quality patterns. For each set, the upper images show the

regression models fit to the water quality data and the lower images show the raw water

quality data. TRC, ph and CDTY are shown from left to right.
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