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 Why use piston with conventional bowl 

geometry? 

• In-cylinder flow characterized by valve jets-

piston top interactions in the first part of 

induction stroke. 

• Cyclic variability influenced by jet-piston 

interactions (identified by experiments and 

hybrid RANS-LES modeling). 

• Bowl-in-piston cylinder geometries can 

substantially change the in-cylinder flow. 

Motivation 

Petersen, SAE2011-01-1285 
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Experimental setup and swirl-plane measurement 

test cases 

Laser Sheet 

@ 532 nm 

LaVision Imager 

Intense CCD 

(1376x1040 res) 

GM 1.9 L Diesel Engine 

Bore 82 mm 

Stroke 90.4 mm 

Displacement Volume 0.477 L 

Geometries CR 16.7 

Squish Height 0.78 mm 

Intake / Exhaust Valves 2 / 2 

Swirl Ratio 1.5, 2.2, 3.5 

Engine Speed 1500 rpm 

Intake Pressure 1.5 bar 

Intake Temperature 99 degC 

Coolant Temperature ~89 degC 

O2 Mole Fraction 10% 

Bowl Rim 

Intake ports Exhaust ports 

Bottom View 

Laser Sheet 

@532 nm 
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 Swirl planes are chosen to minimize laser scattering by intake valves and piston 

 

 Laser sheet minimum waist diameter around 2 mm 

 Consistent with 32 x 32 interrogation region (~2 mm x 2mm) 

 Mainly considering out-of-plane motion during intake stroke 

 

 Every 15 CAD throughout intake and compression stroke (green region) 
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PIV tracer selection 

tangential port 

helical port 5 𝑆𝑝 

𝑆𝑝 mean piston speed 

Borosilicate glass (2 µm) Lycopodium (32 µm) 

-270⁰aTDC 

Aerosol  size ~= 1 µm, Mie-scattering signal is too weak through piston 

Borosilicate glass 

• 2 µm, little lag error, but induces ring torque problem 

• 18 µm, lag error during early intake, and ring torque problem 

Lycopodium   size =32 µm, good ring torque, but induces large lag error 
 

Both timescale calculation (from Converge simulation) and PIV results 

showed that 2µm borosilicate glass would follow more flow structures 

during intake stroke. 

-270⁰aTDC 
z = 10 mm z = 3 mm 
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 Image degradation is more severe when piston close to BDC 

 

 Distortion is dependent on pixel radius location and piston position 

 

 Distortion pattern is different in bowl, squish zone and valve cut-out region 

Conventional bowl geometries induce significant 

uncertainties due to image degradation and severe 

distortion 

Undistorted Target 
Target 
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 Distortion is dependent on piston motion (instantaneous speed and position) 

during Δt (time interval between two laser pulses). 

 Higher image resolution (61µm/pixel) is desired for better accuracy, but longer Δt is 

required for particle displacement to match ~¼ of interrogation window size (minimum 

32x32 pixels). 

 Different Δt is needed for different dynamic range of velocities during compression and 

intake strokes. 

Conventional bowl geometries induce significant 

uncertainties due to highly distorted image 

Raw Mie-Scattering Images 

-90◦aTDC 

Laser Sheet 

@ 532 nm 
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 Piston position (s) changes 

 Image becomes bigger / smaller 

(at fixed s-z), local distortion 

changes. 

 

 Distance between measurement 

plane to piston (s-z) changes 

 Distortion pattern changes. 

after Δt 

 Distortion is dependent on piston motion (instantaneous speed and position) 

during Δt (time interval between two laser pulses). 

 Higher image resolution (61µm/pixel) is desired for better accuracy, but longer Δt is 

required for particle displacement to match ~¼ of interrogation window size (minimum 

32x32 pixels). 

 Different Δt is needed for different dynamic range of velocities during compression and 

intake strokes. 

Laser Sheet 

@ 532 nm 

Conventional bowl geometries induce significant 

uncertainties due to highly distorted image 
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Target 

 Step One: R  r’ 

 Step Two: r’  r 

s-z 

s 

R,Ɵ 

r’,Ɵ 

r,Ɵ 

Raw Target Image 

Physical Space 

General mapping procedure 
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 Map X  x 

X: locations in a highly distorted image 

x: physical space 
 

 Due to the axisymmetric bowl, portions of the 

distorted image corresponding to parts of target 

image viewed through the bowl can be mapped 

in terms of a radial coordinate R  r 
 

 Mapping R  r’ accounts for magnification and 

local distortion effects with changes of s. 

 

 

 
 

 Mapping r’  r accounts for distortion effects 

with changes of s-z. 

 

 

 
 

 

 

 Combining the two mappings: 

 

 
 

𝑅0, 𝑅0′, 𝑟0′, 𝑠0 are constants known from calibration. 
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 Step Two: r’  r 

s-z 

s 
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Raw Target Frame 

Target 

After magnification and local 

distortion correction 

After distortion correction 

(final dewarping result) 

 Difficult to map marks near the injector tip 

(r<5 mm) due to severe distortion. 

 

 Local no-solution areas near injector exist in 

some dewarped images. 

General mapping procedure 
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PIV pre-processing and dewarping 

Velocity Field Processing 

Preprocessing N/A 

Vector calculation Cross-correlation: standard I1*I2 (via FFT, no 

zero-padding), iterative multi-pass. 

Minimum interrogation window size, 32x32 

pixels, 50% overlap 

Multi-pass 

postprocessing 

Delete vector if peak ratio Q<1.3 

Median filter: strongly remove and iterative 

replace: 

remove if diff. to avg. > 2*r.m.s. of neighbours 

(re)insert if diff. to avg. < 3*r.m.s. of neighbours 

Remove groups with <5 vectors 

Vector 

postprocessing 

Allowable vector range (0 ~ 60 m/s) 

Median filter 

Velocity Field Processing 

Preprocessing Laser energy fluctuation correction 

Laser spatial fluence 

Seed density change 

Background subtraction 

Dewarping with “general mapping procedure” 

Laser1 

Laser2 

100 cycles 

100 cycles 
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Rs,steady=1.5 Rs,steady=2.2 Rs,steady=3.5 

-327⁰aTDC Ensemble mean-velocity over 100 cycles 5 𝑆𝑝 

GM swirl ratio index, z=10mm 

IVC IVO 

 Complex flow structures 

observed during intake 

stroke 

 Little swirl is observed at 

Rs,steady=1.5 

 Spurious vectors mainly 

generated by laser 

background scattering, 

signal-to-noise is worse 

close to BDC 
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Rs,steady=1.5 Rs,steady=2.2 Rs,steady=3.5 

-315⁰aTDC 5 𝑆𝑝 Ensemble mean-velocity over 100 cycles 

GM swirl ratio index, z=10mm 

IVC IVO 

 Complex flow structures 

observed during intake 

stroke 

 Little swirl is observed at 

Rs,steady=1.5 

 Spurious vectors mainly 

generated by laser 

background scattering, 

signal-to-noise is worse 

close to BDC 
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Rs,steady=1.5 Rs,steady=2.2 Rs,steady=3.5 

-300⁰aTDC 5 𝑆𝑝 Ensemble mean-velocity over 100 cycles 

GM swirl ratio index, z=10mm 

IVC IVO 

 Complex flow structures 

observed during intake 

stroke 

 Little swirl is observed at 

Rs,steady=1.5 

 Spurious vectors mainly 

generated by laser 

background scattering, 

signal-to-noise is worse 

close to BDC 
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Rs,steady=1.5 Rs,steady=2.2 Rs,steady=3.5 

-285⁰aTDC 5 𝑆𝑝 Ensemble mean-velocity over 100 cycles 

GM swirl ratio index, z=10mm 

IVC IVO 

 Complex flow structures 

observed during intake 

stroke 

 Little swirl is observed at 

Rs,steady=1.5 

 Spurious vectors mainly 

generated by laser 

background scattering, 

signal-to-noise is worse 

close to BDC 
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Rs,steady=1.5 Rs,steady=2.2 Rs,steady=3.5 

-270⁰aTDC 5 𝑆𝑝 Ensemble mean-velocity over 100 cycles 

GM swirl ratio index, z=10mm 

IVC IVO 

 Complex flow structures 

observed during intake 

stroke 

 Little swirl is observed at 

Rs,steady=1.5 

 Spurious vectors mainly 

generated by laser 

background scattering, 

signal-to-noise is worse 

close to BDC 



18 

Rs,steady=1.5 Rs,steady=2.2 Rs,steady=3.5 

-255⁰aTDC 5 𝑆𝑝 Ensemble mean-velocity over 100 cycles 

GM swirl ratio index, z=10mm 

IVC IVO 

 Complex flow structures 

observed during intake 

stroke 

 Little swirl is observed at 

Rs,steady=1.5 

 Spurious vectors mainly 

generated by laser 

background scattering, 

signal-to-noise is worse 

close to BDC 
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Rs,steady=1.5 Rs,steady=2.2 Rs,steady=3.5 

-240⁰aTDC 5 𝑆𝑝 Ensemble mean-velocity over 100 cycles 

GM swirl ratio index, z=10mm 

IVC IVO 

 Complex flow structures 

observed during intake 

stroke 

 Little swirl is observed at 

Rs,steady=1.5 

 Spurious vectors mainly 

generated by laser 

background scattering, 

signal-to-noise is worse 

close to BDC 
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Rs,steady=1.5 Rs,steady=2.2 Rs,steady=3.5 

-225⁰aTDC 5 𝑆𝑝 Ensemble mean-velocity over 100 cycles 

GM swirl ratio index, z=10mm 

IVC IVO 

 Complex flow structures 

observed during intake 

stroke 

 Little swirl is observed at 

Rs,steady=1.5 

 Spurious vectors mainly 

generated by laser 

background scattering, 

signal-to-noise is worse 

close to BDC 
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Rs,steady=1.5 Rs,steady=2.2 Rs,steady=3.5 

-105⁰aTDC 5 𝑆𝑝 Ensemble mean-velocity over 100 cycles 

GM swirl ratio index, z=10mm 

3.07 

1.62 

IVC IVO 

Swirl ratio index definition 
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Rs,steady=1.5 Rs,steady=2.2 Rs,steady=3.5 

-090⁰aTDC 5 𝑆𝑝 Ensemble mean-velocity over 100 cycles 

GM swirl ratio index, z=10mm 

Petersen, SAE2011-01-1285 

3.07 

1.62 

IVC IVO 
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Rs,steady=1.5 Rs,steady=2.2 Rs,steady=3.5 

-075⁰aTDC 5 𝑆𝑝 Ensemble mean-velocity over 100 cycles 

GM swirl ratio index, z=10mm 

Petersen, SAE2011-01-1285 

3.07 

1.62 

IVC IVO 
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Rs,steady=1.5 Rs,steady=2.2 Rs,steady=3.5 

-060⁰aTDC 5 𝑆𝑝 Ensemble mean-velocity over 100 cycles 

GM swirl ratio index, z=10mm 

Petersen, SAE2011-01-1285 

3.07 

1.62 

IVC IVO 
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Rs,steady=1.5 Rs,steady=2.2 Rs,steady=3.5 

-045⁰aTDC 5 𝑆𝑝 Ensemble mean-velocity over 100 cycles 

GM swirl ratio index, z=10mm 

IVC IVO 

Petersen, SAE2011-01-1285 

3.07 

1.62 
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Rs,steady=1.5 Rs,steady=2.2 Rs,steady=3.5 

Conclusions 

 More detailed mean flow structures can be captured with 2µm borosilicate 

glass particles, but signal-to-noise ratio is too low late in the intake stroke 

and early in the compression stroke. 

 

 Swirl ratio at -50ºaTDC is consistent with measurements done by Petersen 

SAE2011-01-1285 (18 µm borosilicate glass), the differences might come 

from the different definition of swirl centers. 

 

 A few points need further attention: 

 Laser background scattering remains an issue with thick laser sheet. 

 Dewarping errors/artifacts will primarily result in velocity errors in the 

radial direction, but little impact on tangential velocities is expected. 

 The temporal interval between two laser pulses (Δt) must be optimized 

for particle displacement to match ~¼ of the interrogation window size 

at different crank angle position.  (e.g. there exists a large dynamic 

range of velocity and out-of-plane motion during the intake stroke.) 
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Future work 

 Improve Mie-scattering signal-to-noise ratio with thinner laser sheet and higher 

laser energy, 532 nm band pass filter on lens. 
 

 Perform PIV in vertical planes (tumble plane and perpendicular to tumble 

plane). 
 

 Investigate two different bowl geometries to study swirl centering and tilt. 
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Graftieaux, L., et al. (2001). "Combining PIV, POD and vortex identification algorithms for the study of 

unsteady turbulent swirling flows." Measurement Science and Technology 12(9): 1422-1429. 



28 

Rs,steady=1.5 Rs,steady=2.2 Rs,steady=3.5 

To truly evaluate model results quantitatively, perhaps a 

simplified geometry is best? 

Possible piston geometries: 

The data acquired would test the code, they would not necessarily provide realistic engine flow 

structures 

 

Is there any interest in these tests? 
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