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∙About inverse radiation transport problems
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∙Constraining the solution using multiple complementary 
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∙Neutron multiplicity counting and inverse transport problems

∙Summary, ongoing and future work



Sandia National LaboratoriesSandia National Laboratories

∙Department of Energy National Laboratory
∙Government-owned, contractor-operated

∙Established in 1949 to support US nuclear weapon program
∙Today Sandia develops a broad range of technologies that support

US national security

∙Main lab campuses in Albuquerque NM and Livermore CA
∙Facilities in New Mexico, Nevada, Texas, and Hawaii
∙More than 8,500 full-time staff & 2,200 contractors
∙About 1,500 PhD & 2,700 MS/MA staff
∙Annual budget of about $2.4 billion (FY2007)



Sandia Mission AreasSandia Mission Areas

∙Nuclear weapons

∙Defense systems

∙Homeland security

∙Nonproliferation

∙Energy & infrastructure

∙Science, technology, and 
engineering



SandiaSandia’’s HE/Rad/Nuc Countermeasures Programs HE/Rad/Nuc Countermeasures Program

∙ Explosive and radiological 
observables & signatures
∙Detection technologies
∙Analytical methods & services
∙ Systems integration
∙ Field deployment & testing
∙ Effects modeling
∙ Protection methods
∙Disablement systems
∙Mitigation / containment
∙ Performance validation
∙ Training & consulting



Radiation Detection and Analysis R&DRadiation Detection and Analysis R&D

∙ Basic physics measurements

∙ Radiation transport modeling

∙Analysis software development

∙ Sensor development & design

∙ Sensor deployment & testing

∙ Radiation signature analysis



Inverse Radiation Transport ProblemsInverse Radiation Transport Problems

∙Objective: infer configuration of an unknown radiation source from its 
measured radiation signatures

∙ Source features
∙ Isotopic composition
∙ Fissile mass & multiplication
∙ Geometric arrangement of radiating and shielding materials

∙ Signatures
∙ Gamma spectrometry
∙ Neutron time-correlation and multiplicity counting

∙Applications
∙ Nonproliferation
∙ Counterterrorism
∙ Emergency Response



Solution MethodSolution Method

∙ Start from initial estimate of model 
parameters

∙ Solve forward transport models to 
compute radiation field

∙ Fold radiation field with detector 
response model to estimate 
radiation signatures

∙Compute error between predicted 
and observed signatures

∙ Iteratively follow gradient in error 
to minimum



Solution RequirementsSolution Requirements

∙Forward computations must be accurate
∙Minimize bias in solution due to systematic errors in model

∙Forward computations must be fast
∙Minimize time required for iterations to find solution

∙Model must have finite number of numeric parameters
∙Minimize degrees of freedom / dimensionality of solution

∙Accuracy requires high-fidelity spectral synthesis: coupled 
neutron/electron/photon transport calculations
∙Speed requires explicit solution of transport problem: deterministic 

transport
∙Tractable problems do not have arbitrary geometry



Radiation ObservablesRadiation Observables

∙Most externally observable 
radiation signatures result from 
gamma and neutron emissions

∙Observables are usually differential 
over one or more independent 
variables (e.g., energy, position, 
time)

∙Gamma spectrometry measures the 
distribution of photons versus 
energy

∙Neutron multiplicity counting 
measures the distribution of 
neutrons versus number and 
counting time

Gamma Spectrometers

Neutron Multiplicity Counters



Gamma SpectrometryGamma Spectrometry

∙ Radionuclide decays from unstable 
ground state through series of 
discrete energy levels

∙Decay between levels of a single 
daughter achieved via emission of 
discrete energy gammas

∙Gammas characteristic of daughter 
level scheme

∙Gamma spectrometers measure 
distribution of photon energies

∙ Spectrum can be used to identify 
radionuclide(s) andand shielding

 Energy (keV) 
 200  400  600  800  1000  1200  1400 

 C
ou

nt
s 

/ k
eV

 

101

102

103

104

105

100% HPGe
2×2 LaBr3
3×3 NaI



Photopeaks and Compton ContinuaPhotopeaks and Compton Continua

∙ Photopeak positions identify source
∙Differential attenuation of photopeaks and Compton continua identify 

shielding
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Example ProblemExample Problem

∙ Gamma spectrum (bottom-left) exhibits 
features consistent with plutonium

∙ Nonlinear regression (top-right) fits 
spectrum using variable isotopics, 
volume, shielding, and age

∙ Regression analysis (bottom-right) 
provides approximate model of source
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Example ProblemExample Problem

∙One-dimensional transport model 
(top) generated from regression 
analysis
∙ Model displayed as section of sphere 

with center at bottom and outer 
surface at top

∙ Dimensions of model layers are 
treated as variable parameters

∙ Initial estimate of gamma spectrum 
(bottom) is generated from coupled 
neutron/electron/photon transport 
calculation

∙Nonlinear optimization procedure 
finds model dimensions that 
minimize error in calculation



Actual SourceActual Source

LLNL Plutonium Sphere Optimized Transport Model



Solution using Gammas and NeutronsSolution using Gammas and Neutrons

∙Gamma spectrum is primarily 
sensitive to outer surface of source
∙ Solution based on gamma 

spectrum alone is weakly 
constrained

∙Neutron measurements (e.g., count 
rate) are more sensitive to entire 
volume of source
∙ Simultaneous solution based on 

analysis of gamma and neutron 
signatures is better constrained

∙Neutron multiplicity counting 
provides a fairly rich signature of 
the neutron field

Gammas Only

Gammas + Neutrons



Fission ChainFission Chain--ReactionsReactions

∙ Fission chain reactions multiply the 
number of neutrons in fissile 
transport medium

∙Chain reaction characteristics:
∙ Number of neutrons made during the 

chain reaction: 
neutron multiplication

∙ Speed of chain reaction evolution: 
neutron generation time

∙Neutron multiplicity measurements 
are sensitive to both characteristics



Neutron Multiplicity CountingNeutron Multiplicity Counting

LANL BeRP Ball / 1.5” Poly Reflector
∙ Neutron multiplicity counting measures 

frequency of neutron detection versus:
∙ Counting time, a.k.a., coincidence gate 

width, usually on order of microseconds
∙ Number of coincident counts, a.k.a., 

multiplicity, usually between 10’s and 
100’s of coincident neutrons

LANL BeRP Ball



Multiplication Produces Excess VarianceMultiplication Produces Excess Variance

∙ Fission chain reactions are “bursty”
∙ Relative to a population of uncorrelated, Poisson-distributed counts, fission 

multiplicity distribution is wider
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FeynmanFeynman--YY

∙ Feynman-Y measures variance in 
excess of Poisson distribution

∙ Y vanishes if counting distribution 
is purely Poisson
∙ Y tends to increase with neutron 

multiplication

∙Usually measured vs. coincidence 
gate width (counting time)
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Effect of Multiplication and Generation TimeEffect of Multiplication and Generation Time

∙ Y is a measure of the second 
moment of the counting 
distribution
∙Asymptotic value tends to increase 

with square of neutron 
multiplication

∙ Y is a measure of the system’s 
dynamic response
∙ Shape vs. gate width tends to 

evolve more slowly with increasing 
neutron generation time
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Neutron Multiplicity: Distribution vs. MomentsNeutron Multiplicity: Distribution vs. Moments

∙Choice of observable dictated by solution requirements: accuracy, speed, 
and degrees of freedom

∙Multiplicity distribution
∙ Can be computed using Monte Carlo 

methods – accurate, but slow
∙ Can be computed using recursive 

point models – faster, but still slow, 
and inaccurate for systems that 
violate point kinetics assumptions

∙ Could be computed by deterministic 
solution of generalization to 
Boltzmann transport model – but no 
numerical solver exists

∙ Degrees of freedom much lower than 
dimensionality – distribution dictated 
by product of source strength, 
multiplication, and leakage 
probability

∙Multiplicity moments
∙ Can be computed using analytical 

point models: fast, but inaccurate for 
non-point systems

∙ Can be computed by deterministic 
solution of forward and adjoint 
Boltzmann transport models – fast 
and accurate

∙ First few low-order moments convey 
most of the information contained in 
the distribution



Deterministic Computation of FeynmanDeterministic Computation of Feynman--YY

∙Muñoz-Cobo, Perez, and Verdú developed method to compute 
neutron multiplicity moments via deterministic solution of 
Boltzmann transport equation (see NS&E #95)

∙Method enables computation of first and higher moments (e.g., 
mean and variance) using existing deterministic transport solvers

∙Three calculations required
∙ Forward time-independent, fixed source
∙Adjoint time-independent, adjoint source is detector response
∙ Forward time-dependent, instantaneous step in fixed source intensity



Deterministic Computation of FeynmanDeterministic Computation of Feynman--YY

∙Feynman-Y exhibits two notional features
∙Asymptotic value
∙ Shape dependent on coincidence gate width

∙Asymptote
∙Computed from static forward and adjoint transport solution
∙Accounts for relative contribution of source and induced fission neutrons
∙ Source term for adjoint problem is detection efficiency – adjoint flux 

“weighting function” represents importance to detection

∙Shape
∙Computed from solution to dynamic step response problem
∙ Forward source term is instantaneously stepped
∙ Leakage current is folded with detector cross section & impulse response
∙Detector response is integrated over gate width



FeynmanFeynman--Y Asymptote: Excess VarianceY Asymptote: Excess Variance

∙Excess variance comes from sourcesource and induced fissionfission

∙Variance of sourcesource neutron production QQ

∙Variance of fissionfission neutron production νΣνΣffϕϕ

∙ Importances II00 and II weighted by adjoint flux ϕϕ††

2

1 Yσ
= +

μ 2
2

20S Sσ μ + +=

0
0

†( , )( ) , )
4

(r E EI d rr E= ′ ϕ ′
π

χ ′
∫

r
r

r0
02 0

0

3 20 ( )( 1) ( , )S Qd r E rr IEd ν ν −
ν

= ∫ ∫
rr

3
2

2( 1) ( , ) ( , ) ( )fS r E r Ed r dE I rν ν − Σ ϕ= ∫ ∫
r rr † (( , )( , )

4
) r Ed rI r E E= ′ ϕ

χ ′
π∫
r

r r



Forward vs. Adjoint FluxForward vs. Adjoint Flux

∙Forward transport: rate of change = source + production – losses

∙Relationship between forward and adjoint

∙Adjoint transport reverses time, direction, and change in energy

∙Adjoint flux represents importance of source neutrons to interaction 
embodied in adjoint source
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Static Forward and Adjoint SolutionsStatic Forward and Adjoint Solutions

LANL BeRP Ball / 1.5” Poly Reflector

Forward Flux Adjoint Flux



FeynmanFeynman--Y Shape: Dynamic ResponseY Shape: Dynamic Response

∙Feynman-Y shape computed from solution to forward dynamic step 
response problem

∙Uses time-dependent transport solver to compute flux ϕϕ in 
response to instantaneous step in forward source term Q

∙Time-dependent flux folded with detector cross-section ΣΣdd and 
impulse response hh

∙ Integrated over coincidence gate width T
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Dynamic Response CalculationDynamic Response Calculation



Initial Test ResultsInitial Test Results
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SummarySummary

∙Possible to infer configuration of an unknown radiation source from 
its radiation signatures

∙Solutions based on multiple complementary signatures are better 
constrained

∙Sandia is developing methods to solve for source configuration 
using gamma spectrometry and neutron multiplicity signatures

∙Sandia developed fast method to accurately compute Feynman-Y
∙Based on original work by Muñoz-Cobo, Perez, and Verdú
∙ Implementation uses LANL-developed, time-dependent transport 

solver PARTISN

∙ Initial test results confirm method’s accuracy and potential speed



Ongoing and Future WorkOngoing and Future Work

∙ Just started 3-year project with University of Florida (UF) and 
University of Michigan (UM)

∙ Increase speed of calculations: UF, Prof. Glenn Sjoden, Dr. Ce Yi
∙ Explore alternative cross-section generation schemes
∙ Explore different solver options
∙Resolve slow convergence of adjoint solution

∙Benchmark accuracy of calculations: UM, Prof. Sara Pozzi, Dr. Shaun 
Clarke
∙Augment MCNP-PoliMi tallies to accumulate neutron multiplicity 

distribution for proportional counters
∙Test MCNP-PoliMi against existing benchmark measurements
∙Generate synthetic test data for deterministic calculations


