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1.

Three Main Themes

The Born-Assessed Framework can provide a science-
based approach to risk-informed decisions for
supporting licensing.

. The NW program has provided leading tools and

capabilities that can serve as starting points for the
NEAMS VU program. However, significant new VU

tools and capabilities are broadly needed to achieve the
NEAMS goals.

Integration of VU with the other parts of NEAMS is
essential from Day 1.
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V&V-Based Born-Assessed Framework:
Validation, Calibration, and Prediction

Update or Calibrate Computational Model if Needed
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Steps for Code Release: Born Assessed

Update or Calibrate Computational Model if Needed
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Remark: Conceptually similar to “Born Assessed” process documented in: R. A. Nelson, A. R. Larzelere, and S. Runnels, “GNEP
Modeling and Simulation: An Improved Applications Development Paradigm for Rapid Deployment,” Los Alamos National Laboratory
Report LA-UR-07-1865.




Further Details of Validation/Calibration Process

* Physical Experiments May Include
— Separate Effects Tests (SETs)
— Integral Effects Tests (IETs)
— Uncertainty Quantification
« Application of Computational Model Involves
— Model Setup: Geometry and Mesh

— Solution Verification
— Sensitivity Analysis and Uncertainty Quantification

Validation Metrics: Comparison of computational model results to
experimentally measured system response quantities (SRQs)

Updates/improvements to model and/or physical experiments
Assessment of adequacy for intended application (including possible
interpolation/extrapolation of model)

Primary Goal: Born Assessed



More on Assessment of Adequacy:
Seeking Robustness and Maturity

« We propose to develop models of predictive maturity based on the
concept of stabilization (or robustness).
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How Is “Born Assessed” Different From
the CSAU Methodology?

Born Assessed is similar to CSAU in some ways, e.g.,
— Formal quantification of uncertainties
— Use of SETs and IETs

However, Born Assessed builds on modern V&YV ideas,
e.g.,

— Verification explicitly called out (to be discussed more later...)
» Code verification
« Solution verification

— Formal role of validation: Model calibration and improvement
through feedback of new experimental data

Dynamic “Born Assessed” process vs. CSAU process

that was developed for legacy, frozen software tools




What's Inside the Computational Model?

Steps for Code Release: Born Assessed

Update or Calibrate Computational Model if Needed
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What's Inside the Computational Model?

Steps for Code Rl « Physics Model Implementation
* Numerical Discretization and Algorithm Development
Update or Calibrate Cc © Math and Solver Libraries

! « Multi-physics Coupling
v » “WU” Capability Development

* Error Estimators and Adaptive Methods
* Embedded UQ and Optimization Algorithms
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Verification

To demonstrate convergence to the correct answer for
the intended application (i.e., the actual system of
mathematical equations)

Numerical errors can contribute to incorrect stockpile
decisions or validation assessments
Challenges

— Multi-physics, multi-scale, non-smooth solutions, contact,
singularities, etc.

Code and Solution Verification

Correctness Accuracy Robustness Uncertainty

L 1

“Is there any significant “Are code predictions robust or,
programming mistake or to the contrary, sensitive to user-
algorithmic deficiency?” defined settings or options?”

v v
“What is the accuracy of code “What is the level of
predictions and does it match solution uncertainty of
the theoretical order of the code predictions for a
numerical method?” particular simulation?”




Verification:
Two Main Components

 (Code Verification
« Solution Verification




Code Verification

Traditional SQE Activities
*Design review/inspection
*Code Review/inspection
*Pair programming
*Configuration management
*Requirements management
*Defect tracking

*Unit testing

*Regression testing

Integration testing

*Low volume beta testing

*High volume beta testing

*Release & distribution management

Activities for scientific

software

*Exact solutions
*Open form
*Closed form
*Manufactured

*Order verification
Single physics
*Tightly coupled
multiphysics
*Loosely coupled
multiphysics

*Application-focused test

coverage analysis




Solution Verification

Solution verification addresses the following questions:

* |n the context of model validation:

— Are numerical errors obscuring or undermining comparisons of
calculations with experimental data?

* In the context of predictive simulation:
— Is the solution accuracy adequate for the intended application?




Temperature (C)

Peak

Weak Link Failure Model (SNL's Calore)

Solution verification: Is the discretization adequate?

Time-Converaed Predictions of
Temperature

Peak

Estimated Exact Solution
yd

Coarse
Mesh

2 3
Discretization, A
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Component is highly non-
isotropic and (initially) not
adequately mesh
converged
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VU Capability Gaps

« Main Issue: Standard “Legacy” VU Methods are
generally not robust, too expensive and/or not scalable
for our new large-scale, multi-physics IPSCs; e.g.,

— Sensitivity Analysis: Sampling, Response Surfaces, etc.
— UQ: Monte-Carlo and Latin Hypercube Sampling
— Solution Verification: Mesh Extrapolation (e.g., Richardson)

» The NW program has delivered leading tools (e.g., DAKOTA) for VU.
» However, these tools are starting points for NEAMS, and are not (yet)
sufficient for licensing support.

» Additional investments in VU tools and capabilities are needed.




VU Capability Gaps: Why?

* Inthe ASC program, the V&V program developed
alongside the other programs; i.e., V&V didn't exist when
ASC started!

« Many “VU” algorithms have been developed and/or
advanced within the last few years

— Many require some degree of algorithm/software integration and
inter-operability with the codes

— Such integration can be expensive to retro-actively apply
* Much VU algorithm and tool development is still needed

to address current deficiencies (e.g., robustness,
efficiency, scalability, etc.)




VU Capability Gap:

A Posteriori Error Estimation

Goal: Accurately estimate or bound the mesh
discretization error in the quantity of interest

« Based on adjoints which can be intrusive to the code
* Must be integrated with the code design and part of
the code development activities




SNL'’s Encore:
Toolkit for Verification

« Strategic goal: To enable predictive simulations
— Unified, modular services for code and solution verification
— Bridge between application codes (e.g., SIERRA Mechanics, RAMSES)

and UQ tools (Trilinos, DAKOTA)
 Code verification ’

— Analytical and manufactured solutions
— Grid transfers (for comparing solutions)
— Norms, derived quantities of interest

« Solution verification = =8
— Developing support for adjoint-based error estimators
— Flexible, user-driven adaptivity system




Adjoint-Based Error Estimators and
Adaptivity in SIERRA Mechanics
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 Temperature field from thermal
advection-diffusion example.

* Quantity of interest: Temperature at a +
point near the right boundary. e

- The adjoint error estimator produces T
adaptivity that is optimal for this output. B ) H

* Nonlinear quasi-statics example.

Elevation of Von Mises stress field
colored by magnitude of adjoint
displacement field.

Quantity of interest: Integral surface
traction on the upper left surface.

The adaptivity resolves stress
singularities critical to calculation of an
accurate force-displacement curve.




Adjoint-Based Error Estimators and
Adaptivity in SIERRA Mechanics
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Temperature field from thermal
advection-diffusion example. 1

Quantity of interest: Temperature at a
point near the right boundary. e
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colored by magnitude of adjoint
displacement field.

Quantity of interest: Integral surface
traction on the upper left surface.

The adaptivity resolves stress
singularities critical to calculation of an
accurate force-displacement curve.



VU Capability Gap
Embedded Algorithms
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Adjoints and AD are key capabilities for increased
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VU Challenge:
Integration

« Many of these new algorithms require tight integration
with codes and models

« Many ASC codes already too “mature” to capitalize on
new VU capabilities without significant investments in
software re-architecting (e.q., adjoints and sensitivities)




SNL's Sacado Package:
Automatic Differentiation

« Sacado: Operator overloading AD tools for
C++ applications

* Part of the Trilinos library
* Impacting UQ:

— Stochastic Galerkin methods (ongoing)
— Polynomial chaos methods (near term)
— Epistemic UQ

* Intervals (mid term)

 Probability boxes (long term)




VU Integration: Using Sacado’s Advance
Capabilities for Sensitivity Analysis

* Requires integration with
— Solvers
— Application code

Vertical integration of Trilinos capabilities

Transient ODE/DAE
forward sensitivity solvers |

| 1 1
l ImplicitBDFStepper [ 1 ExplicitRKStepper

lterative nonlinear
solvers 45

[ I |

\ NOX I l TimeStepSolver l -

l—* LinearSolver ‘T—r

Iterative linear solvers 4&
| AztecDO | Balos |

AJgebraiF:_ Ames:los Pmcundfﬁmer |
preconditioners and 4:
direct solvers .

Linear algebra data
structures




VU Capability Gap: UQ
Implementing Stochastic Galerkin Methods in Nonlinear
Applications is Challenging

» Code transformation from deterministic code to SG code
— Need tools/libraries to automate computation of SG residual and Jacobian entries
Fy |

Fluip) =0 — F(a) = |

_FNPC_

Large linear systems: Each block is the size of a single “deterministic’ block

SNL’s Trilinos provides powerful capabilities here




SNL’s DAKOTA
Optimization and UQ Toolkit

Wide array of non-embedded (black box) capabilities

Available as an early delivery vehicle for the VU capabilities
developed in NEAMS (...along with other software available at
LANL and SNL)

DAKOTA/FRAPCON-3 Coupling
— FYO07 GNEP Fuels Campaign project at SNL
— Goal: Apply DAKOTA to assess the sensitivity and quantify uncertainty
of a FRAPCON-3 response variable relative to uncertain model

parameters

— Included extensive PIRT analysis




New DAKOTA UQ Capabilities

Advanced Components for Born-Assessed Codes

Production New Under dev.| Planned Collabs.
Sampling LHS/MC, IS/AIS/MMAIS, Bootstrap, Gunzburger
QMC/CVT Incremental LHS Jackknife
Reliability 1st/2nd-order local: Global: EGRA Renaud,
MVFOSM/SOSM, Mahadevan
x/u AMV/AMV?/
AMV+/AMV?2+, x/u
TANA, FORM/SORM
Polynomial Wiener-Askey Cubature Adaptivity, Ghanem
Chaos gPC: sampling, Wiener-Haar
quadrature,
pt collocation
Other Dimension Youn
probabilistic reduction
Epistemic Second-order Dempster-Shafer Bayesian, Higdon,
probability evidence theory Imprecise Williams,
probability Ferson
Metrics Importance factors, Main effects, Stepwise Storlie
Partial correlations Variance-based regression
decomposition




VU Integration: Some Remarks

« DAKOTA can be used as a starting point for NEAMS
UQ, optimization, and sensitivity analyses, but must be
further developed and appropriately tailored to support
science-base licensing applications.

 NW-funded tools such as DAKOTA and Trilinos can be
leveraged for developing Born-Assessed codes for
NEAMS.




NEAMS Leveraging Opportunity:
Coupled System Embedded UQ Research Project

(Led by SNL, Teaming with Ghanem at USC)

Traditional
"Black Box"
Approach

‘Deterministic Solver

Component 1

-

v

Componant 2

Output
distribution
_or stafistic

 Invert layering of UQ around system
simulation

— Apply UQ to each component separately
— Stochastic coupled solver technology
» Potentially orders of magnitude savings
— Heterogeneous UQ
— Stochastic dimension reduction

 FYO08 SNL Late-Start LDRD
- Mathematical feasibility demonstrated

« Successful ASCR complex systems

proposal (Beginning FY09, Post-CR)
— Sandia ~$600K/yr, USC ~$200K/yr

— Emphasis on NE applications
(reactor core to entire plant)

= Applicability to NEAMS

Intrusive Coupled Approach
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Towards Licensing:
Using Science-Based Modeling and Simulation
for Risk-Informed Decisions

* Key Ingredients
— Best Estimate + Uncertainty

— Measure of Pedigree or “Confidence”: Predictive Capability
Maturity Model (PCMM)

— Treatment of other factors including “Unknown Unknowns”

* There is more to risk-informed decision making than
computational science




“Informing” the Licensing Process

Steps for Code Release: Born Assessed

Update or Calibrate Computational Model if Needed
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“Informing” the Licensing Process <

Steps for Code Release: Born Assessed

Update or Calibrate Computational Model if Needed
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1.

Summary:
Three Main Themes
The Born-Assessed Framework can provide a science-

based approach to risk-informed decisions for
supporting licensing.

. The NW program has provided leading tools and

capabilities that can serve as starting points for the
NEAMS VU program. However, significant new VU

tools and capabilities are broadly needed to achieve the
NEAMS goals.

Integration of VU with the other parts of NEAMS is
essential from Day 1.

Much can be leveraged from the NW program.




Key VU Challenge:
Integration Driven by the VU Program Element

Integration of VU capabilities with the codes

Integration of model development with
— Physical experiments

— Code development
Integration of Born Assessed process

Integration of V&V and UQ within the Licensing Framework

Key Lesson Learned:
Integration is Essential from Day 1




