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Abstract 
The rate and geographic pattern of atmospheric warming are key indicators of historical climate 
change and play a role in modulating future changes in Earth’s climate. The past and future 
evolution of atmospheric temperature is simulated using global climate models while 
observational estimates of past warming are derived from satellite microwave measurements. 
Individual climate models simulate widely varying rates of past and future atmospheric 
warming and most model simulations exhibit greater tropospheric (lowest ~10 km of 
atmosphere) temperature change than satellite observations between 1979 and 2020. This 
project examined intermodel differences in the pattern of atmospheric warming and how these 
differences influence climate feedbacks that can amplify or damp the rate of global surface 
warming. A key result is that climate model representation of the current climate can influence 
climate feedbacks and the simulation of future changes in climate. Another focus of this project 
was to analyze how models respond to different input datasets, such as volcanic aerosols or sea 
surface temperature (in atmosphere-only simulations). We find that different prescribed inputs 
can affect simulated changes in atmospheric temperature, even though “input uncertainty” is 
often unconsidered in model-observational comparisons. A final focus of this research project 
was to consider the influence of natural internal climate variability on satellite era changes in 
climate. Although the Earth is warming substantially due to anthropogenic emissions of 
greenhouse gases, the observed warming rate can be modulated by natural variations in the 
Earth’s climate. We find that natural climate variability has slowed the rate of tropical 
tropospheric warming, which explains model-satellite differences in the rate of tropospheric 
warming.   

Background and Research Objectives 
It has long been known that human emissions of greenhouse gases result in global surface 
warming, but the exact sensitivity of the Earth’s climate system to greenhouse gas changes is 
uncertain. The estimated, equilibrium response of global average surface temperature to a 
doubling of atmospheric carbon dioxide (i.e., equilibrium climate sensitivity, ECS) is 2.3 – 4.7 K 
(S. C. Sherwood et al. 2020), though global climate models (GCMs) frequently exhibit climate 
sensitivity values above this range (Zelinka et al. 2020). It is important to further constrain the 
Earth’s sensitivity to atmospheric greenhouse gas changes, in order to better predict climate 
impacts and to develop appropriate adaptation and mitigation strategies.  

One focus of this research project was to better understand individual climate feedback 
processes, which amplify or damp the surface warming response to greenhouse gas changes (J. 
Hansen et al. 1984). One specific objective was to use model ensembles from the Coupled 
Model Intercomparison Project Phase 5 (CMIP5) to determine whether biases in model 
representation of the current climate (e.g., over the last forty years) influence long-term 



climate feedback behavior. In particular, we sought to understand how the current distribution 
of clouds, sea-ice, and humidity affects long-term climate feedback processes. We extended 
this objective by also exploring how model representation of natural climate variability scales 
with model ECS and whether observations could be used as an emergent constraint (e.g., Hall 
et al. 2019). 

Another focus of this research was to better understand a longstanding scientific puzzle: GCM 
simulations of the satellite era (1979 to present) exhibit, on average, two times more tropical 
tropospheric warming than that derived from microwave sounding unit (MSU) based 
measurements (Santer, Solomon, et al. 2017). This difference is widespread across CMIP5 
models and few model realizations simulate tropospheric temperature changes within the 
range of satellite-derived trends. Model simulated warming since the 1980s scales with model 
ECS (Tokarska et al. 2020), suggesting that climate sensitivity may be relatively small (Christy et 
al. 2018). Other research indicates that observational biases, incorrect model forcing, and 
internal variability may also contribute to differences in simulated and observed tropical 
tropospheric temperature trends (Kosaka and Xie 2013; Lu and Bell 2014; Santer et al. 2014; 
Santer, Fyfe, et al. 2017).  

Our research plan included objectives to better understand model-observational differences in 
the rate of satellite era tropospheric warming including a) determining whether biases exist in 
microwave-based satellite temperature records and b) assessing the influence of uncertain 
model inputs on simulated atmospheric temperature trends. In addition to these objectives, we 
also extended our work to determine if a) model-observational differences from CMIP5 persist 
in the latest generation of CMIP6 models and b) whether natural climate variability can explain 
GCM-versus-satellite differences in tropical tropospheric warming.  

Scientific Approach and Accomplishments 
Climate Feedback Analysis 

In order to better understand climate feedback processes, we made use of large ensembles of 
GCMs to study factors that contribute to intermodel differences in the magnitude of climate 
feedbacks. In one study, we found that the spatial pattern of surface warming can explain 
model differences in the magnitude of the lapse rate and water vapor feedbacks (Po-Chedley et 
al. 2018). We also showed that large model differences in the climatological representation of 
Antarctic sea ice extent influence polar warming in the Southern hemisphere. As a result, model 
representation of Antarctic sea ice could explain a significant fraction of intermodel spread of 
the lapse rate and water vapor feedbacks. This research was consistent with a subsequent 
study that demonstrated that the Arctic lapse rate and albedo feedbacks are closely coupled, 
are related to the climatological distribution of Arctic sea ice, and should not be considered 
independent feedbacks (Feldl et al. 2020). These analyses indicate that model improvements to 
the representation of historical sea ice extent will reduce model discrepancies in the lapse rate, 



water vapor, and albedo feedbacks. In turn, this may narrow the range of climate sensitivity 
values in GCMs.  

Model biases in the distribution of high clouds 
and relative humidity can also influence climate 
feedback processes. Several studies demonstrate 
that the profiles of tropical clouds and relative 
humidity shift upward in altitude as the climate 
warms (Hartmann and Larson 2002; Steven C 
Sherwood et al. 2010; Singh and O’Gorman 2012; 
Romps 2014). As a result, models with large 
vertical gradients in these hydrologic fields are 
expected to simulate large changes in relative 
humidity and clouds. Using each model’s cloud 
and relative humidity climatology and simple 
assumptions about the vertical profile of 
warming, we found that we could accurately 
predict simulated changes in tropical upper 
tropospheric clouds and relative humidity (Figure 
1). Using this approach, we were also able to use 
the climatology from atmospheric reanalysis 
models to infer future changes in tropical clouds 
and humidity. This indicates a clear scaling 
between models’ base state and future 
projections. Improvements to model 
representation of the observed climate should 
help constrain model simulations of future 
changes in climate.  

Recent research has demonstrated that historical 
global surface temperature variability (denoted 
as psi) closely scales with ECS in climate models 
(Cox, Huntingford, and Williamson 2018). Using 
this relationship and an observational estimate of 
psi, Cox, Huntingford, and Williamson (2018) 
estimated that the value of ECS is between 1.6 
and 4.0 K (95% confidence interval). In 
subsequent research, we found that psi is 
influenced by externally forced changes in 
climate and, as a result, ECS estimates vary 
considerably depending on the model data used 
and the time period considered (Figure 2). 
Further research is needed to determine whether 

natural internal variability can be separated from externally forced changes in climate and 
whether estimates of internal climate variability can be used for precise quantification of ECS.  

Figure 1 a) Predicted tropical (30oS – 30oN) 
average relative humidity change versus the 
simulated change for 27 GCMs (dots) at different 
pressure levels (colors; see legend). The legend 
provides the correlation coefficient for the 
predicted-versus-simulated changes. The 
prediction is based on each model’s climatology. 
The simulated change is computed using the 
difference between the end-of-century 
climatology (2061 – 2099) and the satellite era 
climatology (1980 – 2018). The model range of 
predicted values is indicated with horizontal lines 
and the changes inferred from atmospheric 
reanalyses are displayed as ovals (MERRA2) and 
rectangles (ERA5). The one-to-one lines is also 
included (dotted line). Panel b) is the same, but 
for tropical cloud fraction changes. Adapted from 
Po-Chedley et al. (2019). 



Model-Observational Differences in Satellite-era Tropical Tropospheric Warming 

Climate model simulations of tropical tropospheric temperature change from multiple 
intercomparison projects (CMIP3 and CMIP5) tend to exhibit exaggerated warming relative 
MSU satellite observations. We undertook several investigations to determine the causes and 
significance of this apparent model-observational discrepancy.  

Recent research suggests that microwave measurements of tropospheric temperature exhibit 
spurious cooling over the 2000s, which may be a result of an unexpected drift in the measured 
frequency (Lu and Bell 2014; Christy et al. 2018). We explored this issue by refactoring a line-by-
line microwave radiative transfer model so that we could simulate the seasonal and spatial 
pattern of biases that would result from a shift in the measurement frequency. We then used 
atmospheric reanalysis data to determine if satellite-versus-reanalysis differences were 
consistent with a drift in the measurement frequency. Although satellite observations tend to 
cool relative to reanalysis in the early 21st century, we could not conclusively attribute this drift 
to shifts in the MSU measurement frequency.  

In a subsequent analysis, we were able to show that satellite-derived tropical tropospheric 
temperature trends are inconsistent with observed changes in column water vapor, indicating 
that MSU data likely contains residual biases that artificially reduce observational estimates of 
tropospheric warming (Santer et al. 2020). Such biases, if confirmed, would help explain the gap 
between satellite observations and model simulations of tropical tropospheric warming.  

While MSU measurements provide temperature estimates of broad vertical layers, 
complementary datasets provide temperature on atmospheric levels. We therefore used the 
radiative transfer capabilities developed as part of this project to simulate the synthetic 
satellite brightness temperature that would be observed given temperature data at discrete 

Figure 2 a) Relationship between climate variability (psi) and ECS derived from the entire length of the pre-industrial 
control simulation available for each model. b) As in a, but for simulations of historical climate change over the period 
1880–2016. c) As in b, but considering only global temperature data before 1963. The black line is a linear fit and the 
vertical blue shading is the observational psi value (±1 standard deviation). In panels a and b, the observational range 
is derived from the entire temperature record (1880–2016), whereas the instrumental record before 1963 is used in 
panel c. The implied probability distribution of ECS is displayed on the vertical axis. The median ECS value and 95% 
confidence interval for a–c are 4.0 ± 1.4 K, 2.8 ± 1.2 K and 3.3 ± 1.4 K, respectively. The corresponding 95% confidence 
interval is denoted by horizontal lines along the y axis. Figure from Po-Chedley et al. (2018). 

  



atmospheric levels. Simulated equivalent microwave temperature trends were included in the 
annual State of the Climate Report (Christy, Mears, and Po-Chedley 2018; Christy et al. 2019).  

We also calculated the synthetic tropical tropospheric temperature trends from the most 
recent generation of climate models (CMIP6, including 361 historical climate simulations from 
43 models). Since natural climate variability is stochastic and can enhance or suppress 
temperature changes that result from greenhouse warming, this large dataset allowed us to 
better sample model climate variability and its effect on model-observational agreement over 
1979 – 2014 (the period simulated by this suite of models). We found that tropical tropospheric 
warming in models scales with the SST trend in the tropical central Pacific (the Niño 3.4 region; 
Figure 3). Model simulations that by chance have Pacific multidecadal variability similar to the 
observations also tend to capture the correct atmospheric warming trend. Climate models with 
both small and large climate sensitivity values have simulations in accord with the satellite 
observations, indicating that climate sensitivity is not the only factor determining model-
observational agreement. This result indicates that climate variability contributes to model-
observational differences in the rate of tropical tropospheric warming over the satellite era and 
that satellite-model discrepancies are not significant when internal variability is accounted for. 
In separate work, we found that a similar mode of climate variability also helps to explain 
societally-relevant climate trends, including the slower-than-expected loss of Western US 
snowpack since the 1980s (Siler, Proistosescu, and Po-Chedley 2019). 

 

Figure 3 SST trends (1979-2014) 
in the central Pacific Niño 3.4 
region versus the tropical 
average (20oS – 20oN) mid-
tropospheric temperature (TMT) 
trends for different models 
(colors; see legend). Models with 
fewer than five ensemble 
members are plotted in black. 
The legend denotes the 
ensemble size (n) and correlation 
coefficient between the Niño 3.4 
versus tropical TMT trends for 
each model. The range of each 
model’s Niño 3.4 trends is 
displayed with horizontal lines in 
the lower left corner. The range 
of tropical TMT trends (vertical 
lines) is plotted against ECS 
(upper right) with gray dots 
denoting models with only one 
ensemble member. From Po-
Chedley et al (2020). 



Another possible factor influencing the agreement 
between modelled and observed tropical tropospheric 
temperature trends is the inputs into climate models. 
GCMs are prescribed changes in climate relevant fields 
such as greenhouse gases, volcanic and anthropogenic 
aerosols, and solar irradiance. We considered uncertainty 
in SST boundary conditions used in atmosphere-only 
simulations. Using the Department of Energy’s Energy, 
Exascale, Earth System Model (E3SM), we simulated the 
tropical tropospheric temperature trends for four different 
SST datasets over 1979 – 2014 (Figure 4). In this sensitivity 
study, we found that the choice of SST dataset influences 
the rate of tropical tropospheric warming and that 
agreement with observations depends on the inputs used 
for model simulations (Po-Chedley et al. 2020). This is a 
key point, since model intercomparison projects typically 

use a particular set of model inputs, which means that input uncertainty is neglected. In a 
similar study using E3SM, we found minimal impacts between successive versions of the 
volcanic aerosol dataset used for CMIP6 simulations (Rieger et al. 2020). 

Mission Impact  
This research has contributed to the Climate Program by improving infrastructure both to 
analyze a large quantity of climate model simulation output and to compare model data with 
observations. Several publications also highlighted promising future research directions and 
contributed to the submission of an early career funding proposal. A number of the published 
findings involved external researchers, which will lead to continued future collaboration. More 
broadly, the research findings help advance our understanding of recent and future changes in 
climate, which advances the Department of Energy’s mission to address energy and 
environmental challenges. Since climate and energy are interrelated, improvements in our 
ability to understand past and simulate future changes in climate enhances our ability to make 
confident energy policy decisions.  

Conclusion  
This research project produced useful tools and uncovered several promising research 
directions. One finding is that model biases in their representation of the current climate 
influence future simulations, indicating that improvements to models’ ability to simulate the 
observed record may improve and constrain future projections. Continuing this work to 
document climatological biases and their impact on future model simulations may contribute to 

Figure 4 Atmospheric temperature trend (lines) for E3SM 
atmospheric simulations using different SST boundary conditions 
(colors; see legend). Also shown is the range of satellite observed 
mid-tropospheric temperature trends (green box) and the model 
synthetic equivalent satellite trends (dots). 



more rapid and targeted model improvements. Our research also indicates that natural climate 
variability is large enough to explain model-versus-observed differences in satellite era 
tropospheric warming. Further work isolating and quantifying the magnitude of natural climate 
variability may help to constrain the value of climate sensitivity. Tools developed to analyze 
large model datasets and to undertake radiative transfer calculations can be applied to future 
work. A particularly promising activity may be to compare a larger swath of complementary 
measurements of the troposphere, which may help to evaluate the accuracy of microwave 
based tropospheric temperature trends. This work included contributions from several 
universities and government agencies and plans are underway for further collaboration.  
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Notes to the Editors 
• We use psi in the text (and the symbol in the figures). 

• There are superscripts and ascii symbols (plus or minus and percent) in the caption for 
Figure 2. We write out psi (but the figure has the appropriate symbol). 


