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Abstract

The rate and geographic pattern of atmospheric warming are key indicators of historical climate
change and play a role in modulating future changes in Earth’s climate. The past and future
evolution of atmospheric temperature is simulated using global climate models while
observational estimates of past warming are derived from satellite microwave measurements.
Individual climate models simulate widely varying rates of past and future atmospheric
warming and most model simulations exhibit greater tropospheric (lowest ~10 km of
atmosphere) temperature change than satellite observations between 1979 and 2020. This
project examined intermodel differences in the pattern of atmospheric warming and how these
differences influence climate feedbacks that can amplify or damp the rate of global surface
warming. A key result is that climate model representation of the current climate can influence
climate feedbacks and the simulation of future changes in climate. Another focus of this project
was to analyze how models respond to different input datasets, such as volcanic aerosols or sea
surface temperature (in atmosphere-only simulations). We find that different prescribed inputs
can affect simulated changes in atmospheric temperature, even though “input uncertainty” is
often unconsidered in model-observational comparisons. A final focus of this research project
was to consider the influence of natural internal climate variability on satellite era changes in
climate. Although the Earth is warming substantially due to anthropogenic emissions of
greenhouse gases, the observed warming rate can be modulated by natural variations in the
Earth’s climate. We find that natural climate variability has slowed the rate of tropical
tropospheric warming, which explains model-satellite differences in the rate of tropospheric
warming.

Background and Research Objectives

It has long been known that human emissions of greenhouse gases result in global surface
warming, but the exact sensitivity of the Earth’s climate system to greenhouse gas changes is
uncertain. The estimated, equilibrium response of global average surface temperature to a
doubling of atmospheric carbon dioxide (i.e., equilibrium climate sensitivity, ECS) is 2.3 -4.7 K
(S. C. Sherwood et al. 2020), though global climate models (GCMs) frequently exhibit climate
sensitivity values above this range (Zelinka et al. 2020). It is important to further constrain the
Earth’s sensitivity to atmospheric greenhouse gas changes, in order to better predict climate
impacts and to develop appropriate adaptation and mitigation strategies.

One focus of this research project was to better understand individual climate feedback
processes, which amplify or damp the surface warming response to greenhouse gas changes (J.
Hansen et al. 1984). One specific objective was to use model ensembles from the Coupled
Model Intercomparison Project Phase 5 (CMIP5) to determine whether biases in model
representation of the current climate (e.g., over the last forty years) influence long-term



climate feedback behavior. In particular, we sought to understand how the current distribution
of clouds, sea-ice, and humidity affects long-term climate feedback processes. We extended
this objective by also exploring how model representation of natural climate variability scales
with model ECS and whether observations could be used as an emergent constraint (e.g., Hall
et al. 2019).

Another focus of this research was to better understand a longstanding scientific puzzle: GCM
simulations of the satellite era (1979 to present) exhibit, on average, two times more tropical
tropospheric warming than that derived from microwave sounding unit (MSU) based
measurements (Santer, Solomon, et al. 2017). This difference is widespread across CMIP5
models and few model realizations simulate tropospheric temperature changes within the
range of satellite-derived trends. Model simulated warming since the 1980s scales with model
ECS (Tokarska et al. 2020), suggesting that climate sensitivity may be relatively small (Christy et
al. 2018). Other research indicates that observational biases, incorrect model forcing, and
internal variability may also contribute to differences in simulated and observed tropical
tropospheric temperature trends (Kosaka and Xie 2013; Lu and Bell 2014; Santer et al. 2014;
Santer, Fyfe, et al. 2017).

Our research plan included objectives to better understand model-observational differences in
the rate of satellite era tropospheric warming including a) determining whether biases exist in
microwave-based satellite temperature records and b) assessing the influence of uncertain
model inputs on simulated atmospheric temperature trends. In addition to these objectives, we
also extended our work to determine if a) model-observational differences from CMIP5 persist
in the latest generation of CMIP6 models and b) whether natural climate variability can explain
GCM-versus-satellite differences in tropical tropospheric warming.

Scientific Approach and Accomplishments
Climate Feedback Analysis

In order to better understand climate feedback processes, we made use of large ensembles of
GCMs to study factors that contribute to intermodel differences in the magnitude of climate
feedbacks. In one study, we found that the spatial pattern of surface warming can explain
model differences in the magnitude of the lapse rate and water vapor feedbacks (Po-Chedley et
al. 2018). We also showed that large model differences in the climatological representation of
Antarctic sea ice extent influence polar warming in the Southern hemisphere. As a result, model
representation of Antarctic sea ice could explain a significant fraction of intermodel spread of
the lapse rate and water vapor feedbacks. This research was consistent with a subsequent
study that demonstrated that the Arctic lapse rate and albedo feedbacks are closely coupled,
are related to the climatological distribution of Arctic sea ice, and should not be considered
independent feedbacks (Feldl et al. 2020). These analyses indicate that model improvements to
the representation of historical sea ice extent will reduce model discrepancies in the lapse rate,



water vapor, and albedo feedbacks. In turn, this may narrow the range of climate sensitivity

values in GCMs.
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Figure 1 a) Predicted tropical (30°S — 30°N)
average relative humidity change versus the
simulated change for 27 GCMs (dots) at different
pressure levels (colors; see legend). The legend
provides the correlation coefficient for the
changes. The
prediction is based on each model’s climatology.
The simulated change is computed using the
end-of-century
climatology (2061 — 2099) and the satellite era
climatology (1980 — 2018). The model range of
predicted values is indicated with horizontal lines
and the changes inferred from atmospheric
reanalyses are displayed as ovals (MERRA2) and
rectangles (ERAS5). The one-to-one lines is also
included (dotted line). Panel b) is the same, but
for tropical cloud fraction changes. Adapted from

predicted-versus-simulated

difference between the

Po-Chedley et al. (2019).

Model biases in the distribution of high clouds
and relative humidity can also influence climate
feedback processes. Several studies demonstrate
that the profiles of tropical clouds and relative
humidity shift upward in altitude as the climate
warms (Hartmann and Larson 2002; Steven C
Sherwood et al. 2010; Singh and O’Gorman 2012;
Romps 2014). As a result, models with large
vertical gradients in these hydrologic fields are
expected to simulate large changes in relative
humidity and clouds. Using each model’s cloud
and relative humidity climatology and simple
assumptions about the vertical profile of
warming, we found that we could accurately
predict simulated changes in tropical upper
tropospheric clouds and relative humidity (Figure
1). Using this approach, we were also able to use
the climatology from atmospheric reanalysis
models to infer future changes in tropical clouds
and humidity. This indicates a clear scaling
between models’ base state and future
projections. Improvements to model
representation of the observed climate should
help constrain model simulations of future
changes in climate.

Recent research has demonstrated that historical
global surface temperature variability (denoted
as psi) closely scales with ECS in climate models
(Cox, Huntingford, and Williamson 2018). Using
this relationship and an observational estimate of
psi, Cox, Huntingford, and Williamson (2018)
estimated that the value of ECS is between 1.6
and 4.0 K (95% confidence interval). In
subsequent research, we found that psi is
influenced by externally forced changes in
climate and, as a result, ECS estimates vary
considerably depending on the model data used
and the time period considered (Figure 2).
Further research is needed to determine whether

natural internal variability can be separated from externally forced changes in climate and
whether estimates of internal climate variability can be used for precise quantification of ECS.
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Figure 2 a) Relationship between climate variability (psi) and ECS derived from the entire length of the pre-industrial
control simulation available for each model. b) As in a, but for simulations of historical climate change over the period
1880-2016. c) As in b, but considering only global temperature data before 1963. The black line is a linear fit and the
vertical blue shading is the observational psi value (+1 standard deviation). In panels a and b, the observational range
is derived from the entire temperature record (1880-2016), whereas the instrumental record before 1963 is used in
panel c. The implied probability distribution of ECS is displayed on the vertical axis. The median ECS value and 95%
confidence interval fora—care 4.0+ 1.4 K, 2.8+ 1.2 Kand 3.3 £ 1.4 K, respectively. The corresponding 95% confidence
interval is denoted by horizontal lines along the y axis. Figure from Po-Chedley et al. (2018).

Model-Observational Differences in Satellite-era Tropical Tropospheric Warming

Climate model simulations of tropical tropospheric temperature change from multiple
intercomparison projects (CMIP3 and CMIP5) tend to exhibit exaggerated warming relative
MSU satellite observations. We undertook several investigations to determine the causes and
significance of this apparent model-observational discrepancy.

Recent research suggests that microwave measurements of tropospheric temperature exhibit
spurious cooling over the 2000s, which may be a result of an unexpected drift in the measured
frequency (Lu and Bell 2014; Christy et al. 2018). We explored this issue by refactoring a line-by-
line microwave radiative transfer model so that we could simulate the seasonal and spatial
pattern of biases that would result from a shift in the measurement frequency. We then used
atmospheric reanalysis data to determine if satellite-versus-reanalysis differences were
consistent with a drift in the measurement frequency. Although satellite observations tend to
cool relative to reanalysis in the early 21° century, we could not conclusively attribute this drift
to shifts in the MSU measurement frequency.

In a subsequent analysis, we were able to show that satellite-derived tropical tropospheric
temperature trends are inconsistent with observed changes in column water vapor, indicating
that MSU data likely contains residual biases that artificially reduce observational estimates of
tropospheric warming (Santer et al. 2020). Such biases, if confirmed, would help explain the gap
between satellite observations and model simulations of tropical tropospheric warming.

While MSU measurements provide temperature estimates of broad vertical layers,
complementary datasets provide temperature on atmospheric levels. We therefore used the
radiative transfer capabilities developed as part of this project to simulate the synthetic
satellite brightness temperature that would be observed given temperature data at discrete



atmospheric levels. Simulated equivalent microwave temperature trends were included in the
annual State of the Climate Report (Christy, Mears, and Po-Chedley 2018; Christy et al. 2019).

We also calculated the synthetic tropical tropospheric temperature trends from the most
recent generation of climate models (CMIP6, including 361 historical climate simulations from
43 models). Since natural climate variability is stochastic and can enhance or suppress
temperature changes that result from greenhouse warming, this large dataset allowed us to
better sample model climate variability and its effect on model-observational agreement over
1979 — 2014 (the period simulated by this suite of models). We found that tropical tropospheric
warming in models scales with the SST trend in the tropical central Pacific (the Nifio 3.4 region;
Figure 3). Model simulations that by chance have Pacific multidecadal variability similar to the
observations also tend to capture the correct atmospheric warming trend. Climate models with
both small and large climate sensitivity values have simulations in accord with the satellite
observations, indicating that climate sensitivity is not the only factor determining model-
observational agreement. This result indicates that climate variability contributes to model-
observational differences in the rate of tropical tropospheric warming over the satellite era and
that satellite-model discrepancies are not significant when internal variability is accounted for.
In separate work, we found that a similar mode of climate variability also helps to explain
societally-relevant climate trends, including the slower-than-expected loss of Western US
snowpack since the 1980s (Siler, Proistosescu, and Po-Chedley 2019).

Figure 3 SST trends (1979-2014)
in the central Pacific Nifio 3.4
region versus the tropical
average (20°S — 20°N) mid-
tropospheric temperature (TMT)
trends for different models
(colors; see legend). Models with
fewer than five ensemble
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Figure 4 Atmospheric temperature trend (lines) for E3SM

atmospheric simulations using different SST boundary conditions
(colors; see legend). Also shown is the range of satellite observed
mid-tropospheric temperature trends (green box) and the model
synthetic equivalent satellite trends (dots).
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S, Another possible factor influencing the agreement

between modelled and observed tropical tropospheric
temperature trends is the inputs into climate models.
GCMs are prescribed changes in climate relevant fields
such as greenhouse gases, volcanic and anthropogenic
aerosols, and solar irradiance. We considered uncertainty
in SST boundary conditions used in atmosphere-only
simulations. Using the Department of Energy’s Energy,
Exascale, Earth System Model (E3SM), we simulated the
tropical tropospheric temperature trends for four different
SST datasets over 1979 — 2014 (Figure 4). In this sensitivity
study, we found that the choice of SST dataset influences
the rate of tropical tropospheric warming and that
agreement with observations depends on the inputs used
for model simulations (Po-Chedley et al. 2020). This is a
key point, since model intercomparison projects typically
use a particular set of model inputs, which means that input uncertainty is neglected. In a
similar study using E3SM, we found minimal impacts between successive versions of the
volcanic aerosol dataset used for CMIP6 simulations (Rieger et al. 2020).
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Mission Impact

This research has contributed to the Climate Program by improving infrastructure both to
analyze a large quantity of climate model simulation output and to compare model data with
observations. Several publications also highlighted promising future research directions and
contributed to the submission of an early career funding proposal. A number of the published
findings involved external researchers, which will lead to continued future collaboration. More
broadly, the research findings help advance our understanding of recent and future changes in
climate, which advances the Department of Energy’s mission to address energy and
environmental challenges. Since climate and energy are interrelated, improvements in our
ability to understand past and simulate future changes in climate enhances our ability to make
confident energy policy decisions.

Conclusion

This research project produced useful tools and uncovered several promising research
directions. One finding is that model biases in their representation of the current climate
influence future simulations, indicating that improvements to models’ ability to simulate the
observed record may improve and constrain future projections. Continuing this work to
document climatological biases and their impact on future model simulations may contribute to



more rapid and targeted model improvements. Our research also indicates that natural climate
variability is large enough to explain model-versus-observed differences in satellite era
tropospheric warming. Further work isolating and quantifying the magnitude of natural climate
variability may help to constrain the value of climate sensitivity. Tools developed to analyze
large model datasets and to undertake radiative transfer calculations can be applied to future
work. A particularly promising activity may be to compare a larger swath of complementary
measurements of the troposphere, which may help to evaluate the accuracy of microwave
based tropospheric temperature trends. This work included contributions from several
universities and government agencies and plans are underway for further collaboration.
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Notes to the Editors
e We use psiin the text (and the symbol in the figures).

e There are superscripts and ascii symbols (plus or minus and percent) in the caption for
Figure 2. We write out psi (but the figure has the appropriate symbol).



