
*Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear

Security Administration under contract DE-AC04-94AL85000.

Nominal Optimized

DAKOTA Training

Optimization
 http://www.cs.sandia.gov/dakota

SAND2009-0463P

2

• Survey optimization terminology, problem
formulations, and sample problems

• Understand considerations for selecting an
optimization method

• Run DAKOTA examples of optimization methods
– Gradient-based methods
– Non-gradient pattern search and genetic algorithms
– Constrained optimization

• Using least-squares solvers for model calibration
(parameter estimation)

Use optimization methods to find parameters yielding the best
performing or minimum cost design. Or maximize agreement
between simulation and experimental results (calibration).

Optimization Learning Goals

3

• GOAL: Vary parameters to extremize

objectives, while
satisfying constraints to find (or tune) the best design,
estimate best parameters, analyze worst-case surety, e.g.,
determine:
– delivery network maximizing profit / minimizing environ. impact
– case geometry that minimizes drag and weight, yet is sufficiently

strong and safe
– AF&F with maximum design margin (title slide)
– material atomic configuration of minimum energy

x1

f(x1)

min

max

local
extrema

global
extrema

Some applications: local
improvement suffices;
others: must find global
minimum at any cost

Optimization

4

13 design vars d:
Wi , Li , θi

σ
σ

key relationship: force
vs. displacement

new tapered beam design

Typical design specifications:
• actuation force Fmin

reliably 5 μN
• bistable

(Fmax

> 0, Fmin

< 0)
• maximum force: 50 < Fmax

< 150
• equilibrium E2 < 8 μm
• maximum stress < 1200 MPa

MEMS Switch Design:
 Geometry Optimization

5

fuel tanks

“Lockheed Martin Aeronautics conducted a trade study for the F-35 Joint Strike Fighter (JSF) aircraft to
design the external fuel tank for improved performance, store separation, and flutter. CFD was used in
conjunction with Sandia National Laboratories’ Dakota optimization code to determine the optimal
shape of the tank that minimizes drag for maximum range and minimizes yawing moment for
separation of adjacent stores. Data obtained at several wind tunnel facilities verified the predicted
performance of the new aeroshaped, compartmented tank for separation and flutter, as well as acceptable
characteristics for loads, stability, and control.”

--

Dec. 2004 Aerospace America, p. 22

F-35: stealth and
supersonic cruise

~ $20 billion cost
~ 2600 aircraft (USN,
USAF, USMC, UK & other
foreign buyers)
LM CFD code:
• Expensive: 8 hrs/job on
16 processors

• Fluid flow around tank
highly sensitive to
shape changes

Optimization for Lockheed-Martin
F-35 External Fuel Tank Design

6

Objective function(s)*

Nonlinear inequality constraints
Nonlinear equality constraints
(Metrics above are typically computed by or

extracted from a simulation code)

(Analytic metrics below are typically specified
directly in a DAKOTA input deck)

Linear inequality constraints
Linear equality constraints

Bound constraints

Optimization Problem Formulation

Minimize: f(x1

, ...,xN

)

Subject to: gLB

≤

g(x) ≤

gUB

h(x) = hE

AI

x

≤

bI

AE

x = bE

xLB

≤

x ≤

xUB

* In practice, we can have multiple f-values in the objective
function (aka “multiobjective optimization”), and multiple
constraints of each type.

7

Basic Constraint Lingo

Unconstrained problem:

neither bound constraints nor linear/
nonlinear constraints

Bound-constrained problem: bound (variable space x) constraints
only (no linear/nonlinear constraints)

Linearly-constrained problem: the constraints are linear with
respect to the x-variables (may also have bound constraints)

Nonlinearly-constrained problem: the g(x) and h(x) constraints,
nonlinear w.r.t. the x variables, are present (may also have bound
constraints); perhaps most typical in engineering applications

8

Modify Newton’s root-finding method for solving f(x) = 0.

For optimization: find zeros of f’(x) = 0 (local extrema), go downhill

Gradient-based Optimization

)(
)(

'1
k

k
kk xf

xfxx −=+

)(
)(

''

'

1
k

k
kk xf

xfxx −=+

x1

f(x1)

x1

f(x1)

root

min

max

local
extrema

global
extrema

These derivatives extend to gradients
and Hessians in the multivariate case:

)(),(2 xfxf xx ∇∇

9

DAKOTA Optimization Methods

Gradient-based methods
(DAKOTA will compute finite

difference gradients and
FD/quasi-Hessians if necessary)

• DOT (various constrained)
• CONMIN (FRCG, MFD)
• NPSOL (SQP)
• NLPQL (SQP)
• OPT++ (CG, Newton)

Calibration (least-squares)
• NL2SOL (GN + QH)
• NLSSOL (SQP)
• OPT++ (Gauss-Newton)

Derivative-free methods
• COLINY (PS, APPS, Solis-

Wets, COBYLA2, EAs,
DIRECT)

• JEGA (single/multi-obj

GAs)
• EGO (efficient global opt via

Gaussian Process models)
• DIRECT (Gablonsky)
• OPT++ (parallel direct

search)
• TMF (templated meta-

heuristics framework)

Surrogate-based optimization

10

Getting Ready for an
Optimization Study with DAKOTA

Key decision criteria:
• Local and global sensitivity study data; trend and smoothness
• Simulation expense
• Constraint types present
• Goal: local optimization (improvement) or global optimization (best possible)

Unconstrained or bound-constrained problems:
• Smooth and cheap: nearly any method; gradient-based methods will be fastest
• Smooth and expensive: gradient-based methods
• Nonsmooth

and cheap: non-gradient methods such as pattern search (local opt),
genetic algorithms (global opt), DIRECT (global opt), or surrogate-based
optimization (quasi local/global opt)

• Nonsmooth

and expensive: surrogate-based optimization (SBO)*

Nonlinearly-constrained problems:
• Smooth and cheap: gradient-based methods
• Smooth and expensive: gradient-based methods
• Nonsmooth

and cheap: non-gradient methods w/ penalty functions, SBO
• Nonsmooth

and expensive: SBO

See guidance in User’s Manual, Chapter 19

11

• Survey optimization terminology, problem
formulations, and sample problems

• Understand considerations for selecting an
optimization method

• Run DAKOTA examples of optimization methods
– Gradient-based methods
– Non-gradient pattern search and genetic algorithms
– Constrained optimization

• Using least-squares solvers for model calibration
(parameter estimation)

Use optimization methods to find parameters yielding the best
performing or minimum cost design. Or maximize agreement
between simulation and experimental results (calibration).

Optimization Learning Goals

12

Recall: Rosenbrock

Function

f(x1,x2) = 100*(x2-x1*x1)2

+ (1-x1)2

-2 ≤

x1 ≤

2
-2 ≤

x2 ≤

2

Optimum point: (x1,x2) = (1,1); f(1,1) = 0.0

minimize
s.t.

13

Optimize Rosenbrock
 (Gradient-based Method)

• View and run examples/tutorial/

dakota_rosenbrock_grad_opt.in

(see User’s Manual 2.4.3)

• Started at (x1,x2) = (-1.0, 1.2)

(try other starting points)

• Search algorithm follows the
general descent direction “around
the bend”

of the Rosenbrock
function.

• Gradient-based optimization is very
efficient: ~30-100 evaluations of the
function values

needed to find the
minimum here.

• Next:
dakota_rosenbrock_ps_opt.in,
dakota_rosenbrock_ea_opt.in

14

Compare Gradient-based to
 Derivative-free Inputs

strategy,
single_method
graphics
tabular_graphics_data

method,
conmin_frcg
max_iterations = 100
convergence_tolerance = 1e-4

variables,
continuous_design = 2
cdv_initial_point -1.2 1.0
cdv_lower_bounds -2.0 -2.0
cdv_upper_bounds 2.0 2.0
cdv_descriptors ’x1’ ’x2’

interface,
direct
analysis_driver = ’rosenbrock’

responses,
num_objective_functions = 1
numerical_gradients
method_source dakota
interval_type forward
fd_gradient_step_size = 1.e-5

no_hessians

strategy,
single_method
graphics
tabular_graphics_data

method,
coliny_pattern_search
max_iterations = 1000
max_function_evaluations = 2000
solution_accuracy = 1e-4
initial_delta = 0.5
threshold_delta = 1e-4
exploratory_moves basic_pattern
contraction_factor = 0.75

variables,
continuous_design = 2
cdv_initial_point 0.0 0.0
cdv_lower_bounds -2.0 -2.0
cdv_upper_bounds 2.0 2.0
cdv_descriptors ’x1’ ’x2’

interface,
direct
analysis_driver = ’rosenbrock’

responses,
num_objective_functions = 1
no_gradients
no_hessiansdakota_rosenbrock_ps_opt.in

dakota_rosenbrock_grad_opt.in

15

Rosenbrock: Pattern Search

• Copy and run examples/tutorial/
dakota_rosenbrock_ps_opt.in
(pattern search: non-gradient
method)

• Stencil-based with
expansion/contraction (reliable
local convergence)

• Started at (x1,x2) = (0,0)

• Search algorithm has made some
progress toward the minimum after
generating ~2000 function values,
but still not converged to the
minimum.

• Next:

dakota_rosenbrock_ea_opt.in

16

Rosenbrock: Evolutionary
 Algorithm

• See examples/tutorial/
dakota_rosenbrock_ea_opt.in
(Genetic algorithm (GA): non-

gradient method, more global
search than pattern search)

• Started with 50 random points in
the parameter space; fitness,
selection, reproduction

• GA search algorithm run to
generate 10,000 f-values. 46 of
the 50 samples have settled
close to the true optimum

• GAs

and other global optimizers
are great for problems with many
local minima in which a gradient-

based optimizer might get
trapped.

Initial population
(50 random
samples)

Final population
(46 of 50 near
minimum)

17

Gradient-based
 Constrained Optimization

• GOAL: Minimize, subject to nonlinearly-constrained feasible region
(see textbook example, page 27 of User’s Manual; 2.2).

• See examples/tutorial/dakota_textbook.in

(see 2.4.4); notice
constraints in input deck responses

• Modify

to use fork interface with parameters_file

and results_file,
file_tag, file_save

• Inspect a results.out.x

file

to see the derivatives and constraints being
returned to DAKOTA

18

Summary on
Optimization Methods

• Selecting the right optimization method that matches the
particular attributes of your problem is critical, especially if

 your simulation code is expensive!

• You won’t have a good idea of the best optimization method
UNLESS you perform some local and global sensitivity
studies BEFORE you start optimizing.

*Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear

Security Administration under contract DE-AC04-94AL85000.

DAKOTA Training

Calibration
http://www.cs.sandia.gov/dakota

Learning goals:
• Understand what calibration is and is not and why it is important
• Differentiate between optimization and least-squares calibration

mathematical formulations
• Use various DAKOTA methods to perform model calibration to data
• How to run DAKOTA: specify (input deck) and run an analysis

2

What is calibration?

• Calibration: Adjust model parameters x to maximize agreement with
a set of experimental data.

• A.K.A. parameter estimation, parameter identification, systems
identification, nonlinear least-squares, inverse problem.

simulation output that
depends on x given data

s(x)x

time

te
m

p
er

at
u

re simulation output

s(x)

data

d

“black box”

simulator

3

Why use calibration?

• Ensure sufficient simulation code predictive capability

• Decrease the amount of info lost due to using a model
instead of the “truth” (minimize discrepancy)

• Increased understanding of design space

• Find parameters yielding improved model robustness

• Calibration is not validation! Separate data should be used
for calibration vs. validation.

4

Nonlinear Least Squares

• Calibration problems are often formulated to minimize the two
norm of the error between the model and data: minimize

• Example: osborne1 analytic test problem, with i = 1,…,33:

• A specialized class of optimization algorithms exploit this
structure for efficient solution without second derivative
information (more coming soon)

[] [] ()∑
=

−=−−==
n

i
ii

TT dxsdxsdxsxrxrxf
1

2)(
2
1)()(

2
1)()(

2
1)(

() ()110;)(54
321 −−=−++= itdexexxxr ii

xtxt
i

ii

model/simulation
data

5

method,
nl2sol
max_iterations =
convergence_tolerance =

model,
single

variables,
continuous_design = 5
cdv_initial_point .5 1.5 -1 .01 .02
cdv_lower_bounds .3 0.7 -2 .001 .001
cdv_upper_bounds .6 1.8 0 .2 .23
cdv_descriptor 'x1' 'x2' 'x3' 'x4' 'x5’

interface,
system

analysis_driver = './osborne1'
responses,

analytic_gradients
no_hessians

DAKOTA Input: osborne1

Method independent
options

num_least_square_terms = 33

6

Run Dakota on osborne1

> cd nlls
> dakota –i osborne1.in

<<<<< Function evaluation summary: 27 total (26 new, 1 duplicate)
<<<<< Best parameters =

3.7541004764e-01 cdv_1
1.9358463401e+00 cdv_2
-1.4646865611e+00 cdv_3
1.2867533504e-02 cdv_4
2.2122702031e-02 cdv_5

<<<<< Best residual norm = 7.3924926090e-03; 0.5 * norm
<<<<< Best residual terms =

2.5698266188e-03
-4.4759880011e-03

7

Using a Separate
Data Source (di): osborne1b(b)

method nl2sol
output silent
convergence_tolerance = -1.

variables,
continuous_design = 5
initial_point .5 1.5 .01 -1 .02
lower_bounds .2 1.0 .005 -1.5 .01
upper_bounds .6 2.0 .012 1.5 .05

interface,
system
analysis_driver = ’./osborne1b’

responses,
num_least_squares_terms = 33
least_squares_data_file ’osborne1_y’
analytic_gradients # For finite differences, comment this
numerical_gradients # and uncomment this line.
no_hessians

8

Least-squares Structure

[] []dxsdxsxrxrxf TT −−==)()(
2
1)()(

2
1)(

j

i
ij

T

x
rJxrxJxf

∂
∂

==∇ ;)()()(

)()()(2

1

2 xrxrJJxf i

n

i
i

T ∇+=∇ ∑
=

Algorithms vary in how they approximate this Hessian.

• When minimizing f(x) with gradient-based methods, can take
advantage of the form of its derivatives:

9

Hessian Approximations

2

1

Gauss-Newton: () ()

Levenberg-Marquardt: () () , with 0

2 : () () ,

with 0 or Quasi-Newton approximation to () ()

T

T

T

n

i i
i

J x J x

J x J x I

NL SOL J x J x S

S S f x f x

μ μ

=

+ ≥

+

= = ∇∑

)()()(2

1

2 xrxrJJxf i

n

i
i

T ∇+=∇ ∑
=

10

DAKOTA Method Selection

NL2SOL can handle highly nonlinear problems.

Calibration
Method Step Control Unconstrained Bounds

Linear/
Nonlinear

nl2sol trust region X X

nlssol line search X X X

optpp_g_newton trust region or
line search

X X X

11

Confidence Intervals on Params

dakota lls.in

...
<<<<< Best parameters =
3.9975104529e-01 cdv_1
7.8306751279e-01 cdv_2
-1.1317783545e-01 cdv_3
...

Confidence Interval for cdv_1
is [-5.2378467908e-01, 1.3232867697e+00]

Confidence Interval for cdv_2
is [-9.4840422538e-01, 2.5145392510e+00]

Confidence Interval for cdv_3
is [-1.5865346409e+00, 1.3601789700e+00]

12

Example: Electrical Application

• Radiation-aware
electrical models

• Predict responses of
electrical devices in
hostile environments

• Building blocks of a
large electrical system
being examined
hierarchically

• Access to code and
model developers

System-Level Circuit
(ASIC + Subcircuits)

Subcircuit
(analog)

ASIC
(Large digital circuit)

Single
Device

Hierarchical Electrical Model

13

Least Squares Objective Function

N = number of tests
Ti = (relevant) number of experimental values for test i
wi(Ti) = weighting factor (depends on number of

experimental points)
Si(t;x) = simulated value, calculated with parameters x,

corresponding to experimental point t for experiment i
ei(t) = test value of point t in test i

14

Parameters

• Device model has ~30 parameters
• Parameters ranked by modeler

– How much does the model rely on the
parameter being chosen correctly?

– How uncertain are we about the current value
being used?

• Selected
– 8 parameters for calibration
– Either physical parameters or covering “missing”

physics
• Modeler provided bounds and starting points

by “hand tuning” process

15

method,
nl2sol
max_iterations = 50
convergence_tolerance = 1.0e-4

model,
single

variables,
continuous_design = 8
cdv_initial_point 5e-3 1.4e-3 1e-8 2e-8 4e-3 1.6e-3 1e-9 2e-9
cdv_lower_bounds 2.5e-4 1e-4 1e-9 1e-9 2.5e-4 1e-4 1e-9 1e-9
cdv_upper_bounds 3.55e-3 1.3e-3 1e-5 3.55e-3 1e-3 1e-3 1e-5 1e-5
cdv_descriptor ‘cdn‘ ‘cdp‘ ‘ctau0‘ ‘ctauinf‘ ‘cdnhi’ ‘cdphi’ ‘ctau0hi’ ‘ctauinfhi’

interface,
system

analysis_driver = ‘./xyce.csh‘
responses,

num_least_squares_terms = 50
analytic_gradients
no_hessians

Typical Xyce input file
dakota_xyce.in

Method independent
options

16

Essential components of xyce.csh

• Preprocessing
./dprepro $argv[1] bft92_tmplt.net bft92_new.net

• Execution of simulation
./xyce bft92_new.net

• Post-processing
./compute_residuals

17

EXTRA SLIDES

18

Examples in nlls.tgz

gzip -dc nlls.tgz | tar xf -

gives directory nlls containing:

lls analysis driver compiled from lls.c
lls.c source for lls
lls.in DAKOTA input file using lls
osborne1 python script as analysis driver
osborne1[ab] variations on osborne1 script
osborne1*.in input files using osborne1*
osborne1 y right-hand side file (data) for osborne1b

and osborne1bb

19

nl2sol method dependent options

{nl2sol} \
[function_precision = <REAL>] \
[absolute_conv_tol = <REAL>] \
[x_conv_tol = <REAL>] \
[singular_conv_tol = <REAL>] \
[singular_radius = <REAL>] \
[false_conv_tol = <REAL>] \
[initial_trust_radius = <REAL>] \
[covariance = <INTEGER>] \
[regression_diagnostics] \

Reference Manual Chapter 2

20

Circuit Simulator

• Written at Sandia to support electrical (circuit) design
simulation

• Started with Berkeley SPICE 3f5
– Mostly Algebraic/Differential Equations with Behavioral

Model Options
– Physics based models (instead of empirical based models)
– Improvement over industry standard PSPICE capability

• Massively parallel code that allows simulation of large-scale
complex system circuit model
– Investigate circuit interactions
– Simulate large digital components

Hutchinson, Keiter, Hoekstra, Rankin, Waters, Russo, Wix, Ballard, …

	DAKOTA_training_Opt
	Slide Number 1
	Optimization Learning Goals
	Optimization
	MEMS Switch Design:�Geometry Optimization
	Optimization for Lockheed-Martin �F-35 External Fuel Tank Design
	Optimization Problem Formulation
	Basic Constraint Lingo
	Gradient-based Optimization
	DAKOTA Optimization Methods
	Getting Ready for an �Optimization Study with DAKOTA
	Optimization Learning Goals
	Recall: Rosenbrock Function
	Optimize Rosenbrock�(Gradient-based Method)
	Compare Gradient-based to�Derivative-free Inputs
	Rosenbrock: Pattern Search
	Rosenbrock: Evolutionary�Algorithm
	Gradient-based�Constrained Optimization
	Summary on �Optimization Methods

	DAKOTA_training_Calib
	Slide Number 1
	What is calibration?
	Why use calibration?
	Nonlinear Least Squares
	DAKOTA Input: osborne1
	Run Dakota on osborne1
	Using a Separate �Data Source (di): osborne1b(b)
	Least-squares Structure
	Hessian Approximations
	DAKOTA Method Selection
	Confidence Intervals on Params
	Example: Electrical Application
	Least Squares Objective Function
	Parameters
	Typical Xyce input file�dakota_xyce.in
	Essential components of xyce.csh
	EXTRA SLIDES
	Examples in nlls.tgz
	nl2sol method dependent options
	Circuit Simulator

