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• Survey optimization terminology, problem 
formulations, and sample problems

• Understand considerations for selecting an 
optimization method

• Run DAKOTA examples of optimization methods
– Gradient-based methods
– Non-gradient pattern search and genetic algorithms
– Constrained optimization

• Using least-squares solvers for model calibration 
(parameter estimation)

Use optimization methods to find parameters yielding the best 
performing or minimum cost design.  Or maximize agreement 
between simulation and experimental results (calibration). 

Optimization Learning Goals
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• GOAL: Vary parameters to extremize

 

objectives, while 
satisfying constraints to find (or tune) the best design, 
estimate best parameters, analyze worst-case surety, e.g., 
determine:
– delivery network maximizing profit / minimizing environ. impact
– case geometry that minimizes drag and weight, yet is sufficiently 

strong and safe
– AF&F with maximum design margin (title slide)
– material atomic configuration of minimum energy

x1

f(x1 )

min

max

local 
extrema

global 
extrema

Some applications: local 
improvement suffices; 
others: must find global 
minimum at any cost

Optimization
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13 design vars d: 
Wi , Li , θi

σ
σ

key relationship: force 
vs. displacement

new tapered beam design

Typical design specifications:
• actuation force Fmin

 

reliably 5 μN
• bistable

 

(Fmax

 

> 0, Fmin

 

< 0)
• maximum force: 50 < Fmax

 

< 150
• equilibrium E2 < 8 μm
• maximum stress < 1200 MPa

MEMS Switch Design:
 Geometry Optimization
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fuel tanks

“Lockheed Martin Aeronautics conducted a trade study for the F-35 Joint Strike Fighter (JSF) aircraft to 
design the external fuel tank for improved performance, store separation, and flutter. CFD was used in 
conjunction with Sandia National Laboratories’ Dakota optimization code to determine the optimal 
shape of the tank that minimizes drag for maximum range and minimizes yawing moment for 
separation of adjacent stores. Data obtained at several wind tunnel facilities verified the predicted 
performance of the new aeroshaped, compartmented tank for separation and flutter, as well as acceptable 
characteristics for loads, stability, and control.”

 

--

 

Dec. 2004 Aerospace America, p. 22

F-35: stealth and 
supersonic cruise

 
~ $20 billion cost
~ 2600 aircraft (USN, 
USAF, USMC, UK & other 
foreign buyers)
LM CFD code:
• Expensive: 8 hrs/job on 
16 processors

• Fluid flow around tank 
highly sensitive to 
shape changes  

Optimization for Lockheed-Martin 
F-35 External Fuel Tank Design
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Objective function(s)*

Nonlinear inequality constraints
Nonlinear equality constraints
(Metrics above are typically computed by or 

extracted from a simulation code)

(Analytic metrics below are typically specified 
directly in a DAKOTA input deck)

Linear inequality constraints
Linear equality constraints

Bound constraints

Optimization Problem Formulation

Minimize: f(x1

 

, ...,xN

 

)

Subject to: gLB

 

≤

 

g(x) ≤

 

gUB

h(x) = hE

AI

 

x

 

≤

 

bI

AE

 

x = bE

xLB

 

≤

 

x ≤

 

xUB

* In practice, we can have multiple f-values in the objective 
function (aka “multiobjective optimization”), and multiple 
constraints of each type.
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Basic Constraint Lingo

Unconstrained problem:

 

neither bound constraints nor linear/ 
nonlinear constraints

Bound-constrained problem: bound (variable space x) constraints 
only (no linear/nonlinear constraints)

Linearly-constrained problem: the constraints are linear with 
respect to the x-variables (may also have bound constraints)

Nonlinearly-constrained problem: the g(x) and h(x) constraints, 
nonlinear w.r.t. the x variables, are present (may also have bound 
constraints); perhaps most typical in engineering applications
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Modify Newton’s root-finding method for solving f(x) = 0.

For optimization: find zeros of f’(x) = 0 (local extrema), go downhill

Gradient-based Optimization 
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root

min
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local 
extrema

global 
extrema

These derivatives extend to gradients 
and Hessians in the multivariate case:

)(),( 2 xfxf xx ∇∇
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DAKOTA Optimization Methods

Gradient-based methods
(DAKOTA will compute finite 

difference gradients and 
FD/quasi-Hessians if necessary)

• DOT (various constrained)
• CONMIN (FRCG, MFD)
• NPSOL (SQP)
• NLPQL (SQP)
• OPT++ (CG, Newton)

Calibration (least-squares)
• NL2SOL (GN + QH)
• NLSSOL (SQP)
• OPT++ (Gauss-Newton)

Derivative-free methods
• COLINY (PS, APPS, Solis-

 
Wets, COBYLA2, EAs, 
DIRECT)

• JEGA (single/multi-obj

 

GAs)
• EGO (efficient global opt via 

Gaussian Process models)
• DIRECT (Gablonsky)
• OPT++ (parallel direct 

search)
• TMF (templated meta- 

heuristics framework)

Surrogate-based optimization
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Getting Ready for an 
Optimization Study with DAKOTA

Key decision criteria:
• Local and global sensitivity study data; trend and smoothness
• Simulation expense
• Constraint types present
• Goal: local optimization (improvement) or global optimization (best possible)

Unconstrained or bound-constrained problems:
• Smooth and cheap: nearly any method; gradient-based methods will be fastest
• Smooth and expensive: gradient-based methods
• Nonsmooth

 

and cheap: non-gradient methods such as pattern search (local opt), 
genetic algorithms (global opt), DIRECT (global opt), or surrogate-based 
optimization (quasi local/global opt)

• Nonsmooth

 

and expensive: surrogate-based optimization (SBO)*

Nonlinearly-constrained problems:
• Smooth and cheap: gradient-based methods
• Smooth and expensive: gradient-based methods
• Nonsmooth

 

and cheap: non-gradient methods w/ penalty functions, SBO
• Nonsmooth

 

and expensive: SBO

See guidance in User’s Manual, Chapter 19
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• Survey optimization terminology, problem 
formulations, and sample problems

• Understand considerations for selecting an 
optimization method

• Run DAKOTA examples of optimization methods
– Gradient-based methods
– Non-gradient pattern search and genetic algorithms
– Constrained optimization

• Using least-squares solvers for model calibration 
(parameter estimation)

Use optimization methods to find parameters yielding the best 
performing or minimum cost design.  Or maximize agreement 
between simulation and experimental results (calibration). 

Optimization Learning Goals
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Recall: Rosenbrock
 

Function

f(x1,x2) = 100*(x2-x1*x1)2

 

+ (1-x1)2

-2 ≤
 

x1 ≤
 

2
-2 ≤

 
x2 ≤

 
2

Optimum point: (x1,x2) = (1,1); f(1,1) = 0.0

minimize
s.t.
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Optimize Rosenbrock
 (Gradient-based Method)

• View and run examples/tutorial/

 
dakota_rosenbrock_grad_opt.in

 
(see User’s Manual 2.4.3)

• Started at (x1,x2) = (-1.0, 1.2)

 
(try other starting points)

• Search algorithm follows the 
general descent direction “around 
the bend”

 

of the Rosenbrock 
function.

• Gradient-based optimization is very 
efficient: ~30-100 evaluations of the 
function values

 

needed to find the 
minimum here.

• Next: 
dakota_rosenbrock_ps_opt.in, 
dakota_rosenbrock_ea_opt.in
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Compare Gradient-based to
 Derivative-free Inputs

strategy,
single_method
graphics
tabular_graphics_data

method,
conmin_frcg
max_iterations = 100
convergence_tolerance = 1e-4

variables,
continuous_design = 2
cdv_initial_point -1.2 1.0
cdv_lower_bounds -2.0 -2.0
cdv_upper_bounds 2.0 2.0
cdv_descriptors ’x1’ ’x2’

interface,
direct
analysis_driver = ’rosenbrock’

responses,
num_objective_functions = 1
numerical_gradients
method_source dakota
interval_type forward
fd_gradient_step_size = 1.e-5

no_hessians

strategy,
single_method
graphics
tabular_graphics_data

method,
coliny_pattern_search
max_iterations = 1000
max_function_evaluations = 2000
solution_accuracy = 1e-4
initial_delta = 0.5
threshold_delta = 1e-4
exploratory_moves basic_pattern
contraction_factor = 0.75

variables,
continuous_design = 2
cdv_initial_point 0.0 0.0
cdv_lower_bounds -2.0 -2.0
cdv_upper_bounds 2.0 2.0
cdv_descriptors ’x1’ ’x2’

interface,
direct
analysis_driver = ’rosenbrock’

responses,
num_objective_functions = 1
no_gradients
no_hessiansdakota_rosenbrock_ps_opt.in

dakota_rosenbrock_grad_opt.in
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Rosenbrock: Pattern Search

• Copy and run examples/tutorial/ 
dakota_rosenbrock_ps_opt.in
(pattern search: non-gradient 
method)

• Stencil-based with 
expansion/contraction (reliable 
local convergence)

• Started at (x1,x2) = (0,0)

• Search algorithm has made some 
progress toward the minimum after 
generating ~2000 function values, 
but still not converged to the 
minimum.

• Next:

 

dakota_rosenbrock_ea_opt.in
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Rosenbrock: Evolutionary
 Algorithm

• See examples/tutorial/ 
dakota_rosenbrock_ea_opt.in
(Genetic algorithm (GA): non-

 
gradient method, more global 
search than pattern search)

• Started with 50 random points in 
the parameter space; fitness, 
selection, reproduction

• GA search algorithm run to 
generate 10,000 f-values. 46 of 
the 50 samples have settled 
close to the true optimum

• GAs

 

and other global optimizers 
are great for problems with many 
local minima in which a gradient-

 
based optimizer might get 
trapped.

Initial population 
(50 random 
samples)

Final population 
(46 of 50 near 
minimum)
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Gradient-based
 Constrained Optimization

• GOAL: Minimize, subject to nonlinearly-constrained feasible region 
(see textbook example, page 27 of User’s Manual; 2.2).

• See examples/tutorial/dakota_textbook.in

 

(see 2.4.4); notice 
constraints in input deck responses

• Modify

 

to use fork interface with parameters_file

 

and results_file, 
file_tag, file_save

• Inspect a results.out.x

 

file

 

to see the derivatives and constraints being 
returned to DAKOTA
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Summary on 
Optimization Methods

• Selecting the right optimization method that matches the 
particular attributes of your problem is critical, especially if

 your simulation code is expensive!

• You won’t have a good idea of the best optimization method 
UNLESS you perform some local and global sensitivity 
studies BEFORE you start optimizing.



*Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed 
Martin Company, for the United States Department of Energy’s National Nuclear 

Security Administration under contract DE-AC04-94AL85000.

DAKOTA Training 

Calibration 
http://www.cs.sandia.gov/dakota

Learning goals:
• Understand what calibration is and is not and why it is important
• Differentiate between optimization and least-squares calibration 

mathematical formulations
• Use various DAKOTA methods to perform model calibration to data
• How to run DAKOTA: specify (input deck) and run an analysis
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What is calibration?

• Calibration: Adjust model parameters x to maximize agreement with 
a set of experimental data.

• A.K.A. parameter estimation, parameter identification, systems 
identification, nonlinear least-squares, inverse problem.

simulation output that 
depends on x given data

s(x)x

time

te
m

p
er

at
u

re simulation output

 

s(x)

data

 

d

“black box”

 

simulator
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Why use calibration?

• Ensure sufficient simulation code predictive capability

• Decrease the amount of info lost due to using a model 
instead of the “truth” (minimize discrepancy)

• Increased understanding of design space

• Find parameters yielding improved model robustness

• Calibration is not validation! Separate data should be used 
for calibration vs. validation.
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Nonlinear Least Squares

• Calibration problems are often formulated to minimize the two 
norm of the error between the model and data: minimize

• Example: osborne1 analytic test problem, with i = 1,…,33:

• A specialized class of optimization algorithms exploit this 
structure for efficient solution without second derivative 
information (more coming soon)   
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method,
nl2sol
max_iterations = 
convergence_tolerance = 

model, 
single

variables,
continuous_design = 5
cdv_initial_point .5 1.5 -1 .01 .02 
cdv_lower_bounds .3 0.7 -2 .001 .001 
cdv_upper_bounds .6 1.8 0 .2 .23 
cdv_descriptor 'x1' 'x2' 'x3' 'x4' 'x5’

interface,
system

analysis_driver = './osborne1'
responses,

analytic_gradients
no_hessians

DAKOTA Input: osborne1

Method independent 
options

num_least_square_terms = 33
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Run Dakota on osborne1

> cd nlls
> dakota –i osborne1.in

<<<<< Function evaluation summary: 27 total (26 new, 1 duplicate)
<<<<< Best parameters =

3.7541004764e-01 cdv_1
1.9358463401e+00 cdv_2
-1.4646865611e+00 cdv_3
1.2867533504e-02 cdv_4
2.2122702031e-02 cdv_5

<<<<< Best residual norm = 7.3924926090e-03; 0.5 * norm
<<<<< Best residual terms =

2.5698266188e-03
-4.4759880011e-03
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Using a Separate 
Data Source (di ): osborne1b(b)

method nl2sol
output silent
convergence_tolerance = -1. 

variables,
continuous_design = 5
initial_point .5 1.5 .01 -1 .02
lower_bounds .2 1.0 .005 -1.5 .01
upper_bounds .6 2.0 .012 1.5 .05

interface,
system
analysis_driver = ’./osborne1b’

responses,
num_least_squares_terms = 33
least_squares_data_file ’osborne1_y’
analytic_gradients # For finite differences, comment this
# numerical_gradients # and uncomment this line.
no_hessians
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Least-squares Structure
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Algorithms vary in how they approximate this Hessian.

• When minimizing f(x) with gradient-based methods, can take 
advantage of the form of its derivatives:
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Hessian Approximations
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DAKOTA Method Selection

NL2SOL can handle highly nonlinear problems.

Calibration 
Method Step Control Unconstrained Bounds

Linear/
Nonlinear

nl2sol trust region X X

nlssol line search X X X

optpp_g_newton trust region or 
line search

X X X
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Confidence Intervals on Params

dakota lls.in

...
<<<<< Best parameters =
3.9975104529e-01 cdv_1
7.8306751279e-01 cdv_2
-1.1317783545e-01 cdv_3
...

Confidence Interval for cdv_1
is [ -5.2378467908e-01, 1.3232867697e+00 ]

Confidence Interval for cdv_2
is [ -9.4840422538e-01, 2.5145392510e+00 ]

Confidence Interval for cdv_3
is [ -1.5865346409e+00, 1.3601789700e+00 ]
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Example: Electrical Application

• Radiation-aware 
electrical models 

• Predict responses of 
electrical devices in 
hostile environments

• Building blocks of a 
large electrical system 
being examined 
hierarchically

• Access to code and 
model developers

System-Level Circuit
(ASIC + Subcircuits)

Subcircuit
(analog)

ASIC
(Large digital circuit)

Single
Device

Hierarchical Electrical Model
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Least Squares Objective Function

N = number of tests
Ti = (relevant) number of experimental values for test i
wi(Ti) = weighting factor (depends on number of 

experimental points)
Si(t;x) = simulated value, calculated with parameters x, 

corresponding to experimental point t for experiment i
ei(t) = test value of point t in test i
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Parameters

• Device model has ~30 parameters
• Parameters ranked by modeler

– How much does the model rely on the 
parameter being chosen correctly?

– How uncertain are we about the current value 
being used?

• Selected 
– 8 parameters for calibration
– Either physical parameters or covering “missing” 

physics
• Modeler provided bounds and starting points 

by “hand tuning” process
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method,
nl2sol
max_iterations = 50
convergence_tolerance = 1.0e-4

model, 
single

variables,
continuous_design = 8
cdv_initial_point 5e-3  1.4e-3  1e-8  2e-8  4e-3 1.6e-3  1e-9 2e-9
cdv_lower_bounds 2.5e-4  1e-4  1e-9  1e-9 2.5e-4  1e-4  1e-9  1e-9
cdv_upper_bounds 3.55e-3  1.3e-3  1e-5  3.55e-3  1e-3  1e-3 1e-5  1e-5
cdv_descriptor ‘cdn‘ ‘cdp‘ ‘ctau0‘ ‘ctauinf‘ ‘cdnhi’ ‘cdphi’ ‘ctau0hi’ ‘ctauinfhi’

interface,
system

analysis_driver = ‘./xyce.csh‘
responses,

num_least_squares_terms = 50 
analytic_gradients
no_hessians

Typical Xyce input file 
dakota_xyce.in

Method independent 
options
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Essential components of xyce.csh

• Preprocessing
./dprepro $argv[1] bft92_tmplt.net bft92_new.net

• Execution of simulation
./xyce bft92_new.net

• Post-processing
./compute_residuals
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EXTRA SLIDES
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Examples in nlls.tgz

gzip -dc nlls.tgz | tar xf -

gives directory nlls containing:

lls analysis driver compiled from lls.c
lls.c source for lls
lls.in DAKOTA input file using lls
osborne1 python script as analysis driver
osborne1[ab] variations on osborne1 script
osborne1*.in input files using osborne1*
osborne1 y right-hand side file (data) for osborne1b 

and osborne1bb
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nl2sol  method dependent options 

{nl2sol} \
[function_precision = <REAL>] \
[absolute_conv_tol = <REAL>] \ 
[x_conv_tol = <REAL>] \
[singular_conv_tol = <REAL>] \
[singular_radius = <REAL>] \
[false_conv_tol = <REAL>] \
[initial_trust_radius = <REAL>] \
[covariance = <INTEGER>] \
[regression_diagnostics] \

Reference Manual Chapter 2
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Circuit Simulator

• Written at Sandia to support electrical (circuit) design 
simulation 

• Started with Berkeley SPICE 3f5 
– Mostly Algebraic/Differential Equations with Behavioral 

Model Options
– Physics based models (instead of empirical based models)
– Improvement over industry standard PSPICE capability

• Massively parallel code that allows simulation of large-scale 
complex system circuit model
– Investigate circuit interactions
– Simulate large digital components

Hutchinson, Keiter, Hoekstra, Rankin, Waters, Russo, Wix, Ballard, …
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