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}' Optimization Learning Goals

Use optimization methods to find parameters yielding the best
performing or minimum cost design. Or maximize agreement
between simulation and experimental results (calibration).

» Survey optimization terminology, problem
formulations, and sample problems

» Understand considerations for selecting an
optimization method

* Run DAKOTA examples of optimization methods
— Gradient-based methods
— Non-gradient pattern search and genetic algorithms
— Constrained optimization

» Using least-squares solvers for model calibration
(parameter estimation)

Sandia
m National
2 Laboratories




\

Optimization

« GOAL: Vary parameters to extremize objectives, while
satisfying constraints to find (or tune) the best design,
estimate best parameters, analyze worst-case surety, e.g.,

determine:

— delivery network maximizing profit / minimizing environ. impact

— case geometry that minimizes drag and weight, yet is sufficiently
strong and safe

— AF&F with maximum design margin (title slide)
— material atomic configuration of minimum energy
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global
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Some applications: local
improvement suffices;
others: must find global
minimum at any cost
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- MEMS Switch Design:
2 Geometry Optimization
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Optimization for Lockheed-Martin
F-35 External Fuel Tank Design

F-35: stealth and
supersonic cruise

~ $20 billion cost

~ 2600 aircraft (USN,
USAF, USMC, UK & other
foreign buyers)

FERSRRERR A “ﬁ-’n-‘"  bey
.l_';ltlu-uuun'.!.';'.'l',"':.‘:.“‘ Hibbren
aampig .

LM CFD code:
* Expensive: 8 hrs/job on
2 ‘ fuel tanks 16 processors
B e e e * Fluid flow around tank
This wind tunnel model of F-35 . -y
features an optimized external hi g h Iy sensitive to
fuel tank. shape changes

“Lockheed Martin Aeronautics conducted a trade study for the F-35 Joint Strike Fighter (JSF) aircraft to
design the external fuel tank for improved performance, store separation, and flutter. CFD was used in
conjunction with Sandia National Laboratories’ Dakota optimization code to determine the optimal
shape of the tank that minimizes drag for maximum range and minimizes yawing moment for
separation of adjacent stores. Data obtained at several wind tunnel facilities verified the predicted
performance of the new aeroshaped, compartmented tank for separation and flutter, as well as acceptable

characteristics for loads, stability, and control.” -- Dec. 2004 Aerospace America, p. 22 Soni
m National
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‘Optimization Problem Formulation

Minimize: (X, ...,Xy) Objective function(s)*

Subjectto: g,5<g(x)<g, Nonlinearinequality constraints

h(x) = h¢ Nonlinear equality constraints

(Metrics above are typically computed by or
extracted from a simulation code)

(Analytic metrics below are typically specified
directly in a DAKOTA input deck)

Ax s b, Linear inequality constraints
Aex = be Linear equality constraints
X\ g S XS Xyg Bound constraints

*In practice, we can have multiple f-values in the objective
function (aka “multiobjective optimization”), and multiple
constraints of each type.
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Basic Constraint Lingo

Unconstrained problem: neither bound constraints nor linear/
nonlinear constraints

Bound-constrained problem: bound (variable space x) constraints
only (no linear/nonlinear constraints)

Linearly-constrained problem: the constraints are linear with
respect to the x-variables (may also have bound constraints)

Nonlinearly-constrained problem: the g(x) and h(x) constraints,
nonlinear w.r.t. the x variables, are present (may also have bound
constraints); perhaps most typical in engineering applications
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Gradient-based Optimization

Modify Newton’s root-finding method for solving f(x) = 0.

f(x,)
F(x) -

Xer1 = K — £(x)
k

For optimization: find zeros of f(x) = 0 (local extrema), go downhill

' global
f (Xk) extrema

X, =X, ——
LT (%) f(x,) —
Y\’\ICZ(‘:aI

extrema

These derivatives extend to gradients
and Hessians in the multivariate case:

v, f(x), Vif(%)

h

X3
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}‘ DAKOTA Optimization Methods @

Gradient-based methods Derivative-free methods

(DAKOTA will compute finite « COLINY (PS, APPS, Solis-
difference gradients and Wets, COBYLA2, EAs,
FD/quasi-Hessians if necessary) DIRECT)

 DOT (various constrained) « JEGA (single/multi-obj GAs)

« CONMIN (FRCG, MFD) EGO (efficient global opt via
« NPSOL (SQP) Gaussian Process models)

« NLPQL (SQP)  DIRECT (Gablons.ky)
. OPT++ (CG, Newton) * OPT++ (parallel direct

search)
« TMF (templated meta-
Calibration (least-squares) heuristics framework)
« NL2SOL (GN + QH)
« NLSSOL (SQP) Surrogate-based optimization

« OPT++ (Gauss-Newton)
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' Getting Ready for an )

Optimization Study with DAKOTA

Key decision criteria:

* Local and global sensitivity study data; trend and smoothness

o Simulation expense

» Constraint types present

» Goal: local optimization (improvement) or global optimization (best possible)

Unconstrained or bound-constrained problems:
« Smooth and cheap: nearly any method; gradient-based methods will be fastest
« Smooth and expensive: gradient-based methods

 Nonsmooth and cheap: non-gradient methods such as pattern search (local opt),
genetic algorithms (global opt), DIRECT (global opt), or surrogate-based
optimization (quasi local/global opt)

« Nonsmooth and expensive: surrogate-based optimization (SBO)*

Nonlinearly-constrained problems:

« Smooth and cheap: gradient-based methods

« Smooth and expensive: gradient-based methods

 Nonsmooth and cheap: non-gradient methods w/ penalty functions, SBO
« Nonsmooth and expensive: SBO

See guidance in User’'s Manual, Chapter 19
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Optimization Learning Goals

Use optimization methods to find parameters yielding the best
performing or minimum cost design. Or maximize agreement
between simulation and experimental results (calibration).

* Survey optimization terminology, problem
formulations, and sample problems

 Understand considerations for selecting an
optimization method

* Run DAKOTA examples of optimization methods
— Gradient-based methods
— Non-gradient pattern search and genetic algorithms
— Constrained optimization

» Using least-squares solvers for model calibration
(parameter estimation)
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- Recall: Rosenbrock Function

N/

e e
L

2
MINIMIZE  f(x1,x2) = 100%(x2-x1*x1)2 + (1-x1)2
s.t. 2<x1<2
2<x2<2
Optimum point: (x1,x2) = (1,1); f(1,1) = 0.0 A e
12 Laboratories




13

(Gradient-based Method)

* View and run examples/tutorial/

dakota_rosenbrock_grad_opt.in
(see User’s Manual 2.4.3)

Started at (x1,x2) = (-1.0, 1.2)
(try other starting points)

Search algorithm follows the
general descent direction “around
the bend” of the Rosenbrock
function.

Gradient-based optimization is very
efficient: ~30-100 evaluations of the
function values needed to find the
minimum here.

Next:
dakota_rosenbrock _ps_opt.in,
dakota_rosenbrock ea_opt.in
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Compare Gradient-based to
Derivative-free Inputs

dakota_rosenbrock _grad_opt.in strategy,
— — — single_method
strategy, hi
single_method grapnics _
graphics tabular_graphics_data
tabular_graphics_data
method,
method, coliny pattern_search

conmin_frcg
max_iterations = 100
convergence_tolerance = le-4

max_iterations = 1000
max_function_evaluations = 2000
solution_accuracy = le-4
variables, initial delta = 0.5
continuous_design = 2 threshold_delta = le-4
cdv_initial_point -1.2 1.0 exploratory_moves basic_pattern

cdv_lower_bounds -2.0 -2.0 _
cdv_upper_bounds 2.0 2.0 contraction_factor = 0.75

cdv_descriptors “x1” “x2”

variables,
intgrface, continuous_design = 2
direct ) . . cdv_initial_point 0.0 0.0
analysis_driver = “rosenbrock cdv_lower_bounds -2.0 -2.0

responses, cdv_upper_bounds 2.0 2.0

num_objective_functions = 1 cdv_descriptors “x1” ’*x2’
numerical_gradients
method_source dakota interface,
interval_type forward direct
fd_gradient_step _size = 1.e-5 ) i
no_hessians analysis_driver = “rosenbrock’
responses,
num_objective_functions = 1
no_gradients
. no_hessians Sandia
14 dakota_rosenbrock _ps_opt.in National
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Rosenbrock: Pattern Search

* Copy and run examples/tutorial/

dakota_rosenbrock_ps_opt.in

(pattern search: non-gradient
method)

Stencil-based with
expansion/contraction (reliable
local convergence)

Started at (x1,x2) = (0,0)

Search algorithm has made some
progress toward the minimum after
generating ~2000 function values,
but still not converged to the
minimum.

* Next: dakota_rosenbrock_ea_opt.in
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Algorithm

Initial population ,

o See examples/tutorial/

] RN NN ,
dakota_rosenbrock_ea_opt.in (50 random i\
(Genetic algorithm (GA): non- samples) N

gradient method, more global
search than pattern search)

» Started with 50 random points in _
the parameter space; fithess,
selection, reproduction

* GA search algorithm run to

generate 10,000 f-values. 46 of Final population - Sy
the 50 samples have settled (46 of 50 near W NNS— )
close to the true optimum minimum) N
N
\\'\\ L_-\ . -’1/
« GAs and other global optimizers W =/
are great for problems with many -r-gg-\;\\\:{:\"\u g/
local minima in which a gradient- N\N—
based optimizer might get \\%\\{%fﬁ;
trapped. %\\&f&%h@/cifz}:.
-1
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Gradient-based @
Constrained Optimization

=ad

« GOAL: Minimize, subject to nonlinearly-constrained feasible region
(see textbook example, page 27 of User’s Manual; 2.2).

» See examples/tutorial/dakota_textbook.in (see 2.4.4); notice
constraints in input deck responses

* Modify to use fork interface with parameters_file and results_file,
file_tag, file_save

 Inspect a results.out.x file to see the derivatives and constraints being
returned to DAKOTA

r\\ 'I‘ Sandia

-1 05 0 0.5 1 National
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V
Ny ' Summary on @
- Optimization Methods

» Selecting the right optimization method that matches the
particular attributes of your problem is critical, especially if
your simulation code is expensive!

 You won’t have a good idea of the best optimization method
UNLESS you perform some local and global sensitivity
studies BEFORE you start optimizing.
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DAKOTA Training

Calibration
http://www.cs.sandia.gov/dakota

Learning goals:
 Understand what calibration is and is not and why it is important

 Differentiate between optimization and least-squares calibration
mathematical formulations

» Use various DAKOTA methods to perform model calibration to data
« How to run DAKOTA: specify (input deck) and run an analysis

T VAT =%
TN A’ &=

SR

Martin Company, for the United States Department of Energy’s National Nuclear National
Security Administration under contract DE-AC04-94AL85000. Laboratories

| Nuclear fy A
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What is calibration?

f(az) = Z (si(z) — d; )2
i—=1 — —’

simulation output that \ . dat
depends on x given dara

()]

3 simulation output S(X)

g

- data d
"black box" simulator time

« Calibration: Adjust model parameters x to maximize agreement with
a set of experimental data.

 A.K.A. parameter estimation, parameter identification, systems

identification, nonlinear least-squares, inverse problem. h
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Why use calibration?

* Ensure sufficient simulation code predictive capability

* Decrease the amount of info lost due to using a model
instead of the “truth” (minimize discrepancy)

* Increased understanding of design space

* Find parameters yielding improved model robustness

e Calibration is not validation! Separate data should be used
for calibration vs. validation.

Sandia
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Nonlinear Least Squares

» Calibration problems are often formulated to minimize the two
norm of the error between the model and data: minimize

00 =2r007r(0 = 500~ [s00-d]=2> (s, (9 -, ]

« Example: osbornel analytic test problem, with i =1,...,33:

r(X) = (x1 + X, + X,8% )— d; t =-10(i—1)

S~ ~ — dClTCl
model/simulation

» A specialized class of optimization algorithms exploit this
structure for efficient solution without second derivative
information (more coming soon)
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DAKOTA Input: osbornel

method,
ni2sol
max_iterations =
convergence_tolerance =
model,
single
variables,
continuous_design =5
cdv_initial_point 5 1.5
cdv_lower _bounds .3 0.7 -2
cdv_upper_bounds .6 1.8 0
cdv_descriptor 'x1' 'x2'
interface,
system
analysis_driver = '.Josbornel’
responses

num_least square terms = 33

analytic_gradients
no_hessians

-1
.001

IX3l

Method independent
options

.01 .02
.001

23

x4’ X5’

Sandia
m National
Laboratories




__ __
}' Run Dakota on osbornel @

> cd nlls
> dakota —1 osbornel.in

<<<<< Function evaluation summary: 27 total (26 new, 1 duplicate)
<<<<< Best parameters =
3.7541004764e-01 cdv_1
1.9358463401e+00 cdv_2
-1.4646865611e+00 cdv_3
1.2867533504e-02 cdv_4
2.2122702031e-02 cdv_5
<<<<< Best residual norm = 7.3924926090e-03; 0.5 * norm
<<<<< Best residual terms =
2.5698266188e-03
-4.4759880011e-03 Sandi

National
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V
P 4 ' Using a Separate

Data Source (d,): osbornelb(b)

method nl2sol
output silent
convergence_tolerance = -1.

variables,
continuous_design = 5
initial _point .5 1.5 .01 -1 .02
lower bounds .2 1.0 .005 -1.5 .01
upper_bounds .6 2.0 .012 1.5 .05

interface,
system
analysis _driver = ”_/osbornelb”

responses,
num_least squares_terms = 33
least squares_data file *osbornel y~

# numerical _gradients # and uncomment this line.
no_hessians

analytic_gradients # For Tinite differences, comment this

h

Sandia
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}' Least-squares Structure

« When minimizing f(x) with gradient-based methods, can take
advantage of the form of its derivatives:

00 =2r(9" 100 = s~ [s00

VE()=J(X)'r(x); J; _ o
OX;

ViE(x)=J"J +Zn:ri(x)V2ri(x)

Algorithms vary in how they approximate this Hessian.

Sandia
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A
} Hesslian Approximations

Vif(x)=J"J +Zn:ri(x)V2ri(x)

Gauss-Newton: J(x)" J (X)
Levenberg-Marquardt: J (x)" J (x) + ul,with >0
NL2SOL: J(x)" J(x)+S,

with S =0 or S = Quasi-Newton approximation to »_ f, (x)V*f,(x)

=1
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m National
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‘ DAKOTA Method Selection

Calibration Linear/

Method Step Control Unconstrained | Bounds | Nonlinear

nl2sol trust region X X

nlssol line search X X X

optpp_g_newton | trustregion or X X X
line search

NL2SOL can handle highly nonlinear problems.

Sandia
m National
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Confidence Intervals on Params

dakota Ils.i1n

<< Best parameters =
3.9975104529e-01 cdv_1
7.8306751279e-01 cdv_2
-1.1317783545e-01 cdv_3

Confidence Interval for cdv_ 1
iIs [ -5.2378467908e-01, 1.3232867697e+00 ]

Confidence Interval for cdv_ 2
iIs [ -9.4840422538e-01, 2.5145392510e+00 ]

Confidence Interval for cdv_3
iIs [ -1.5865346409e+00, 1.3601789700e+00 ]

Sandia
m National
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Example: Electrical Application

Radiation-aware
electrical models

Predict responses of
electrical devices In
hostile environments

Building blocks of a
large electrical system
being examined
hierarchically

Access to code and
model developers

Hierarchical Electrical Model

Sandia
National
Laboratories
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} Least Squares Objective Function

N L
(e T e B 0 s T A
= T

N = number of tests
= (relevant) number of experimental values for test |

W, (T) weighting factor (depends on number of
experlmental points)

S,(t;X) = simulated value, calculated with parameters X,
corresponding to experimental point t for experiment |

e;(t) = test value of point tin test I
m ﬁaa?igir’:lal_
13 Laboratories




2 &
; Parameters

Device model has ~30 parameters
Parameters ranked by modeler

— How much does the model rely on the
parameter being chosen correctly?

— How uncertain are we about the current value
being used?
Selected
— 8 parameters for calibration
— Either physical parameters or covering “missing”
physics
Modeler provided bounds and starting points
by “hand tuning” process

Sandia
m National
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dakota xyce.lIn

method,
ni2sol
max_iterations = 50 Method independent
convergence_tolerance = 1.0e-4 options
model,
single
variables,
continuous_design = 8
cdv_initial_point 5e-3 1.4e-3 l1le-8 2e-8 4e-3 1.6e-3 l1le-9 2e-9
cdv_lower bounds 2.5e-4 le-4 1e-9 1e-9 2.5e-4 le-4 le-9 le-9
cdv_upper_bounds 3.55e-3 1.3e-3 l1le-5 3.55e-3 1le-3 le-3 le-5 le-5
cdv_descriptor ‘cdn’ ‘cdp’ ‘ctauQ‘ ‘ctauinf’ ‘cdnhi’ ‘cdphi’ ‘ctauOhi’ ‘ctauinfhi’
interface,
system
analysis_driver = ‘./xyce.csh’
responses,

15

num_least squares _terms = 50
analytic_gradients
no_hessians
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}Essential components of xyce.csh

* Preprocessing
./dprepro $argv[l] bft92 tmplt.net bft92 new.net

e Execution of simulation
./xyce bft92 new.net

e Post-processing
Jcompute_residuals

Sandia
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*‘ EXTRA SLIDES
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Examples in nlls.tgz

gzip -dc nlls.tgz | tar xf -

gives directory nlls containing:

lls analysis driver compiled from lls.c
lls.c source for lls

lIs.in DAKOTA input file using lls
osbornel python script as analysis driver

osbornel[ab] variations on osbornel script
osbornel*.in input files using osbornel*

osbornel y right-hand side file (data) for osbornelb
and osbornelbb

Sandia
m National
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}ansol method dependent options

{nl2sol}

function_precision = <REAL>]
‘absolute _conv_tol = <REAL>]
X_conv_tol = <REAL>]
'singular_conv_tol = <REAL>]
singular_radius = <REAL>]
false conv_tol = <REAL>]
initial_trust_radius = <REAL>]
‘covariance = <INTEGER>]
regression_diagnostics]

Sandia
m National
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Circuilt Simulator

« Written at Sandia to support electrical (circuit) design
simulation

o Started with Berkeley SPICE 3f5

— Mostly Algebraic/Differential Equations with Behavioral
Model Options

— Physics based models (instead of empirical based models)
— Improvement over industry standard PSPICE capability

« Massively parallel code that allows simulation of large-scale
complex system circuit model

— Investigate circuit interactions

— Simulate large digital components /__/_[_[—

PARALLEL ELECTRONIC SIMULATOR

Hutchinson, Keiter, Hoekstra, Rankin, Waters, Russo, Wix, Ballard, ...

Sandia
m National
20 Laboratories




	DAKOTA_training_Opt
	Slide Number 1
	Optimization Learning Goals
	Optimization
	MEMS Switch Design:�Geometry Optimization
	Optimization for Lockheed-Martin �F-35 External Fuel Tank Design
	Optimization Problem Formulation
	Basic Constraint Lingo
	Gradient-based Optimization 
	DAKOTA Optimization Methods
	Getting Ready for an �Optimization Study with DAKOTA
	Optimization Learning Goals
	Recall: Rosenbrock Function
	Optimize Rosenbrock�(Gradient-based Method)
	Compare Gradient-based to�Derivative-free Inputs
	Rosenbrock: Pattern Search
	Rosenbrock: Evolutionary�Algorithm
	Gradient-based�Constrained Optimization
	Summary on �Optimization Methods

	DAKOTA_training_Calib
	Slide Number 1
	What is calibration?
	Why use calibration?
	Nonlinear Least Squares
	DAKOTA Input: osborne1
	Run Dakota on osborne1
	Using a Separate �Data Source (di): osborne1b(b)
	Least-squares Structure
	Hessian Approximations
	DAKOTA Method Selection
	Confidence Intervals on Params
	Example: Electrical Application
	Least Squares Objective Function
	Parameters
	Typical Xyce input file�dakota_xyce.in
	Essential components of xyce.csh
	EXTRA SLIDES
	Examples in nlls.tgz
	nl2sol  method dependent options 
	Circuit Simulator


