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$' Context for Waste Form Modeling :

Performance Assessment of a Geologic Repository

For the Yucca Mountain Project:
Performance assessment means an analysis that:

(1) Identifies the features, events, processes (except human
intrusion), and sequences of events and processes (except
human intrusion) that might affect the Yucca Mountain disposal
system and their probabilities of occurring during 10,000 years
after disposal;

(2) Examines the effects of those features, events, processes,
and sequences of events and processes upon the performance
of the Yucca Mountain disposal system; and

(3) Estimates the dose incurred by the reasonably maximally
exposed individual, including the associated uncertainties, as a
result of releases caused by all significant features, events,
processes, and sequences of events and processes, weighted
by their probability of occurrence. (10 CFR 63.2)
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?‘ Four Questions Underlying Performance
Assessment

* Q1: What can happen?

* Q2: How likely is it to happen?

* Q3: What are the consequences if it does
happen?
— Kaplan and Garrick “risk triplet”

— Used to structure performance assessment for
WIPP, Yucca Mountain Project, internationally

* Q4: What is the uncertainty in the answers to the
first three questions?
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* Types of uncertainty
— Aleatory: inherent uncertainty about the future

— Epistemic: lack of knowledge about repository system
« Parameter and model uncertainty

Treatment of Uncertainty

 Aleatory uncertainty

— Set of scenarios (with probabilities of occurrence)
« Parameter uncertainty

— Probabillity distributions on model inputs
* Model uncertainty

— YMP approach: select a model, consider alternates, apply
conservative and bounding criteria to justify selection
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terative Performance Assessment Methodology

- [dentify features, events, processes (FEPs)

» Screen FEPs for inclusion or exclusion

— Process models may be developed for included and
excluded FEPs

— Uncertainty explicitly addressed in included FEPs

* Incorporate included FEPs in system-level model
— Generally start with minimum acceptable detail

« Conduct uncertainty and sensitivity analyses
— Estimate repository performance with uncertainty
— Which uncertain inputs contribute to uncertainty in output?
— Which FEPs contribute to magnitude of output?
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Iterative Performance Assessment Methodology (cont.)

 Risk-informed iteration
— |ldeally, adjust detail and uncertainty commensurate with process
importance

« Add detail where conservatism or bounding approach has undue
effects

« Remove detail and uncertainty that aren’t significant

— However, in reality, there are constraints
« Maintain technical credibility
 Building detail onto simple models can be problematic

» Hard to justify resources for changing a model that is unimportant to
performance

* Regulatory inertia — hard to convince regulator to consider changing
a model that has been deemed acceptable
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Waste Form FEPs

* Probability and significance criteria for YM FEPs (10 CFR 63.114)
— Events with occurrence exceeding 10 in 10kyr
— Features and processes if “magnitude and time of resulting
radiological exposures” would be “significantly changed by their
omission”
« 374 FEPs evaluated (derived from NEA database with site specific FEPs
added)
— ~100 related to Waste Form
— Half excluded due to low consequence, e.g.
+ Gas generation from waste form decay
* Thermal expansion/stress of components within WP
» Advection through stress-corrosion cracks in WP outer barrier
— Half included in system model
+ HLW glass degradation (alteration, dissolution and radionuclide release)
* Chemical characteristics of water in the waste package
* General corrosion of the WP outer barrier
« Criticality (an event) is excluded in the basis of low probability
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System Model for Yucca Mountain

TSPA-LA Model
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Representation of Waste
in Yucca Mountain PA

Three generic waste forms:
1. Commercial SNF

2. DOE SNF
3. HLW glass + MOX + LABS
glass

In two generic waste packages

Aggregation tends to use
conservative assumptions and
analogs rather than average
properties

Inventory limited to radionuclides
judged to be potentially
important

Acceptable compromise between
level of detail, computational
burden, and transparency of
analysis

Waste Form Inventory
Commercial Spent High-Level DOE Spent
Nuclear Fuel Waste Glass Nuclear Fuel
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' In-Package Chemistry

Abstraction from large set of EQ3/6 results

Key inputs to
abstraction

Waste Package CSNF Cell 1
pH  Non-Dripping: Calculate and sample distributions as

Relative Humidity (RH) fl P
_( i co,) . Choose Dripping
Dripping: Calculate and sample distributions as q or Non-Dripping
Waste Package fll, Pco,) Results
Liquid Flux Rate (Q) I Non-Dripping: Calculate and sample distributions as
f(RH)
Waste Package | Dripping: Calculate and sample distributions as
flQ, time)
Temperature (T)
2CO; Calculate f(pH, PCOZ’ T) Submodels using Output:
CSNF Waste Form Degradation
Time Since CDSP Cell 1A and Cell 1B HLW Waste Form Degradation

Waste Package
Failure (time)

Dissolved Concentration Limits

pH  Non-Dripping: Calculate and sample distributions as ' "
Colloid Stability

fll, Peo,)
Dripping: Calculate and sample distributions as Y
Chemistry f(l, Pcoz)
i | Non-Dripping: Calculate and sample distributi RH
(Poz’ PCOZ) on-Dripping: Cailculate ana sample distributions as f( )

Dripping: Calculate and sample distributions as f(Q, time)

4

Po,: Equilibrium with the Drift
Poo,: Equilibrium with the Drift

Must consider 10X in
ranges of these
environmental

variables

Key outputs from

Determine pH, lonic Strength (1) and =CO3 abstraction
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DSNF and HLW(+MOX+LABS) Degradation

 DSNF: Bounding degradation rate (instantaneous)
— Appropriate for N-Reactor uranium metal f3ue|

— Conservative for other DOE SNF

* HLW

Based on reference West Valley,
Hanford, and Savannah River glasses
which meet the waste acceptance
criteria that they are more
degradation resistant than
“Environmental Assessment” glass

Degradation rate (g/m2/d)
RH=<44% (T2125°C) 0
100°C S T<125°C  r(pH=10,T)
20°C ST<100°C  r(pH, T)

Instantaneous degradation if igneous
intrusion occurs

log rate (g/m?2xday)

L L L L L L L L B

log rate= 0.49 pH - 4.54

log rate= -0.49 pH + 2.60

log rate= 0.49 pH - 5.12

O 70°C
& 90°C ]
€ 90°C +iron ]

00496DC_002.ai
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Expected Annual Dose (mrem)

Total System Performance Assessment Results
Individual Protection Standard: 10,000 yr

LA v5.005_ED_003000_001.gsm; LA_v5.005 EW_006000_001.gsm;
LA v5.005_IG_003000_001.gsm; LA v5.005_SF_010800_001.gsm;
LA v5.005_SM_009000_001.gsm; vE1.004 GS_9.60.100_10Kyr ET[event time].gsm;

103 —= LA _v5.005_10kyr_Total Dose Calcs_Rev01.gsm; LA _v5.005_10Kyr_Total Dose Rev01.JNB Key questions:
102 ? Mean ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 3
E | = Median : g = )
U ) pu %ihiemer?me ; o ] 1. What .determlnes the
' bt Pemantis 5 | magnitude of total
0% F 5 : = mean dose?
1071 L ot -
E — E
- / 3 .
102£ = | 2. Whatdetermines the
oL — E uncertainty in total
) expected dose?
10~ U L & ................................... .................................................................... §
107 < Analysis decomposes
10—6 1 1 I I ! | ! ] | ] ! ] ] | § _ .
2,000 4,600 6,(|)00 8,000 10,(|)00 the bOttom Ilne

Time (years)

MDL-WIS-PA-000005 REV 00 AD 01, Figure 8.1-1[a]
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Total Mean Dose
Contributions By Modeling Case

A w5 005 _ED_003000_001.gsm; LA w5005 _EW_006000_001.gsm ;

LA w5 005 1G_003000_001.gsm; LA _v5.005_Sk_002000_001 gsm;

L& w5 005 SF 010800 001 gsm; vE1.004 G5 980100 10Ky ET[event time].gsm,
LA w5 005 10Kyr Total Dose Mean Contributions Rev00 JNB

103 E 1 T 1 | ) 1 1 | T 1 1 | 1 1 1 | 1 1 1 a
: Total - . -
102 L Drip:SHiele) Eafy Failufe Seismic Fault Displacement .
— - Waste Package Early Failure Igneoug Intru5|.0n 5
% 10" € Seismic Ground Motion Voleanic Eruption
£ 14
o) = E
[} . =
g 102 ; %w ;
c g E
c - &
< 403 // o i ]
c E | e =
m B =
D -l T ~— .
= . =
10° / ;I
E { (TSPAAMR ADO1 Fig 8.1-3a[a])
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Note: Contribution from Nominal Modeling Case is zero within 10,000 years
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Radionuclides Contributing to
Total Mean Dose at 10,000 Years

Mean Annual Dose (mrem)

Total
LA w5005 _ED_003000_001.gsm:LA_w5 005 BEW_006000_001 gsm; ;;C
LA w5005 1G_003000_001.gsm; LA w5005 Sk 009000001 gsm, —
LA w5 005 SF 010800 _001.gsm; vE1004 GS 960100 20kyr ET[event time].gsm; —_— Tigg
108 — LA w5 005 10Kyr M Dose_RevOO.JNB_ gch
E R T | o g,
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Uncertainty in Total Expected Dose

LA_v5.005_ED_002000_001_Total_Dose_Rev00 JNB; LA_v5.005_EVW_006000_001_Total_Dose_Rev00 JNB;

LA_v5.005_ED_003000_001.gsm; LA_v5.005_EW_006000_001.gsm; LA v5 005_IG_003000_007_Total_Doss, Rev00 JNB: LA_v5 005_SF_010800_001_Total_Doss_Rev00 JNB
LA w5005 1G_D03000_001.gsm; L& w5005 SF_010800_001.gsm; LA_v5.005_SM_D03000_001_Total_Dose_Rev00.JNBVE 1.004_GS_9.60.100_1Myr_Dose_Total_Rev0o,
LA 5005 _SM_008000 001 gsm: vE1.004_GS 9 60100_10Kyr ET[event time] gsm: LA 5005 20Kyr 00300 EXPDOSE myview, LA_v5.005 20K 00300 EXPDOSE_PRCC_HT_REV00.JNB

LA w5 005_10kyr_Total_Dose_Cales_Rev01.gsm; LA _v5.005_10Kyr_Total_Dose_Rev01 JNB T T T
T T T T T T T T T T T T T T T T

1.00 (TSPA AMR ADO1 Fig K8.1-1c[a])
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LA_v5.005_Step_LA_v5.005_20K_00_300_EXPDOSE.xs; LA_v5.005_20Kyr_00_300_EXPDOSE mview;
e LA_v5.005_20K_00_300_EXPDOSE_scatterplot_REV00. JNB

Time (years)

SCCTHRP - stress threshold for SCC initiation
(90 to 105% of yield strength)

IGRATE - frequency of igneous events
SZGWSPDM - logarithm of uncertainty factor in
groundwater specific discharge

SZFIPOVO - flowing interval porosity in volcanic
units INFIL — infiltration case

MICC14 — biosphere dose conversion factor for
C14
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# Modeling “Wishes”

« Scalable modeling solutions
— Level of detail and dimension of uncertainty
— Enable changes within PA iterations
— Accommodate regulatory and programmatic
“inertia”
« Standardize interfaces with environmental
models
— Range of environmental conditions
— Spatial variability
— Units
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Backup
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Model for Stability of Colloids

@) (b)
1 1
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=3 2
pel o
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Model for CSNF Degradation

- Based on regression of data from single pass flow through
experiments

* No degradation before waste package breach

» Oxidative dissolution rate after waste package breach

— T 2100°C instantaneous degradation
— T<100°C

Legend

@ CSNF Data
@ UO; Data

\3ase Case Model

1
log,, I =log,, (SA) +a,+aq, ?

+a, (—log,, 2CO,)

log(Corrosion Rate per Unit Area)

+a, (—loglo Po, ) +a,pH

— Parameter values depend on acidic or basic conditions
» Gap fraction for Cs, |, Sr, Tc
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