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‘ Multi-scale Modeling of Transport in
Hierarchical Nanoporous Materials

macroporous  Microporous hierarchal
bed particle structure Applications:
elel0lele) » Hydrogen and CH, storage
e %  Super capacitors and batteries
O% %% > « Membrane filtration/water purification
@) « Catalytic beds and membranes
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|| hanopore Approach:
’ » Use Density Functional Theory (DFT) and MD
to understand atomistic physics in nanopores
, * Incorporate DFT and MD results into tractable
} f ULgai/\J M continuum-like models of multiphase transport
| in complex hierarchical materials
+ widely disparate time & length scales

» Use models to design optimal gas-storage
and super-capacitor materials
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Objective:

* |dentify material structures that optimize the
storage capacity and discharge/recharge rates
of hierarchical materials comprised of --

* nanopores for surface area & functionality
» micropores for rapid transport

» Optimization is required because transport
channels reduce volume available for nanopore
storage
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« Optimal pore sizes and spacing
— lattice-like hierarchies
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i Density Functional Theory (DFT) yields
density distributions minimizing free energy

10°
* DFT ion density profiles are N
structured by adjacent solid surface R
— DFT agrees well with MD but is Boa0t || \pB o comenen
much faster g ool
— Classical Poisson-Boltzmann (PB) 2|
model incurs large errors for typical g 10" ¢
UltraCap charge densities g 10"
Z 2
* DFT free energy functional is based il
on molecular pair-potentials 10° L .
. . 302 -1 0 1 2 3
L P = ﬂUId denSIty Normalized Position, x/d
— V = external “field” of solid
| u = chemical potential Qlp)]= J p(r) (FIp()]+ V(r)—p)dr
— U = L-J fluid/fluid interaction 1
1 Ay = hard sphere repulsion Flom]=kT 1n[A3p(r)]+5U(r) rAvn+@
1 @ = electrical interactions Ut} = ey I - {(ET —(g,jlz:|dr'
r r
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i DFT provides electrochemical potential
for use in transport equations

» Classical prediction of electrode
voltage versus surface charge 16
density is very poor '

— 10X error at 1 volt
— must include atomistic physics

* Currently working on --
— incorporation of atomistic
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physics C =001 M DFT
— into continuum-like transport 6 fF A
equations ; /e o
— based on DFT adjustments to 41 4~ Classical
chemical potentials, ; 2 I C=1OM
S =V-(piu—v;p;iVi) ’ 0 02 04 06 08 1

dt
n=p,+zedp+kTInp+Apper

Normalized Surface Charge, od’/e
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Modeling multiphase fluid flow in nanopores

* Quasi-1D model of gas/liquid flow
based on DFT inputs:

)

dt .
{dﬁ} dP d (J* de IS
J (P,T, W) =J free molecular +J viscous Qﬁ)
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' Simplified model for optimization
of pore networks

 Two storage mechanisms

1 peyrs = Surface density

1 ppu = bulk density

1 T" = channel perimeter

[ & = surface layer thickness
— a = channel width

* Transport coefficient, D, often
increases with channel width

 Diffusivity, a=D/(1+y)~a™
— m=0 simple diffusion (ions)
— m=1 Knudsen diffusion
— m=2 viscous flow
— m=m+1 (when y ~100008/a>>1)

(1+7) apgulk ~ 0 (D apbulkj

t 15).4 15).4

y ~ Pt © 10000
Pobuik @ a

2 2
D= a—p[ﬁj 2P0 iscous flow
12p0° \dp /5

12un
D =Y, jccular® Knudsen diffusion
Py _ 0 (a apb]
ot oOx\ 0OXx
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i Optimization problem for materials
having several scales of porosity

- Smallest scale nanopores have o e—————— )
prescribed -- i‘ f Fole— 3,
— widths a, e e L Db
— spacing b, i i !, X1
* Transport channels have %
— widths a,, a,, as,..., ay bo a9
— spacing by, b, , bs,..., by s o K =‘=< x»0-¢$
diE===S=S= ==
« Optimization: choose a, - ay and #
b, - by to maximize integrated 2 X2 L X2

inflow/outflow for given --

— fixed total system volume
— fixed discharge/recharge time, t

— prescribed variation in surface
potential

* sinusoidal variation (t =1/w)
 step change
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P Optimum channel dimensions

increase with system scale

« Optimization criterion

— maximum outflow from fixed volume
— wider & closer transport channels

* improve response time
 reduce storage capacity

 All length dimensions are scaled by
range of diffusion along a nanopore

in a time period of 1=1/®

* Power scaling of channel widths
and spacing persists over many

decades
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Equality of Fourier moduli indicates
matching of impedance between scales

0
] C. ; 10" — :
* Fourier moduli indicate ratio of -- 2., 2 IRy
_ . . . _ 2 i Tz— /,/ /// A3
d|ﬁu3||ontt|me T gitf = Diq1 /O Y
— to cycle time - ~ -
y Tcycle l/o <(<_~< - / ,7‘21
P /’/’ ,’ /// Az
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2\ oy Teye 711_
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* Pressure drops along channels depend 7""””_{_—:—7?‘0
onlyonA’s : = Lo
__,_——-—m=3—’_77 2
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Network has a fractal structure only for
quadratic dependence of diffusivity on pore size

* Porosities indicate ratio of channel
width to channel spacing

* Uniformity across all scales --

— indicates fractal structure
— holds only for m=2

* m=2 is the only case where equality
of time constants is consistent with
equality of porosities across all
scales
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Benefits of hierarchical networks

* Transport efficiency is figure of merit

1.0
_actual discharge 2y, \ 3
1= haximum possible — 1 N 2 \
-~ 0.8 VL
* When diffusivity depends weakly on aperture ? | 3 /
(e.g. m=1) 0 ' A
— maximum benefit is: 8 0.6 1 m=1 m=2
s ~ 102 larger size qLT_J‘ :\
* ~ 10*faster response a4 \ C
5 04 | . 8
+ Benefit increases dramatically when 2 i \, =1
diffusivity depends more strongly on 2 |
aperture 02 |
— may be even greater when physics change | N=0
with scale LN
0.0 Lol od il vl viwnd ol onl i ol v

10° 10> 10* 10° 10 10%
System Size, L' = Lyo/4a,
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andia & UIUC are developing methods for
fabrication of hierarchal nanoporous materials

» Approach:

— iterative templating
— phase separation
— removal and replacement
» Larger scale
— polymer spheres are assembled on
conducting substrate
— silica is formed between spheres and
spheres are removed
« Smaller scale

— bottom left: gold-silver alloy is
electroplated into template and silver
is chemically removed to form pores

— bottom right: Block copolymers are
infused in template, annealed, and
chemically stripped of one block
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Itracapacitor LDRD project is exploring
new classes of electroactive materials

* Thin films in initial experiments
 Find a replacement for RuO,

Electrolyte-filled

— more pseudo-capacitance
— faster response 1
— less cost ‘
* Nanometer feature scale -- pnoc Rt region

— reduces proton diffusion distance
— enhances participation of
electroactive oxide

* Modeling studies establish
relationship between--
— material properties and structure
— device energy and power density

— cyclic voltametry studies of
candidate electroactive materials
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New Directions

macroporous microporous

+ Extending modeling to include bed particle
isotope exchange kinetics for 8@@?’2@
storage of hydrogen species in Keie eiexi .
metal hydrides (new ESRF project) SIS

S C(')Cg% n@;_l?op re
S\ 8‘
» Research proposal submitted to OOPOO  rorecu. §

BES Office of Advanced Scientific . ———
Computing
— multiscale modeling
— parallel processing
— network evolutionary algorithms
 vascular and dendritic

T A&

« Comparison with experimental
studies
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