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Applications:
• Hydrogen and CH4 storage
• Super capacitors and batteries

• Membrane filtration/water purification
• Catalytic beds and membranes

Approach:
• Use Density Functional Theory (DFT) and MD 

to understand atomistic physics in nanopores

• Incorporate DFT and MD results into tractable 
continuum-like models of multiphase transport 
in complex hierarchical materials

• widely disparate time & length scales

• Use models to design optimal gas-storage 
and super-capacitor materials

Objective: 

• Identify material structures that optimize the 
storage capacity and discharge/recharge rates 
of hierarchical materials comprised of --

• nanopores for surface area & functionality

• micropores for rapid transport

• Optimization is required because transport 
channels reduce volume available for nanopore 
storage

Multi-scale Modeling of Transport in 
Hierarchical Nanoporous Materials 
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Outline

• Density Functional Theory

– equilibrium density distributions
– gas storage materials
– charge storage materials

• Optimal pore sizes and spacing

– lattice-like hierarchies

• Related experimental                
studies
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Density Functional Theory (DFT) yields    
density distributions minimizing free energy

• DFT ion density profiles are 
structured by adjacent solid surface

– DFT agrees well with MD but is 
much faster

– Classical Poisson-Boltzmann (PB) 
model incurs large errors for typical 
UltraCap charge densities

• DFT free energy functional is based 
on molecular pair-potentials

� = fluid density
– V = external “field” of solid
�  = chemical potential
– U = L-J fluid/fluid interaction 
�  = hard sphere repulsion
�  = electrical interactions
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DFT provides electrochemical potential                
for use in transport equations

• Classical prediction of electrode 
voltage versus surface charge 
density is very poor 

– 10X error at 1 volt
– must include atomistic physics

• Currently working on --

– incorporation of atomistic 
physics

– into continuum-like transport 
equations

– based on DFT adjustments to 
chemical potentials, i
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• Quasi-1D model of gas/liquid flow 
based on DFT inputs:

Modeling multiphase fluid flow in nanopores
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Simplified model for optimization
of pore networks

• Two storage mechanisms

� surf = surface density
� bulk = bulk density
�  = channel perimeter
�  = surface layer thickness
– a = channel width

• Transport coefficient, D, often 
increases with channel width

• Diffusivity, =D/(1+)~am

– m=0  simple diffusion (ions)
– m=1  Knudsen diffusion
– m=2  viscous flow
– m=m+1  (when  ~1000/a>>1)



Optimization problem for materials
having several scales of porosity

• Smallest scale nanopores have 
prescribed --

– widths a0

– spacing b0

• Transport channels have

– widths a1, a2 , a3 ,…, aN

– spacing b1, b2 , b3 ,…, bN

• Optimization: choose a1 - aN and         
b1 - bN to maximize integrated 
inflow/outflow for given --

– fixed total system volume
– fixed discharge/recharge time, 
– prescribed variation in surface 

potential
• sinusoidal variation (
• step change   
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• Optimization criterion
– maximum outflow from fixed volume
– wider & closer transport channels

• improve response time
• reduce storage capacity

• All length dimensions are scaled by 
range of diffusion along a nanopore 
in a time period of 

• Power scaling of channel widths 
and spacing persists over many 
decades

b1
*  B L*p

a1
*  A L*q

Optimum channel dimensions 
increase with system scale
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Equality of Fourier moduli indicates 
matching of impedance between scales 

• Fourier moduli indicate ratio of --

– diffusion time
– to cycle time

• Pressure drops along channels depend 
only on ’s

� ’s are identically the same only for 
m=2
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Network has a fractal structure only for 
quadratic dependence of diffusivity on pore size

• Porosities indicate ratio of channel 
width to channel spacing 

• Uniformity across all scales --

– indicates fractal structure
– holds only for m=2

• m=2 is the only case where equality 
of time constants is consistent with 
equality of porosities across all 
scales
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• Transport efficiency is figure of merit

• When diffusivity depends weakly on aperture 
(e.g. m=1)

– maximum benefit is: 
• ~ 102 larger size

• ~ 104 faster response

• Benefit increases dramatically when 
diffusivity depends more strongly on 
aperture

– may be even greater when physics change 
with scale 

Benefits of hierarchical networks
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Sandia & UIUC are developing methods for 
fabrication of hierarchal nanoporous materials  

• Approach:

– iterative templating
– phase separation
– removal and replacement

• Larger scale

– polymer spheres are assembled on 
conducting substrate

– silica is formed between spheres and 
spheres are removed

• Smaller scale

– bottom left: gold-silver alloy is 
electroplated into template and silver  
is chemically removed to form pores 

– bottom right: Block copolymers are 
infused in template, annealed, and 
chemically stripped of one block 

50 nm50 nm50 nm50 nm50 n



Ultracapacitor LDRD project is exploring 
new classes of electroactive materials 

• Thin films in initial experiments

• Find a replacement for RuO2

– more pseudo-capacitance
– faster response
– less cost

• Nanometer feature scale --

– reduces proton diffusion distance
– enhances participation of 

electroactive oxide

• Modeling studies establish 
relationship between--

– material properties and structure
– device energy and power density
– cyclic voltametry studies of 

candidate electroactive materials
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New Directions

• Extending modeling to include 
isotope exchange kinetics for 
storage of hydrogen species in 
metal hydrides (new ESRF project)

• Research proposal submitted to 
BES Office of Advanced Scientific 
Computing

– multiscale modeling
– parallel processing
– network evolutionary algorithms

• vascular and dendritic

• Comparison with experimental 
studies

Laguna, PhysBio-Phys 07
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