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Outline

Background and Motivation

— Problem (Intentional and Accidental Contamination
Events)

— Tools for Solution (Numerical Models, Statistics, Data
Mining)

Pre-Event Monitoring

— Optimal Monitoring Locations

— Filtering Background Variation

Response During an Event

— Real-Time Source Location Inversion

Post-Event Restoration

— Characterization of Magnitude and Extent
— |Is Restoration Complete
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Infrastructure Monitoring

Pre-event Planning

Risk Assessment

Monitoring Objectives

Post-Event Restoration

Optimal Monitoring Locations

Monitoring Sensors and Comm.

Background Characterization

Tuning Monitoring Algorithms

Event Response

Source Location Identification

Operational Changes

Characterization

Decontamination

Confirmation Sampling

Waste Disposal
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Problem / Motivation

Large areal extent and

customer focused design can
create vulnerabilities in water
distribution networks

Intentional attacks on US Gov't office
buildings and postal facilities in Sept
and Oct., 2001 led to costly restoration
projects
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“= Dual-Use Applications

Maximize dual
use benefits
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Contamination Simulation
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Location Optimization

* Discrete optimization on a network

— Multiple competing and/or overlapping
objectives

— Exact solutions vs. approximate solutions
through heuristic solvers

— Imperfect sensors, uncertain demands,
changing over time

2008 Finalist INFORMS Franz Edelman Prize for Achievement in Operations
Research and the Management Sciences — US EPA “Reducing Security Risks in
American Drinking Water Systems”
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FGCation Optimization: Example
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in 0 14217 | 5760 | 11667200 | 3.90e+13 | 1.0 | 344376
b 10 1061 | 2860 66241 | 2.44e+13 | 0.41 22062
pe = people exposed 50 347 [ 2008 | 13675 | 1.74e+13 | 0.0 | 6382
td = time to detection (minutes) 100 205 | 1632 7549 | 1.42e+13 | 0.23 3604
vc = volume consumed (gallons) 500 50| 124 1527 | 2.51e+12 | 0.0 754
J 000 14| 11 373 | 7.18e+10 | 0.0 )
mc = mass consumed (Organisms) 2000 0 0 0 0 0.0 0

nfd = Proportion of events not detected

ec = length of pipe contaminated (feet)

Table 2: Optimal values of design objectives for a range on p on Network?2

From: Watson, Hart, Geenberg (2005), AS:IC




Water Quality Monitoring

 The Goal: Inexpensive, robust,
networked, compound specific,
In-situ capabllity

 The Reality: Expensive, robust,
SCADA connected, basic water

guality sensors with in-situ
capability
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Residual Chlorine (ppm)

Deviaiton from Mean (std dev)
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Approach

Identify a model with parameters optimized to predict next value of water
quality. Look for significant differences (residuals) between prediction and
next observation. Example application to 6 hours of chlorine data
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Raw Water Quality Data

Residuals (Obs — Predict) |
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Residual Aggregation

Binomial Event Discriminator (BED)
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Outstanding Challenge

e False Positive Reduction

— Changes in network operations cause
changes in water quality that can lead to false
alarms

— Two ideas we are working on to reduce these.:

« Multivariate pattern matching for water quality

* Integrating results from multiple stations into
“network-wide” detection
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Pattern Matching
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Distributed Detection

e Goal: integrate multiple independent monitoring
stations for network-wide event detection

Consider alarms to be a random point process in
space and time and develop scan test to identify
significant clusters of those alarms

[
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F 01 430 AM - 4 F 0111:50FM

Clusters identified under scenario @
simultaneous contamination even
of detection (a) and 24 hours

Koch & McKenna, 2008, Distributed Network Fusion for Water
and Water Resources Congress, Honolulu, Hawaii, May 13-1¢
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Background and Motivation
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— Tools for Solution (Numerical Models, Stati
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— Optimal Monitoring Locations
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Example (Large Network)

Approximately 3500 nodes, 350 randomly placed sensors
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Large Network: Results

« Automatically break large network into smaller
subdomains around sensor locations with contamination

e Solution determines how much mass came from every
node in the subdomain and what time it was injected
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5 minute time steps, real-time solutions on a 1.8GHz Pentium 4 computer

(From: Laird, Biegler, and van Bloemen Waanders, 2006)



Usmg Discrete Samples

Simple schematic example of the process using a portion of an example
network

l-tz
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Facllity Restoration

In facility restoration projects, characterization and clearance sampling are
time consuming and expensive. |f Remediation has failed, both
remediation and clearance sampling must be redone

XX days | | XXdays | | XXdays | XX days | XX days |

Biological | | | | |
Release Cl
Aﬂ o Remediation earance .
) Refurbish
‘ Characterization " Verification Sampling

Incomplete Remediation

Sampling to determine

magnitude and extent Sampling to determine
of contamination Sampling to determine how if restoration was
well decontamination goals successful

are met
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Optimization Model)

BROOM

(Building Restoration Operation

Interface for tracking and mapping
sample locations and analysis results
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Spatial Analysis in BROOM

Sample Sut Nome: [Eamiis =a1

Contaminant maps provide
estimates of levels at unsampled
points.

Variance maps show level of
confidence of contaminant
estimates. =
Wide dynamic range: log and = e l— =
indicator transformation of SR — |

sample sets.

Integrated mass calculations give
estimate of quantity of material
released

Ability to incorporate effects of
walls and doors into mapping
without use of a CFD model
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Mapping in Constrained Spaces

 Variogram/covariance is built using differences between
sample values separated by a straight line distance

 Building architecture often precludes straight-line paths
between samples — control volume flow models provide
rough estimates of air-flow paths

e Can non-Euclidean distances improve the mapping

process? | _
Grid-based approach to distance
calculation
¢ 1Q Dikstra’s algorithm
! \
' !
I\ ]

. .
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- on,* onmnpun
........ s A [ .
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¢ = ¢, o*
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McKenna and Finley, 2006, Mapping Contaminants in Buildings (invited

presentation) First Annual Conference on Quantitative Methods and .
Statistical Applications in Defense and National Security, RAND Institute, @

Santa Monica, California, February 15-16th
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Ground Truth Dataset

o bl

70 Random Samples New Mapping Algorithm
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“Three Dimensional Analysis

2-D sample maps don’'t show
vertically stacked samples

Walls, furniture, HVAC vents
commonly have stacked
samples

BROOM has interactive 3-D
viewer to show closely spaced
samples

Use context menu from
anywhere on map to get 3-D
view of that part of the
building
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Outstanding Challenges

* |s the building clean?

— How to prove a negative conclusion without taking
thousands of samples?

« Ongoing work
— “Aggressive air sampling” to reduce number of
samples

— Bayesian approach to incorporate prior information
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““"Reducing Sample Numbers

e Currently we acquire multiple ' \
samples on room surfaces
 l|deally, have one sample per room

volume that concentrates any
contamination onto a single filter
— Bring the surfaces to the sampler

(Concentrate)
@ @
0
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0
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Incorporating Prior Information

Given n samples, all of which are negative, what is the probability that a positive
sample could exist? Or what is the true proportion of possible samples that are
positive

Use flow modeling and/or characterization and decontamination results to
develop prior information on the distribution of the proportion of possible events

Graphs show prior and posterior distributions of the possible true proportion of
positive samples, given that 20 negative samples have been acquired
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Summary

 |nfrastructure monitoring and response are
growing areas of research and industry

— Engineers needed to understand background
operating conditions and effects of those conditions

on monitoring programs
— A large number of unsolved problems (research areas
driven by practical constraints)
e Uncertainty in operational elements of critical
iInfrastructure requires stochastic approach to
these problems
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Take Away Points

The built environment is noisy and full of
uncertainty

— Sole reliance on deterministic modeling is not a viable
option and statistical models need to be incorporated

Operational efficiency and improved security are
not exclusive sets

Ability to work with large and real-time data sets
needs to be part of engineering education

What you learn today, may not be what you are
doing tomorrow
— Deep technical foundation in studies will allow you to

attain more skills and apply those to an increasingly
broad set of problems
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