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Motivation - Importance of Seal Analysis

.1

Trapping contribution %

||I|e|_'-"|.:|1 :‘.'-",. rlgeates L dip
muEimieing dissolution &
I rasidual CO, trapping ¥,

00

Structural &
stratigraphic
trapping

Residual CO,
trapping

1 10 100 1,000 10,000
Time since injection stops (years)

O Fautttipline

Z Leaky bed within seal
Leaky bed offset by fault
fod

Leak path

Trap ,

Images from IPPC (2005) and Ingram and Urai (1999)



Motivation - Research Challenges

From “Basic Research Needs for
Geosciences”

(Office of Basin Energy Sciences, 2007)”:
Researchers need to address:
« Transmissivity of faults and fractures

* In situ measurement of fluid-rock
interactions and seal properties

* Identification and characterization of flaws
in seals at multiple scales

* Difficult to assess small features/flaws
in a large area of interest

Example: CO,
breakthrough of
mudstones. Evidence of
reducing fluids migrating
through mudstones in UT
(photo courtesy Jim Evans).
May be important at
Sleipner.



Overview of “Traditional” Seal Analysis

Fracture in caprock

> Interpretation of mercury injection
capillary pressure measurements in
high resolution stratigraphic
framework

> Mechanical seal failure

°
i
N
» Fault seal anaIySIS ;
IS
S
I @
23
ol
3 <]
S
S
2 3
2 s S
° 3
1 10 100 1000 10000 100000 5
=
Injection Pressure (psia) é

XRD SEM and EDX

Kaolinite + Chlorite

S %
Vv ¢ Depth of Sample (total expandable clay)
2048.25 (23)
2052.06 (23)
2055.20 (21)
2062.30 (21)
2067.98 (20)
2692.25 (14)
2697.15 (11)

o
2
S &

» % e x o 0O o

900 80720 70/30 60/40 50/50 40/60 30/70 20/80 10/90

lllite + Mica lllite/Smectite + Smectite



Natural Tracers and Aquitards / Seals

» Helium, chloride, environmental and radioactive
isotopes, heat and other natural tracers are useful for
understanding:

»Residence time distributions

» Diffusional/mixing/advective processes
»rock-water interactions

»Double porosity/permeability systems

» Cross-formational flow

There are many studies on aquitards or seals,
espeically for radioactive waste disposal



Heat flow and leaky seals
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Focus on Isotopes of Helium

» Studied in basins/locations throughout the world

» Great Artesian Basin, Australia; San Juan Basin; Paris Basin; Great
Hungarian Plain; Carrizo Aquifer, TX; Morsleben, Germany; etc.

» Conservative tracer, multiple sources with characteristic isotopic
signatures of 3He/*He

» Study demonstrate helium’s usefulness for documenting cross-
formational flow or leakage (Ma et al., 2005; Castro et al., 1998)

» BUT use of natural helium as a seal analysis tool needs
development

Bethke et al., 1999



Helium for assessing caprock:

Modeling Approach

1. Pre-injection/screening Criteria of sealing integrity:

simulations » unacceptable leakage is

» transport of helium-3, 0.1% yr' of injected CO,
helium-4, and
temperature across a
caprock with or without

_ _ Basis of screening tool:
imperfections

» Evaluate the patterns of

2. Injection simulations helium and temperature

> injection of CO, below and their ability to reveal
the caprock using the significant caprock
same conditions of the imperfections

pre-injection simulations



Why does helium come from?

U and Th decay
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Basin Scale Model

Groundwater flow and

U and Th decay solute transport Re::harging
rod 44 waters
PTOGHEES e ___— contain
' helium

T

o/
t 1

Aquifer, caprock, Basal flux of “He
target reservoir



Depth of top of aquifer 750 m Constant
pressure,

temperature,
and helium
boundary

Caprock __“He: 4.97x102°kg m?®s' | Caprock
=10-18 m2 = ) . :
k=101 m?, ¢ = 0.07 K,=1.9Wm'K- imperfection

Overpressure in
reservoir

No flow
boundaries

T T T T T T TQEQA?ZZ‘QS

Basal flux of *He and heat

Constant
Imperfection k: x 1, 10,100 of caprock k pressure



CO, injection
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Simulator - TOUGH2

Lawrence Berkeley National Laboratory (Dr. Finsterle)

Noble gas transport Multiphase flow of water and
(EOSN module) supercritical CO, (ECO2N module)
» In situ production »van Genuchten-Mualem and Corey
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3 For air saturated water: 0.077 (x1079)
MOde““g Results Laboratory precision: £1%

No imperfection in caprock
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Modeling Results

Imperfection: k¢,,rock * 10

0.1% yr' leakage
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Modeling Results

Imperfection: k¢,,ock * 100

7% yr! leakage Vertical profiles
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Modeling Results

Imperfection: k¢,,ock * 100

7% yr! leakage Vertical profiles
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» Models show that helium reveals imperfections
» Sensitivity analysis underway

> None of this matters unless it can work in the field
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Coring Program - Motivation and Overview

Seal analysis and CO,

containment assessment:
Develop methodology for
characterizing sealing quality

Approach:

Focus on geologic controls on
sealing quality by integrating
petrological, petrophysical,
porosimetry, geomechanical,
Isotopic, and geochemical data

Unique research question:
Can natural helium be used to
characterize sealing quality for
CO, storage?
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Core Analysis Program - Methods

Examine core ~— Cut plugs

in field i

Preserve samples with
portable vacuum line

Geomechanical properties:
Possion’s ratio, Young’s modulus
Multistage compression testing

Core plug preservation in

field: vacuum-tight canisters for
preserving noble gases in pore fluids
(collection procedure developed by
Martin Stute)

Petrological description:
SEM, XRD, TOC, LCSM

Thin section analysis
Petrophysical properties:
TRA method (Terra Tek)
Permeability, porosity, porosimetry
Fracture analysis:

Fracture type, orientation, dip,

mineral fill, assessment of failure
potential of natural fractures

Tests with CO,:

Gas breakthrough pressure
CO, adsorption



Field Study - Upper and Lower Kirtland
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Field Study - Upper Kirtiand

Detailed interpretation of MICP with ] Ep
regard to petrography I v EN
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Field Study - Lower Kirtiland

Silty argillaceous mudstone. Clays

are mainly I/S, illite, and chlorite, with

minor smectite.

Dark pore on SEM may represent
fluid pathways or voids associated

with oxidized carbonaceous amterial.
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Field Study - Parameters vs Depth
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Conclusions and Future Work

Modeling indicates helium may be a useful
“imperfection” assessment tool

3D model being developed for the Pump
Canyon site

 Model will incorporate helium transport and
be calibrated if possible with the field data

MICP data and petrographic work indicate high
quality seals, but may be reactive to acidic
fluids

Future work at Sandia: Phase lll and BES study
of high resolution real-time imaging of
multiphase flow in fractures



