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Sandia’s Motivation for Fire Research

e Fire is a dominant source of risk to
Sandia/DOE strategic systems, and US
civilian and commercial infrastructure

. The heat flux. from fireg to object.s IS Radiation s
critical for engineering risk analysis Convectio

-Validation and verification of fire- = é i
simulation tools such as ASC-FUEGO |
requires high-fidelity experimental data

» Temperature, soot, mixture fraction, fuel
regression rate, velocity....

* The meter-scale and large-scale turbulent
fluctuations of realistic fire testing makes
high-fidelity experiments extremely
challenging!

* Fire testing typically low-cost robust
instrumentation, but improved multi-
parameter diagnostics are needed.

T VA a3 Sandia
VA4 m National

lahoratories




Radiative Transport Equation

<aGT4> T
[sevi(s)ys=| . ~(a >V{(sj) ds :
- Em;;ionj Absorption 5

« RTE (neglecting scattering) requires
knowledge of

—  Product oT# for emission

Fuel
+Prod

——/

Ysoot

— Absorptivity, o, related to Y.
 In CFD codes these are spatially filtered for
practical purposes of engineering simulations

. But the source of radiative emission occurs at
length scales comparable to the local soot
layers!

 Below the computation grid
 Must be modeled
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« Objective: Obtain fundamental data for

Approach: Spatially Resolved Laser Diagnostics

% 10”

development of next-generation fire heat-flux
models

« Experimental Approach: Laser

|
| :
x 107 ‘ :
: |
|
|
|

h) s

Diagnostics

' |
| *'m u l" i”'l’ { "hul

Coherent anti-Stokes Raman Scattering
(CARS) > Temperature, Gas Mole
Fractions 00

| "|‘ ! ||"'"| \”\
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probability density ( ppm K )~

Laser-Induced Incandescence (LII) > Soot el

Volume Fraction 2000

temperature (K) soot volume fraction (ppm)

Joint temperature/soot statistics reveal
subgrid radiative production P(T, f.| Z;%,1)
sJ vy 9 oy

Joint Temperature/Soot pdf
A. Ricks, Ph.D. Thesis, Purdue University, 2007.
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Thermal Test Complex and FLAME FaC|I|ty

 Thermal Test Complex (TTC) - Sandla Thermal Test Complex (TTC) %r
brings laboratory control and S |
diagnostics to meter-scale fire
testing

« FLAME facility provides
canonical wind-free fire plumes

* Designed with access for laser
diagnostics in mind

Exhaust to
\‘ Precipitator

Water-Cooled
Interior Walls

Grated Floor

Combustion Air St Air Ring
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CARS THERMOMETRY
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Coherent Anti-Stokes Raman Scattering
(CARS)

ENVELOPE OF RAMAN
RESONANCES

T |
L:I‘.
g Wy, ®y  Ocars
Spectra of pump/Stokes/CARS Beams

CARS Beam Arrangement

“

PROBE VOLUME

Focusing
Lens

TUNABLE o5 BROADBAND o,

* Three pulsed laser beams * _____
(pump #1, pump #2, Stokes) - - .

crossed at a common focus

* Pump-Stokes tuning at o, — o,
and o, — o, drives Raman
polarizations (dipole) in N, and
selected combustion gases

OcARs
~ 483 to 497 nm

0] Ocars

0,, H,, CO, ~ 1300-1600 cm""

* The Raman polarizations N, ~ 2330 cm"!
scatter the remaining pump - N
photons; a blue-shifted laser-like Ocars = (01 — 0) + oy
signal emerges. Energy Level Diagrams
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N, is Used as a “CARS Thermometer”

- Shape of the N, CARS spectrum — — -; —-
reflects partitioning among vibrational - -
and rotational states

 For a Raman transition from level i to

level j, the CARS signal the reflects BN ke R
the population difference J B
2 i 1
Ni _ Nj N, ~ 2330 cm-
[ ~
CARS ; |
@;; = (0 =05 ) +il' T T ol VisraTioNAL
i T=300K LEVEL ]
IESE T

» Boltzmann distribution defines a
temperature in terms of this
partitioning of states

|
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(CARS INTENSITY)"? [arbitrary units]

» Temperatures are inferred by
least-squares fitting to theoretical

spectra _
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Dual-Pump CARS Instrument at FLAME

First-ever implementation of CARS for
large-scale fire testing

Methanol and sooting methanol/toluene
blends have been tested to date
Simultaneous mole-fraction measurements
have been added to thermometry

capabilities
CARS SIGMAL ON TO FLAME
FIBER-OPTIC CELL *
LINK FROM
FLAME CELL A
Sl
‘ and CARS #,
A2 H H
_ L light pipes
L:l| Broadband Dye
L Lazer
i b = BOT nm
A= 225 em?
€ @
5 | |8, X [
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Methanol pool fire and CARS
laser beams

‘ 10% Toluene
B 90% Methanol
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Results — Data Fidelity

< 1400 [
o % 12007 [ ) gﬁsg_'l'ecrpperature (K) 7
* Accuracy and precision of N, CARS 2 1000 | f
thermometry assessed with 2 lab < : ]
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= i
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) I
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Single-Shot Dual-Pump CARS Spectra from a Methanol Pool Fire
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Results — Temperature and O, Data from a Methanol Pool Fire

* First experiments conducted Iin
methanol fire

* Nonsooting fuel is simpler starting
point for diagnostic development
*Temperature and simultaneous O,
data extracted

* Nearby thermocouples cannot
follow turbulent fluctuations
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Single-Shot Spectra Provide Simultaneous Temperature/Species Information
in Sooting Fire
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Single-Laser-Shot Spectra and Theoretical Fits
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Temperature Measurements in Sooting Pool Fire
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Laser-Induced Incandescence (LII)
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LIl Experiment

_ (Santoro and Shaddix, 2002)
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Laser-Heated Soot Particle

Histories

» Soot particles heated to vaporization point (4000-
5000 K) by absorption of laser radiation
* Thermal emission from soot is monitored during
and/or after laser pulse
* Laser-heated soot emits in excess of
background
* Total emission ~ soot volume
« 2-D imaging
* ns time resolution
* 50 um X 500 pum spatial resolution
« Calibration against light extinction or extractive
sampling required
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Detail of LIl Laser-Sheet Imaging Probe at FLAME

Uncooled

Cone . Optics Fire
\ IRW'ndOWSPackaging Level
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Laser C&; . Bundle
Sheet

Relay Lens Water
Pair
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LIl Data from a Methanol/Toluene Pool Fire

* LII signal is proportional to volume
fraction of soot

» 50-ns exposure using intensified
CCD camera

* 1-cm % 1-cm field of view coupled
from center of pool fire through optical
fiber bundle to detector at FLAME
basement level

 Spatial resolution is ~50 um x 50 um

x 300 um B R TTE 4000
1o°g ok ' 12000
10'1; 110000
107 —

10'3;
10'4;

LIl SIGNAL (arb. units)
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Summary and Conclusion

* The correlation between temperature and
soot is dominates thermal emission from fire

« Laser diagnostics offer required mm- and
ns-scale resolution and can map multiple
parameters simultaneously

* A CARS diagnostic has been fielded to
measure temperature (and species) pdf’'s at
a point with ~100 um X 5 mm X 10 ns
resolution

* An LIl probe has been implemented for 2-D
imaging of soot with ~500 um X 50 um X 10
ns resolution

* We are working to combine the two
measurement approaches to provide a
canonical data set

* New project focuses on femtosecond
CARS to extend capability to propellant-
fueled environments

| 'DF"}
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Provide experimental data

For model development:

joint temperature/soot pdf

is needed

x 10

R ?m"‘l

il

probability density ( ppm K )™

2000

temperature (K)

P(T,f, |Z;X,t)

510"

L8]

soot volume fraction (ppm)

A. Ricks, Ph.D. Thesis, Purdue University, 2007.
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Light-Extinction Data for LIl Calibraton
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LIl Calibration Images from a Premixed Flat Flame
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* Sensitivity of LII system
calibrated using laser-extinction
data

* 6000-10,000 counts/ppm

» Plateau-level response of LIl to
laser-sheet energy confirmed!
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Video of LIl and Light-Scattering Imaging Laser-
Sheet Imaging Experiments
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PDF of LIl signals

* LIl signal is linear with
soot volume fraction ,
 These plots reveal the 107
shape of the soot

volume-fraction pdf at 10 30% Toluene

the center of the pool -y

fire f

« “Clipped” pdf, low o

signal, high :0 1EIISIGNAL (arb. units) °

intermittency 10 e T

* Must perform o ]
calibration f

measurements against 102
light-extinction data,

premixed flame 107 10% Toluene
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