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Sandia’s Motivation for Fire Research

• Fire is a dominant source of risk to 
Sandia/DOE strategic systems, and US 
civilian and commercial infrastructure

• The heat flux from fires to objects is 
critical for engineering risk analysis

•Validation and verification of fire-
simulation tools such as ASC-FUEGO 
requires high-fidelity experimental data

• Temperature, soot, mixture fraction, fuel 
regression rate, velocity….

• The meter-scale and large-scale turbulent 
fluctuations of realistic fire testing makes 
high-fidelity experiments extremely 
challenging!

• Fire testing typically low-cost robust 
instrumentation, but improved multi-
parameter diagnostics are needed.
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• RTE (neglecting scattering) requires 
knowledge of

– Product T4 for emission 

– Absorptivity,  related to Ysoot.

• In CFD codes these are spatially filtered for 
practical purposes of engineering simulations

• But the source of radiative emission occurs at 
length scales comparable to the local soot 
layers!

• Below the computation grid

• Must be modeled 
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Approach: Spatially Resolved Laser Diagnostics

• Objective: Obtain fundamental data for 

development of next-generation fire heat-flux 

models

• Experimental Approach: Laser 

Diagnostics

– Coherent anti-Stokes Raman Scattering 

(CARS)  Temperature, Gas Mole 
Fractions

– Laser-Induced Incandescence (LII)  Soot 

Volume Fraction

– Joint temperature/soot statistics reveal 

subgrid radiative production ( , | ; , )vP T f Z tx


A. Ricks, Ph.D. Thesis, Purdue University, 2007.

Joint Temperature/Soot pdf



Thermal Test Complex and FLAME Facility

• Thermal Test Complex (TTC) 
brings laboratory control and 
diagnostics to meter-scale fire 
testing 

• FLAME facility provides 
canonical wind-free fire plumes

• Designed with access for laser 
diagnostics in mind
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CARS THERMOMETRY



Coherent Anti-Stokes Raman Scattering 
(CARS)

CARS Beam Arrangement

• Three pulsed laser beams 
(pump #1, pump #2, Stokes) 
crossed at a common focus
• Pump-Stokes tuning at 1 – s 

and   s drives Raman 
polarizations (dipole) in N2 and 
selected combustion gases
• The Raman polarizations 
scatter the remaining pump 
photons; a blue-shifted laser-like 
signal emerges.

Spectra of pump/Stokes/CARS Beams
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N2 is Used as a “CARS Thermometer”
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• Shape of the N2 CARS spectrum 
reflects partitioning among vibrational 
and rotational states

• For a Raman transition from level i to 
level j, the CARS signal the reflects 
the population difference

• Boltzmann distribution defines a 
temperature in terms of this 
partitioning of states
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• Temperatures are inferred by 
least-squares fitting to theoretical 
spectra



Dual-Pump CARS Instrument at FLAME

• First-ever implementation of CARS for 
large-scale fire testing

• Methanol and sooting methanol/toluene 
blends have been tested to date

• Simultaneous mole-fraction measurements 
have been added to thermometry 
capabilities 
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Results – Data Fidelity

• Accuracy and precision of N2 CARS 
thermometry assessed with 2 lab 
standards

• Tube-furnace thermocouple

• Adiabatic flat flame  equilibrium 
calculated temperature

• Ensembles of single-laser-shot CARS 
spectra acquired for a given 
furnace/flame setting

• Accuracy: 5-40 K, within 2% for T> 
500 K

• Precision: 5-7%  
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Single-Shot Dual-Pump CARS Spectra from a Methanol Pool Fire
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Results – Temperature and O2 Data from a Methanol Pool Fire

• First experiments conducted in 
methanol fire
• Nonsooting fuel is simpler starting 
point for diagnostic development 
•Temperature and simultaneous O2

data extracted
• Nearby thermocouples cannot 
follow turbulent fluctuations 

2-m methanol fire
& laser light pipes
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Single-Shot Spectra Provide Simultaneous Temperature/Species Information 
in Sooting Fire
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Temperature Measurements in Sooting Pool Fire
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LII MEASUREMENTS OF 
SOOT VOLUME FRACTION



Laser-Induced Incandescence (LII)
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Laser-Heated Soot Particle 
Histories

• Soot particles heated to vaporization point (4000-
5000 K) by absorption of laser radiation
• Thermal emission from soot is monitored during 
and/or after laser pulse

• Laser-heated soot emits in excess of 
background
• Total emission ~ soot volume

• 2-D imaging
• ns time resolution
• 50 m X 500 m spatial resolution

• Calibration against light extinction or extractive 
sampling required

LII Experiment
(Santoro and Shaddix, 2002)
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Detail of LII Laser-Sheet Imaging Probe at FLAME
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LII Data from a Methanol/Toluene Pool Fire
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fraction of soot

• 50-ns exposure using intensified 
CCD camera
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• Spatial resolution is ~50 m × 50 m 
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Summary and Conclusion

( , | ; , )vP T f Z tx


Provide experimental data 

For model development: 
joint temperature/soot pdf 
is needed

• The correlation between temperature and 
soot is dominates thermal emission from fire

• Laser diagnostics offer required mm- and 
ns-scale resolution and can map multiple 
parameters simultaneously

• A CARS diagnostic has been fielded to 
measure temperature (and species) pdf’s at 
a point with ~100 m X 5 mm X 10 ns 
resolution

• An LII probe has been implemented for 2-D 
imaging of soot with ~500 m X 50 m X 10 
ns resolution

• We are working to combine the two 
measurement approaches to provide a 
canonical data set

• New project focuses on femtosecond
CARS to extend capability to propellant-
fueled environments

A. Ricks, Ph.D. Thesis, Purdue University, 2007.
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LII Images from a 30% Toluene 70% Methanol Pool Fire



Light-Extinction Data for LII Calibraton
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LII Calibration Images from a Premixed Flat Flame
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• Sensitivity of LII system 
calibrated using laser-extinction 
data
• 6000-10,000 counts/ppm
• Plateau-level response of LII to 
laser-sheet energy confirmed!

• Critical for probing light-
absorbing sooting fires



Video of LII and Light-Scattering Imaging Laser-
Sheet Imaging Experiments



PDF of LII signals
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• LII signal is linear with 
soot volume fraction
• These plots reveal the 
shape of the soot 
volume-fraction pdf at 
the center of the pool 
fire
• “Clipped” pdf, low 
signal, high 
intermittency
• Must perform 
calibration 
measurements against 
light-extinction data, 
premixed flame


