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Motivation: Need for predictive capability for
dynamic interfacial transport

Problems in the Assured Safety and Security Focus Areas are characterized
by transport in domains with complex and/or dynamic topology.

Example: Liquefaction in Foam Decomposition Complicates Pressurization Simulations
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Motivation: Dynamic interfaces, cont’d

Dynamics Of Liquefaction Of Decomposing Foam
Affects Pressurization
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Motivation: Dynamic and complex
interfacial transport

* Problem Class: Dynamic Interface Problems

— Typical application area for level set or VOF methods

— Examples: multiphase flow and phase change
problems like foam decomposition, aluminum
relocation, and spilling fuels.

— Benefits
« Difficult, if not impossible, to address using ALE

 Problem Class: Topologically Complex, but
Stationary Interfaces

— A less obvious application area

— Examples: conduction in composite materials, single
phase flow in porous media

— Benefits
» Avoid conformal mesh generation
» Avoid contact between disparate meshes
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Finite Element Methods for Interfaces in
Fluid/Thermal Applications

Boundary Fitted Meshes
— Supports wide variety of interfacial conditions accurately
— Requires boundary fitted mesh generation
— Not feasible for arbitrary topological evolution (ALE)
* Mesh quality degrades with evolution, phase breakup and merging are precluded.
eXtended Finite Element Methods (XFEM)
— Dolbow et al. (2000), Belytchko et al. (2001)

— Successfully applied to numerous problems ranging from crack propagation to phase
change to multiphase flow

— Supports weak conditions accurately, mixed and Dirichlet conditions are actively
researched (Dolbow et al.)

— Avoids boundary fitted mesh generation
Supports general topological evolution (subject to resolution requirements)

Generallzed Finite Element Methods (GFEM)

— Strouboulis et al. (2000)

— Combination of standard finite element and partition of unity enrichment
Immersed Finite Element Methods

— Lietal. (2003)

— Supports selected jumps across material boundaries (discontinuous gradient or value)

Conformal Decomposition Finite Element Method (CDFEM)
— Enrichment by adding nodes along interfaces
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Level Sets in Finite Elements:
Extended Finite Element Method

e Extended Finite Element: Finite Element Method for
Embedded Interfacial Jumps

— Dolbow et al (2000)
* Enrich elements containing discontinuities
— Add extra degrees of freedom, a;
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— Basis functions for extended dofs have two parts

— Standard continuous variation within element, ¥,

— Discontinuous extending function, g;

— Typical form for discontinuous value I

g(x)=H(¢(x))-H(4,), 6,=0(x)

— Typical form for discontinuous gradient

g (x)=|¢(x)| |,
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Extended Finite Element Method

 Features
— Enforces continuity across element faces
« Enrichmentis nodal
— Element contributions are discontinuous
Element contribution to residual

R, ==[ VN, -kVTdQ
Q

becomes
R ==[VN,-kVTdQ~ [ VN,-kVT dQ
o o I
~[N/n-Q"dQ+[Nn-Q dQ
r r
« Weight functions are discontinuous
« Gradients are discontinuous
* Requires conformal integration
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Extended Finite Element Method —
Implementation in production codes

 Code Requirements (for fully integrated elements)
— Conformal integration
 Integration conforms to phases present in element
« Varying number of integration points depending on
phase distribution
— Enriched Basis
» Active degrees of freedom (dofs) depend on phase
distribution
« Varying numbers of dofs at nodes
» Subset of dofs active at each integration point
— Boundary conditions
 Dirichlet BC’s are problematic (research area)

* Interfacial flux conditions are a new class of boundary conditions (part
volume, part bc)

— General
* Increasingly complicated for multiple phases (beyond 2)
* Must be implemented at element assembly level
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Beyond XFEM: Conformal Decomposition Finite

Element Methods (CDFEM)

« Simple Concept
— Decompose non-conformal elements into conformal ones
— Obtain solution on conformal elements

 Related Work

— Lietal. (2003) FEMCGAN: FEM on Cartesian Grid with
Added Nodes

* Focus on Cartesian Grid. Considered undesirable because
it lost original matrix structure.

 Properties
— Supports wide variety of interfacial conditions accurately
(identical to boundary fitted mesh)
— Avoids boundary fitted mesh generation

— Supports general topological evolution (subject to
resolution requirements)

— Requires modified matrix structure (additional elements)
« Similar to finite element adaptivity

— Uses standard finite element assembly including data
structures, interpolation, and quadrature

« Questions

— Accuracy? Conformal elements can have vanishing quality.
— Relationship to XFEM?

— Low quality
elements are
generated by
conformal
decompositiol
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XFEM - CDFEM Comparison

« XFEM Approximation

= -

« CDFEM Approximation

Nl P Y

— ldentical IFF interfacial nodes in CDFEM are constrained to
match XFEM values at nodal locations

— CDFEM space contains XFEM space
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XFEM - CDFEM Comparison, cont’d

 Approximation
— CDFEM space contains XFEM space

» Accuracy of CDFEM no less than XFEM? Li et al. (2003)
« CDFEM can recover XFEM solution by constraining interfacial nodes

— Separate linear algebra step outside of element assembly routines

 Boundary Conditions
— CDFEM readily handles interfacial Dirichlet conditions

« Simply apply Dirichlet conditions to interfacial nodes

— Gives another view of difficulty with Dirichlet conditions in XFEM
 CDFEM recovers XFEM when interfacial nodes constrained to XFEM space

« CDFEM provides optimal solution for Dirichlet problem when interfacial

nodes are given by Dirichlet conditions

« Attempting to satisfy both sets of constraints simultaneously over-constrains

the problem

 Implementation

— Conformal decomposition can be performed external to all assembly
routines

« For stationary interfaces the decomposition can be performed once on the
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CDFEM Implementation

* For Steady State Problems
— Stationary Interfaces

» Conformal decomposition can be performed
once

* Provides test of accuracy, performance, and
implementation
 For Transient Problems

— Must perform decomposition based on current
interface location

» Level set provides convenient description
— Similar requirements to adaptive refinement
« Dynamic data structures, matrix graph
* Prolongation of solution to new nodes
— Transparent to physics code (Element assembly)
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Multiphase CDFEM Status

« Aria/Krino able to run conformally decomposed problems
— Static decomposition of blocks and sidesets
— Creation of sideset on interface for bc application
— Phase specific material properties, equations, source terms, etc.
— Parallel
— Multiple phases defined by multiple level set fields
Mixed Elements (LBB) Tris/Tets
. TODO
— Dynamic decompositions
— Combined h-adaptivity —- CDFEM
— Condensation support for recovering XFEM
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Moving CDFEM Goals

How do we handle the moving interface?

What do we do when nodes change sign?

Goals
» Try to recover moving mesh case for moving interface
* Try to preserve minima, maxima
Proposal
* Prolongation: Set “old” value to value of nearest point on interface

« Dynamics: Use ALE style (u-dxdt) for advection term
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CDFEM Verification

« Two-Dimensional Potential Flow About a Cylinder (static)
— Analytical solution provides quantitative measure of accuracy
« Accuracy of velocity potential and its gradient computed in volume and on interface
— Allows experiments with various boundary conditions
 Three-Dimensional Potential Flow About a Sphere (static)
« Two-Dimensional Viscous, Incompressible Couette Flow (static)
— Analytical solution provides quantitative measure of accuracy
— Test of conformal decomposition for viscous, incompressible flow
« Three-Dimensional Viscous Flow about a Periodic Array of Spheres (static)
— Comparison with Boundary Element results
— Examines behavior of decomposition up to sphere overlap
« Advection of Weak Discontinuity (dynamic)
— Shows ability to capture discontinuities
— Analytical solution provides quantitative measure of accuracy
« Solidification of 1-D Bar (dynamic)
— Shows ability to capture discontinuities
— Analytical solution provides quantitative measure of accuracy

Results documented with journal article: Noble, Newren, Lechman, “A Conformal Decomposition
Finite Element Method for Modeling Stationary Fluid Interface Problems”, International Journal
for Numerical Methods in Fluids (accepted, 2009)
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CDFEM Simulation of Steady, Potential Flow
about a Circular Cylinder

« Embedded curved boundaries
* Dirichlet BC on outer surface, Natural BC on inner surface
« Optimal convergence rates for solution and gradient both on volume and

boundaries
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CDFEM Simulation of Steady, Potential Flow

Relative Error

about a Sphere

Embedded curved boundaries

— Dirichlet BC on outer surface, Natural BC on inner surface

— Optimal convergence rates for solution and gradient both on
volume and boundaries
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CDFEM Simulation of Steady, Fluid-Fluid
Interface Problem: Couette Flow

— Two-Phase Flow between concentric cylinders
« Counter-rotating cylinders
* 4:1 viscosity ratio
» No surface tension

— Dirichlet conditions on inner and outer surfaces,
weak discontinuity along interface

— Cut regular, unstructured mesh along outer, inner,
and interfacial radii

A |

0sr

azimuthal velociy

-05
‘ RS
1 1 1 1 1 1
01 015 0z 0.25 0.3 0.35 04 045 0.5

/R I, radius Sandla
WV | Netiona

lahoratories




CDFEM Simulation of Steady, Fluid-Fluid
Interface Problem: Couette Flow

— Embedded curved boundaries

— Dirichlet BC on inner and outer surface

— Weak discontinuity in velocity captured sharply and accurately
— Optimal convergence rates for solution and gradient both on volume and
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CDFEM Simulation of Steady, Viscous Flow
about a Periodic Array of Spheres

« Embedded curved boundaries

» Dirichlet BC on sphere surface

* Accurate results right up to close packing limit

« Sum of nodal residuals provides accurate/convergent measure of drag force

50 4

N
()
1

— Curve Fit to Zick & Homsy (1962)
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Dynamic CDFEM: 1-D Advection of a Piecewise
Linear Field
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— Exact preservation of linear field
— Does not pollute Max-Min
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Dynamic CDFEM: 1-D Phase Change
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— Great agreement with exact solution
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Summary and Conclusions

« CDFEM - Theory
— Recovers XFEM when added nodes are constrained to lie in XFEM space

— Demonstrates optimal rates of convergence for both Neumann and Dirichlet
BC on curved surfaces

« CDFEM - Practice
— Simple method for handling arbitrary interfacial discontinuities
« Transparent to underlying finite element assembly

— Optimal convergence rates obtained for both volume and surface quantities
for Dirichlet, Neumann, and mixed boundary conditions

* Project Status
— Parallel CDFEM for multiphysics is implemented, tested and documented.
— Dynamic CDFEM is developed and tested in 1-D MATLAB
— Dynamic CDFEM in SIERRA under development

New ESRF project aimed at development/application of
these ideas for material liquefaction and relocation
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