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Motivation: Need for predictive capability for 
dynamic interfacial transport

Problems in the Assured Safety and Security Focus Areas are characterized 
by transport in domains with complex and/or dynamic topology.

Example: Liquefaction in Foam Decomposition Complicates Pressurization Simulations
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Motivation: Dynamic interfaces, cont’d

Dynamics Of Liquefaction Of Decomposing Foam 
Affects Pressurization



Motivation: Dynamic and complex 
interfacial transport

• Problem Class: Dynamic Interface Problems
– Typical application area for level set or VOF methods

– Examples: multiphase flow and phase change 
problems like foam decomposition, aluminum 
relocation, and spilling fuels.

– Benefits

• Difficult, if not impossible, to address using ALE

• Problem Class: Topologically Complex, but 
Stationary Interfaces
– A less obvious application area

– Examples: conduction in composite materials, single 
phase flow in porous media

– Benefits

• Avoid conformal mesh generation

• Avoid contact between disparate meshes



Finite Element Methods for Interfaces in 
Fluid/Thermal Applications

• Boundary Fitted Meshes
– Supports wide variety of interfacial conditions accurately
– Requires boundary fitted mesh generation
– Not feasible for arbitrary topological evolution (ALE)

• Mesh quality degrades with evolution, phase breakup and merging are precluded.

• eXtended Finite Element Methods (XFEM)
– Dolbow et al. (2000), Belytchko et al. (2001)
– Successfully applied to numerous problems ranging from crack propagation to phase 

change to multiphase flow
– Supports weak conditions accurately, mixed and Dirichlet conditions are actively 

researched (Dolbow et al.)
– Avoids boundary fitted mesh generation
– Supports general topological evolution (subject to resolution requirements)

• Generalized Finite Element Methods (GFEM)
– Strouboulis et al. (2000)
– Combination of standard finite element and partition of unity enrichment

• Immersed Finite Element Methods
– Li et al. (2003)
– Supports selected jumps across material boundaries (discontinuous gradient or value)

• Conformal Decomposition Finite Element Method (CDFEM)
– Enrichment by adding nodes along interfaces



• Extended Finite Element: Finite Element Method for 
Embedded Interfacial Jumps
– Dolbow et al (2000)

• Enrich elements containing discontinuities
– Add extra degrees of freedom, ai

– Basis functions for extended dofs have two parts
– Standard continuous variation within element, Ni

– Discontinuous extending function, gi

– Typical form for discontinuous value

– Typical form for discontinuous gradient

Level Sets in Finite Elements:
Extended Finite Element Method
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• Features
– Enforces continuity across element faces 

• Enrichment is nodal

– Element contributions are discontinuous

Element contribution to residual

becomes

• Weight functions are discontinuous

• Gradients are discontinuous

• Requires conformal integration

Extended Finite Element Method
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• Code Requirements (for fully integrated elements)
– Conformal integration

• Integration conforms to phases present in element

• Varying number of integration points depending on 

phase distribution

– Enriched Basis

• Active degrees of freedom (dofs) depend on phase 

distribution

• Varying numbers of dofs at nodes

• Subset of dofs active at each integration point

– Boundary conditions

• Dirichlet BC’s are problematic (research area)

• Interfacial flux conditions are a new class of boundary conditions (part 
volume, part bc)

– General

• Increasingly complicated for multiple phases (beyond 2)

• Must be implemented at element assembly level

Extended Finite Element Method –
Implementation in production codes



Beyond XFEM: Conformal Decomposition Finite 
Element Methods (CDFEM)

• Simple Concept
– Decompose non-conformal elements into conformal ones
– Obtain solution on conformal elements

• Related Work
– Li et al. (2003) FEMCGAN: FEM on Cartesian Grid with 

Added Nodes
• Focus on Cartesian Grid.  Considered undesirable because 

it lost original matrix structure.

• Properties
– Supports wide variety of interfacial conditions accurately 

(identical to boundary fitted mesh)
– Avoids boundary fitted mesh generation
– Supports general topological evolution (subject to 

resolution requirements)
– Requires modified matrix structure (additional elements)

• Similar to finite element adaptivity
– Uses standard finite element assembly including data 

structures, interpolation, and quadrature

• Questions
– Accuracy? Conformal elements can have vanishing quality.
– Relationship to XFEM?

– Low quality 
elements are 
generated by 
conformal 
decomposition



XFEM – CDFEM Comparison

• XFEM Approximation

• CDFEM Approximation

– Identical IFF interfacial nodes in CDFEM are constrained to 
match XFEM values at nodal locations

– CDFEM space contains XFEM space

+

+



XFEM – CDFEM Comparison, cont’d

• Approximation
– CDFEM space contains XFEM space

• Accuracy of CDFEM no less than XFEM? Li et al. (2003)
• CDFEM can recover XFEM solution by constraining interfacial nodes

– Separate linear algebra step outside of element assembly routines
• Boundary Conditions

– CDFEM readily handles interfacial Dirichlet conditions
• Simply apply Dirichlet conditions to interfacial nodes

– Gives another view of difficulty with Dirichlet conditions in XFEM
• CDFEM recovers XFEM when interfacial nodes constrained to XFEM space
• CDFEM provides optimal solution for Dirichlet problem when interfacial 

nodes are given by Dirichlet conditions
• Attempting to satisfy both sets of constraints simultaneously over-constrains 

the problem
• Implementation

– Conformal decomposition can be performed external to all assembly 
routines

• For stationary interfaces the decomposition can be performed once on the 
input mesh



CDFEM Implementation

• For Steady State Problems
– Stationary Interfaces

• Conformal decomposition can be performed 
once

• Provides test of accuracy, performance, and 
implementation

• For Transient Problems 
– Must perform decomposition based on current 

interface location

• Level set provides convenient description

– Similar requirements to adaptive refinement

• Dynamic data structures, matrix graph

• Prolongation of solution to new nodes

– Transparent to physics code (Element assembly)



Multiphase CDFEM Status

• Aria/Krino able to run conformally decomposed problems
– Static decomposition of blocks and sidesets
– Creation of sideset on interface for bc application
– Phase specific material properties, equations, source terms, etc.
– Parallel
– Multiple phases defined by multiple level set fields
– Mixed Elements (LBB) Tris/Tets

• TODO
– Dynamic decompositions
– Combined h-adaptivity – CDFEM
– Condensation support for recovering XFEM



Moving CDFEM Goals

– How do we handle the moving interface?

– What do we do when nodes change sign?

– Goals
• Try to recover moving mesh case for moving interface

• Try to preserve minima, maxima
– Proposal

• Prolongation: Set “old” value to value of nearest point on interface
• Dynamics: Use ALE style (u-dxdt) for advection term



CDFEM Verification

• Two-Dimensional Potential Flow About a Cylinder (static)
– Analytical solution provides quantitative measure of accuracy

• Accuracy of velocity potential and its gradient computed in volume and on interface
– Allows experiments with various boundary conditions

• Three-Dimensional Potential Flow About a Sphere (static)
• Two-Dimensional Viscous, Incompressible Couette Flow (static)

– Analytical solution provides quantitative measure of accuracy
– Test of conformal decomposition for viscous, incompressible flow

• Three-Dimensional Viscous Flow about a Periodic Array of Spheres (static)
– Comparison with Boundary Element results
– Examines behavior of decomposition up to sphere overlap

• Advection of Weak Discontinuity (dynamic)
– Shows ability to capture discontinuities
– Analytical solution provides quantitative measure of accuracy

• Solidification of 1-D Bar (dynamic)
– Shows ability to capture discontinuities
– Analytical solution provides quantitative measure of accuracy

Results documented with journal article: Noble, Newren, Lechman, “A Conformal Decomposition 
Finite Element Method for Modeling Stationary Fluid Interface Problems”, International Journal 
for Numerical Methods in Fluids (accepted, 2009)



CDFEM Simulation of Steady, Potential Flow 
about a Circular Cylinder

• Embedded curved boundaries
• Dirichlet BC on outer surface, Natural BC on inner surface

• Optimal convergence rates for solution and gradient both on volume and 
boundaries



CDFEM Simulation of Steady, Potential Flow 
about a Sphere

– Embedded curved boundaries
– Dirichlet BC on outer surface, Natural BC on inner surface

– Optimal convergence rates for solution and gradient both on 
volume and boundaries



CDFEM Simulation of Steady, Fluid-Fluid 
Interface Problem: Couette Flow

– Two-Phase Flow between concentric cylinders
• Counter-rotating cylinders
• 4:1 viscosity ratio
• No surface tension

– Dirichlet conditions on inner and outer surfaces, 
weak discontinuity along interface

– Cut regular, unstructured mesh along outer, inner, 
and interfacial radii



CDFEM Simulation of Steady, Fluid-Fluid 
Interface Problem: Couette Flow

– Embedded curved boundaries

– Dirichlet BC on inner and outer surface

– Weak discontinuity in velocity captured sharply and accurately

– Optimal convergence rates for solution and gradient both on volume and 
boundaries



CDFEM Simulation of Steady, Viscous Flow 
about a Periodic Array of Spheres

• Embedded curved boundaries
• Dirichlet BC on sphere surface

• Accurate results right up to close packing limit
• Sum of nodal residuals provides accurate/convergent measure of drag force



Dynamic CDFEM: 1-D Advection of a Piecewise 
Linear Field

– Exact preservation of linear field
– Does not pollute Max-Min



Dynamic CDFEM: 1-D Phase Change
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– Great agreement with exact solution



Summary and Conclusions

• CDFEM - Theory
– Recovers XFEM when added nodes are constrained to lie in XFEM space

– Demonstrates optimal rates of convergence for both Neumann and Dirichlet 
BC on curved surfaces

• CDFEM – Practice
– Simple method for handling arbitrary interfacial discontinuities

• Transparent to underlying finite element assembly

– Optimal convergence rates obtained for both volume and surface quantities 
for Dirichlet, Neumann, and mixed boundary conditions

• Project Status
– Parallel CDFEM for multiphysics is implemented, tested and documented.
– Dynamic CDFEM is developed and tested in 1-D MATLAB

– Dynamic CDFEM in SIERRA under development

New ESRF project aimed at development/application of 
these ideas for material liquefaction and relocation



Relevant Publications and Presentations

• Noble, Newren, Lechman, “A Conformal Decomposition Finite Element 
Method for Modeling Stationary Fluid Interface Problems”, International 
Journal for Numerical Methods in Fluids (accepted, 2009)

• Noble, Lechman, “Verification of a Conformal Decomposition Finite 
Element Method for Steady Fluid Flows” to be presented at the 10th U.S. 
National Congress for Computational Mechanics, Columbus, OH (2009)

• Holdych, Noble, Secor, “Quadrature Rules for Triangular and Tetrahedral 
Elements with Generalized Functions”, International Journal for 
Numerical Methods in Engineering, 73, 1310-1327 (2008)

• Noble, “Modeling Steady State Fluid Interface Problems Using the 
Conformal Decomposition Finite Element Method (CDFEM)”, Presented 
at the 14th International Conference on Finite Elements in Flow 
Problems, Santa Fe, NM (2007)

• Holdych, Noble, “Integration Techniques for Extended Finite Element 
Methods”, Presented at the 7th World Congress on Computational 
Mechanics, Los Angeles, CA (2006)

• Noble, Sun, “Modeling Decomposed Foam Dynamics using a Level Set -
Extended Finite Element Approach”, presented at APS Division of Fluid 
Dynamics, Chicago, IL (2005)


