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Relevance

Tri-generation Concept:

Integrate clean electricity production of a high temperature fuel cells with local
production of H, value-added product

Excess H, for vehicles, merchant H,, etc.

Attenuate the “chicken-in-egg” problem of lack of H, refueling stations for initial

H, fleet vehicles

Advantages:

H, production is at the point of use averting emissions and energy impacts of
hydrogen transport

Use of fuel cell waste heat and steam as the primary inputs for the endothermic
reforming process will use less fuel

Schedule relative amounts to help with “dispatch-ability”

Synergistic impact of lower fuel utilization increases overall efficiency (i.e.
higher Nernst Voltage, lower mass transport losses, lower cooling
requirement,...)

Hydrogen and electricity transportation losses eradication.

Potential capital cost reduction compared to centralized production by long-
distance transport infrastructure exclusion.

Securing fuel supply by using local feedstock.

Less energy is needed to make and to transport H, to vehicles using high
temperature fuel cell (HTFC) co-production compared with electrolysis or
centralized steam methane reforming (SMR).



Relevance

Less energy is needed to make and to transport H, to
vehicles using HTFC co-production compared with
centralized electrolysis or centralized SMR.

Energy requirements for strategies to provide hydrogen for vehicle

refueling
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Assumptions:
« SMR plant is located in Long Beach, CA and hydrogen is transported by a diesel-
fueled truck to Los Angeles.

« Electrolysis plant located in Palm Springs, CA. 100% of electricity used is wind
energy. Hydrogen is transported by diesel-fueled truck to Los Angeles.




Technical Accomplishments and Progress

We derive the theoretical limit of excess H, from fuel cell
electrochemical waste heat alone.
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We derive the quantity of excess H, available (n_,..) from electrochemical waste heat
(Qrc)- The steam reforming reactions can provide H, (A) for the fuel cell’'s anode or (B)
for excess H, for vehicles, etc. For benchmarking a H, co-producing system against a
standard system, we analytically separate the two processes — (A) and (B) -- in two
“virtually” separate steam reformers — REF, and REF5. REF, produces enough H, for the
fuel cell to provide electric power. REF; produces excess H, for vehicles, etc.



Technical Accomplishments and Progress

We model SOFC polarization from 600 to 1000°C.
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Technical Accomplishments and Pro?ress _ _ _
Excess H, per unit of fuel input increases moving from

reversible work to irreversible work (ie. with polarization).

Reversible Work
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For reversible electrical work, the y-axis ratio increases with increasing temperature. For

irreversible work, it decreases with increasing temperature. [SOFC polarization model
supplies sampled voltage losses (V) at even current density increments (2000 A/m?).]



Technical Accomplishments and Progress _ _
Excess H, per unit of electrical work (W,,.) increases

with more irreversibilities (more V,..). This trend occurs
to a greater extent as temperature decreases.
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Technical Accomplishments and Progress

Our AspenPlus™ chemical engineering process

flowsheet simulations verify our analytical models.
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AspenPlus™ model emulates schematic of analytical model with REF, and REFg
distinction, ideal heat transfer, 100% fuel and oxidant utilization within fuel cell, and reuse
of fuel cell electrochemical waste heat alone. It calculates excess H, available (n,,qss)-




Technical Accomplishments and Progress
Our AspenPlus™ model results concur with our

analytical model calculations.
1.2

Reversible Work
—&— with Vloss, 2000 A/m~2
—*—with Vloss, 4000 A/m*2
1+ —&— with Vloss, 6000 A/m”*2, peak power @ 600 Celsius |
—=—with Vloss, 8000 A/m*2, peak power @ 1000 Celsius
¢ AspenPlus, Reversible Work @ 700 Celsius
¢ AspenPlus, 4000 A/m*2 @ 900 Celsius

\
\

o
o

o
o
|

o
~
|

Excess H, fuel/CH4 fuel Input
o (kJ/kJ)
N

Aspen Plus Verification

O T I I
600 650 700 750 800 850 900 950 1000

Fuel Cell/Reformer Operating Temperature (°C)
Results concur for reversible and non-reversible work, for different polarization levels
(Vioss), and for different operating temperatures.




Technical Accomplishments and Progress

AspenPlus™ model’s partial stream table shows results
for excess H, moles from REFg, and excess H,/CH,,

which agree with analytical model.
n Excess H, fuel/CH, fuel input (kJ/kJ)

excess

CH4-A

CH4-B

H2-FEED

H2EXTRA

H20-A

H20-B

H20B-REC

Mole Flow (kmol/hr)
CH4 0.25 0.22 0 0
H20 0 0 0 0.5
CcoO 0 0 0 0
CO2 0 0 0.25 0
H2 0 0 1 0
02 0 0 0 0
N2 0 0 0 0
Total Flow kmol/hr 0.25 0.22 1.25 1.66 05 / 0.5
total Flow kg/hr 4.01 3.51 13.02 21.52 9.01/ 18.02 9.01
Total Flow cum/hr 24.38 21.31 121.94 161.47 A8.77 97.54 48.77
Temperature, K 1173.15 1173.15 1173.29 1173.15 1178.15 1173.15 1173.15
Pressure, bar 1 1 1 1 /1 1 1
Vapor Frac 1 1 1 1 /1 1 1
Liquid Frac 0 0 0 0 / 0 0 0
Molar Enthalpy, kJ/kmol -22855.56 -22855.56 -49352.94 -103436.06 -208462.8 -208462.8 -208462.8
Mass Enthalpy, kJ/kg -1424.9102 | -1432.5422 | -4738.1855 | -7978.8039 /| -11568.4129 | -11568.4129 | -11568.4129
Enthalpy Flow, kW 1.5872 1.3967 17.1364 47.6955/ 28.9532 57.9063 28.9532
Excess H2 fuel/total CH4 ~
fuel Input 0 0 0 @ 0 0 0
Molar Entropy, J/mol-K -6.65256 -6.65256 49.9988 36:60447 6.40152 6.40152 6.40152
Mass Entropy, J/gm-K -0.4184 -0.4184 4.8116 3.09616 0.37656 0.37656 0.37656
Molar Density, kmol/cum 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Mass Density, kg/cum 0.16 0.16 0.11 0.13 0.18 0.18 0.18
Average MW 16.04 16.04 10.41 13 18.02 18.02 18.02

Table shows example data for a power density of 4000 A/m”2 and a fuel cell/reformer
operating temperature of 900 °C




Technical Accomplishments and Progress

An 800 kWe fuel cell operating between 800 and 1000°C
will tend to make ~100 to 350 kg H,/day without added
fuel consumption or CO, emissions.
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An 800 kWe fuel cell can theoretically make >900 kg H, /day without added fuel or CO,.



Technical Accomplishments and Progress

We introduce increasing complexity into Aspen models
to analyze excess H,/ fuel input. i
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We enhance SOFC model fidelity to better analyze the effect of lower fuel utilization rates
at the anode, ancillary loads (compressors, pumps, etc.), heat exchanger loop designs,
recycle streams, and more complicated thermodynamic cycle designs.



