
Advanced Strategies for Stationary Fuel 
Cell Systems (FCS)
Whitney Colella,1 Amy Sun,1

Jack Brouwer,2 Pere Margalef2

Sandia National Laboratories,1 Department of Mechanical and 
Aerospace Engineering, University of California at Irvine2

International Energy Agency (IEA) Advanced Fuel Cells Annex: 
Stationary applications Annex XIX Meeting

Vienna and Güssing, Austria

March 25th -26th 2009

This presentation does not contain any proprietary, confidential, or otherwise restricted information

SAND2009-1827P



Tri-generation Concept:
• Integrate clean electricity production of a high temperature fuel cells with local 

production of H2 value-added product
• Excess H2 for vehicles, merchant H2, etc.
• Attenuate the “chicken-in-egg” problem of lack of H2 refueling stations for initial 

H2 fleet vehicles
Advantages:
• H2 production is at the point of use averting emissions and energy impacts of 

hydrogen transport
• Use of fuel cell waste heat and steam as the primary inputs for the endothermic 

reforming process will use less fuel
• Schedule relative amounts to help with “dispatch-ability”
• Synergistic impact of lower fuel utilization increases overall efficiency (i.e. 

higher Nernst Voltage, lower mass transport losses, lower cooling 
requirement,…)  

• Hydrogen and electricity transportation losses eradication.
• Potential capital cost reduction compared to centralized production by long-

distance transport infrastructure exclusion.
• Securing fuel supply by using local feedstock.
• Less energy is needed to make and to transport H2 to vehicles using high

temperature fuel cell (HTFC) co-production compared with electrolysis or
centralized steam methane reforming (SMR).

Relevance
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Electrolysis Central SMR HTFC Co-Production
Assumptions: 
• SMR plant is located in Long Beach, CA and hydrogen is transported by a diesel-
fueled truck to Los Angeles.
• Electrolysis plant located in Palm Springs, CA. 100% of electricity used is wind 
energy. Hydrogen is transported by diesel-fueled truck to Los Angeles.

Relevance

Less energy is needed to make and to transport H2 to
vehicles using HTFC co-production compared with
centralized electrolysis or centralized SMR.



We derive the theoretical limit of excess H2 from fuel cell
electrochemical waste heat alone.
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We derive the quantity of excess H2 available (nexcess) from electrochemical waste heat
(QFC). The steam reforming reactions can provide H2 (A) for the fuel cell’s anode or (B)
for excess H2 for vehicles, etc. For benchmarking a H2 co-producing system against a
standard system, we analytically separate the two processes – (A) and (B) -- in two
“virtually” separate steam reformers – REFA and REFB. REFA produces enough H2 for the
fuel cell to provide electric power. REFB produces excess H2 for vehicles, etc.

Technical Accomplishments and Progress



We model SOFC polarization from 600 to 1000°C.
Includes 
constants 
published by 
Shaffer, B., M. 
Hunsuck, and J. 
Brouwer, 2008.
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Excess H2 per unit of fuel input increases moving from
reversible work to irreversible work (ie. with polarization).
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For reversible electrical work, the y-axis ratio increases with increasing temperature. For
irreversible work, it decreases with increasing temperature. [SOFC polarization model
supplies sampled voltage losses (Vloss) at even current density increments (2000 A/m2).]



Excess H2 per unit of electrical work (Welec) increases
with more irreversibilities (more Vloss). This trend occurs
to a greater extent as temperature decreases.
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Our AspenPlusTM chemical engineering process
flowsheet simulations verify our analytical models.

Technical Accomplishments and Progress

AspenPlusTM model emulates schematic of analytical model with REFA and REFB

distinction, ideal heat transfer, 100% fuel and oxidant utilization within fuel cell, and reuse
of fuel cell electrochemical waste heat alone. It calculates excess H2 available (nexcess).



Aspen Plus Verification
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Our AspenPlusTM model results concur with our
analytical model calculations.

Results concur for reversible and non-reversible work, for different polarization levels
(Vloss), and for different operating temperatures.



CH4-A CH4-B H2-FEED H2EXTRA H2O-A H2O-B H2OB-REC

Mole Flow (kmol/hr)
    CH4 0.25 0.22 0 0 0 0 0
    H2O 0 0 0 0.56 0.5 1 0.5
    CO 0 0 0 0 0 0 0
    CO2 0 0 0.25 0.22 0 0 0
    H2 0 0 1 0.874 0 0 0
    O2 0 0 0 0 0 0 0
    N2 0 0 0 0 0 0 0

Total Flow kmol/hr 0.25 0.22 1.25 1.66 0.5 1 0.5
total Flow kg/hr 4.01 3.51 13.02 21.52 9.01 18.02 9.01

Total Flow cum/hr 24.38 21.31 121.94 161.47 48.77 97.54 48.77
Temperature, K 1173.15 1173.15 1173.29 1173.15 1173.15 1173.15 1173.15
Pressure, bar 1 1 1 1 1 1 1

Vapor Frac 1 1 1 1 1 1 1
Liquid Frac 0 0 0 0 0 0 0

Molar Enthalpy, kJ/kmol -22855.56 -22855.56 -49352.94 -103436.06 -208462.8 -208462.8 -208462.8
Mass Enthalpy, kJ/kg -1424.9102 -1432.5422 -4738.1855 -7978.8039 -11568.4129 -11568.4129 -11568.4129

Enthalpy Flow, kW 1.5872 1.3967 17.1364 47.6955 28.9532 57.9063 28.9532

Excess H2 fuel/total CH4 

fuel Input 0 0 0 0.62175 0 0 0
Molar Entropy, J/mol-K -6.65256 -6.65256 49.9988 40.50112 6.40152 6.40152 6.40152
Mass Entropy, J/gm-K -0.4184 -0.4184 4.8116 3.09616 0.37656 0.37656 0.37656

Molar Density, kmol/cum 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Mass Density, kg/cum 0.16 0.16 0.11 0.13 0.18 0.18 0.18

Average MW 16.04 16.04 10.41 13 18.02 18.02 18.02

nexcess

Table shows example data for a power density of 4000 A/m^2 and a fuel cell/reformer 
operating temperature of 900 oC

Excess H2 fuel/CH4 fuel input (kJ/kJ)

Technical Accomplishments and Progress

AspenPlusTM model’s partial stream table shows results
for excess H2 moles from REFB, and excess H2/CH4,
which agree with analytical model.



An 800 kWe fuel cell operating between 800 and 1000ºC
will tend to make ~100 to 350 kg H2 /day without added
fuel consumption or CO2 emissions.
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An 800 kWe fuel cell can theoretically make >900 kg H2 /day without added fuel or CO2.
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We introduce increasing complexity into Aspen models 
to analyze excess H2/ fuel input.

We enhance SOFC model fidelity to better analyze the effect of lower fuel utilization rates
at the anode, ancillary loads (compressors, pumps, etc.), heat exchanger loop designs,
recycle streams, and more complicated thermodynamic cycle designs.
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