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Project in a Nutshell 
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Algebraic Multigrid

Constraints:           
sparsity pattern
accurate modes

Smoothers             

Energy Minimizing 
prolongators

KKT:                                 

goals: flexibility &
robustness
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Multigrid Background

• Determine Pi & Ri’s coefs

• Project: Ai = Ri Ai+1 Pi

• Construct graph & coarsen

Solve A3u3=f3

Solve A1u1=f1 directly.

Smooth A3u3=f3. Set f2 = R2r3.

Smooth A2u2=f2. Set f1=R1r2. Set u2 = u2 + P1u1. 

Set u3 = u3 + P2u2.  

P2 R2

P1 R1

• Determine Pi & Ri sparsity pattern 

Algebraic 

Brandt, McCormick, 
Ruge, Stubën



FFp min                                        
Fp

• Algebraic Ŝ

• Ŝ for stabilized A, A2,2 ≠ 0

• New BC treatment in Ŝ

• Integration in Sandia application codes

Prior Accomplishments: Incompressible flow
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AMG

 Smoothed Aggregation: popular AMG method for A = AT

 Low cost/iteration

 Accurate interpolation of difficult modes

 P = (I - A) Ps ,            R =  PT

Vanek, Mandel, Brezina                Bramble, Pasciak, Wang, Xu

 Existing nonsymmetric generalizations

 mesh independent convergence lost

 robustness concerns

 Smoothed Aggregation: new      AMG method for A ≠ AT

 Low cost/iteration

 Accurate interpolation of difficult modes

 P = (I -  A) Ps R = (Ps)
T(I- A )

 Local minimization based on ATA norm

 New algorithm fairly robust & often gives mesh independent convergence

R = ? ,  = ?

Minimize what? 
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AMG

Q1-P0

Q1-Q1

Fp S-LSC

2n x 3*2n n=5 n=6 n=5 n=6

Re 10 35 37 16 22

Re 100 66 79 19 25

Re 200 92 100 26 27

Re 10 32 35 19 26

Re 100 61 76 19 28

Re 200 84 93 22 29

 Smoothed Aggregation: popular AMG method for A = AT

 Low cost/iteration

 Accurate interpolation of difficult modes

 P = (I - A) Ps ,            R =  PT

Vanek, Mandel, Brezina                Bramble, Pasciak, Wang, Xu

 Existing nonsymmetric generalizations

 mesh independent convergence lost

 robustness concerns

 Smoothed Aggregation: new      AMG method for A ≠ AT

 Low cost/iteration

 Accurate interpolation of difficult modes

 P = (I -  A) Ps R = (Ps)
T(I- A )

 Local minimization based on ATA norm

 New algorithm fairly robust & often gives mesh independent convergence

R = ? ,  = ?

Minimize what? 

Euler/Jet flow, Mach .75

NPN 
BJT

(4) A new Petrov-Galerkin smoothed aggregation preconditioner for nonsymmetric linear systems, Sala & T, SISC’08.

(1) Least-squares preconditioners for stabilized … Navier-Stokes Equations, Elman,Howle, S, Silvester, T, SISC’07.
(2) A Taxonomy …  of Parallel Block Multilevel Preconditioners …, Elman, Howle, S, Shuttleworth, T, JCP’08.
(3) Boundary Conditions in Approximate Commutator Preconditioners …, Elman, T, submitted to ETNA. 





Brannick, Brezina, MacLachlan, 
Mantueffel, McCormick

Ascher,Haber, Beck, Hiptmair,Xu, 
Kolev, Pasciak, Vassilevski, SNL

Prior Accomplishments: AMG & Maxwell

Exact Discrete
Reformulation

   + 
Small 
 large near null space
 iterative solver problems  Laplacian dominated
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New blk diagonal preconditioner 
- standard AMG on (2,2)
- 1 special prolongator +

standard AMG

Irregular Coarsening
• detection

• prolongator basis functions

zt = - Az + i with z(0) = 0

zt (t)  t A i + i

z() = A-1 i{
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Red Storm Weak Scaling

New blk diagonal preconditioner 
- standard AMG on (2,2)
- 1 special prolongator +

standard AMG

Irregular Coarsening
• detection

• prolongator basis functions

zt = - Az + i with z(0) = 0

zt (t)  t A i + i

z() = A-1 i{

DOFs Coefs ODE

2k 33 13

14k 67 13

110k 129 18

(1) An AMG approach based on a compatible gauge reformulation of Maxwell’s equations, Bochev, H, S & T, SISC’08.
(2) Auxiliary AMG preconditioners for  Mixed Finite Element Methods, T., J. Xu, Y. Zhu, submitted to DD’08.
(3) A new smoothed aggregation multigrid method for anisotropic problems, Gee, H, T,  NLAA, 09. 
(4) A Generalized Strength Measure for Algebraic Multigrid, Schroder, T, Olson, submitted to NLAA.



A Massively Parallel 
Algebraic Multigrid Solver

Smoothed Aggregation Capabilities

• Limited variable dofs/block support

• Aggregation with arbitrary coarsening, load balancing, …

Variety of Smoothers

Leverages  Trilinos, PETSc, SuperLU, kLU, ParMETIS, …

Smoothed Aggregation Advantages/Disadvantages

+ mesh independent convergence on many problems

+ ability to emphasize accurate interpolation of important modes

+ relatively inexpensive cost per iteration and setup cost

-Constructing P’s coefficients  very modest control over P’s sparsity pattern

 rigid rules followed during coarsening/aggregation

-Accurate interpolation of special modes requires widening P



f-points

Consider

Then

 want                                                    to be small

 want Aff to be well-conditioned

Ideal                                 perhaps use to guide sparsity pattern of Pf
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Brandt, Brannick, Livne, 
Falgout, Zikatinov

Difficult to do some of these things in smoothed aggregation



Energy Minimizing Prolongators
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B : accurate interpolation of important modes, e.g.   P  const  = const 
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Mandel, Brezina, Vanek, 
Brannick, Zikatanov, Wan

1) Solve via CG & enforce constraints each iteration:

Q Â Q  þ = rhs          Q = I – BT(B BT)-1B

2) Each iteration …

a) A P

b) Remove nonzeros  that extend beyond desired sparsity pattern

c) Apply projection

Constraints improve conditioning!
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Research Issues 

• Cost of P’s construction
– smoothed aggregation connection
– selective iteration
– Amortize multiple linear systems
 Criteria for acceptable columns of P

• Prolongator sparsity patterns
– easy to consider irregular sparsity patterns

application driven vs. 

– widening P & linear independence

• Nonsymmetric
– Perhaps GMRES on  

Q Â  Q  »P«  = 0          Q = I – BT(B BT)-1B
Q ÂT Q  »R« = 0

– Norms/scaling for minimization

• Additional constraints
– application driven vs. adaptive AMG

full 
minimization

SA-like

fcfff AAP 1

Brezina, Falgout, 
MacLachlan, Manteuffel, 
McCormick, Ruge, 
Sanders



XFEM & AMG
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How to interpolate to special degrees of freedom?

XFEM philosophy would probably coarsen normally

but have coarse special functions embedded in AH

Could project level set information to coarse grids?

sparsity pattern

 coarse special DOFs interpolate only to fine special DOFS

 restrict basis function support to one side of discontinuity

special constraints?

 enforce accurate interpolation of Heaviside function?
Belytschko et. al. ’99



MHD

 Strongly Coupled, Multiple Time- and Length-Scale, Nonlinear,

Nonsymmetric System with Parabolic and Hyperbolic Character

Ion Momentum Diffusion  10-7  10-3

Magnetic Flux Diffusion 10-7  10-3

Ion Momentum Advection 10-4  10-2

Alfven Wave  10-4  10-2

Whistler Wave  10-7  10-1

Magnetic Island Sloshing 100

Magnetic Island Merging 101

Steady-state Resistive MHD

• 1+ Billion unknowns

• 6000 cores Cray XT3/4
• Newton-GMRES/ML 4 level
• 18 Newton steps
• 223 Avg. Linear Its./ Newton step
• 84 min. for solution



MHD & AMG

• Explore better minimization prolongators

• Possibly new constraints based on analysis
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• F/C choice via compatible 
relaxation-like

• Sparsity pattern choice via 
Aff iteration

• Schur complement-based 
smoothers
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• Grid/spatially based block 
smoothers

Pernice, Tocci, 
Chacon, Knoll



Stochastic PDEs

[AH]ij = Pi Aij Pj ,   Pi  AMG(Aii)

• Stochastic coarsening (or spectral coarsening)

– Interplay with spatial coarsening

– Special constraints when nearly non-spd?

• Drop higher order terms or leave choice to energy minimization
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Different diffusion coefficients  different features, e.g. 

Gaussian variables  potential loss of SPD
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Nonintrusive                                                             Intrusive

spatial 
coarsening

Elman, Furnival, Powell, 
LeMaire, Knio, 
Debusschere, Najm, 
Ghanem



Summary

• Energy minimizing framework
– Sparsity patterns

– Family of methods with varying costs

– Nonsymmetric

– Multiple constraints

• XFEM with Waisman(Columbia) & within SNL applications
– Broaden variable block capability

– Coarse level sets & additional constraints

– Sparsity patterns

• MHD with Shadid(SNL)/Chacon(Oakridge)
– Schur complements & smoothers

– Special constraints to address difficult modes

• Stochastic PDEs with Phipps/Najm(SNL), Elman(Maryland)
– Stochastic coarsening

– Special constaints as system approaches non-SPD

(Tuminaro,Hu)

(Tuminaro)

(Tuminaro,Cyr,Hu)

(Tuminaro)

Application areas are important … but research is 
applicable to a broader class of difficult problems


