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 Construct graph & coarsen

* Determine P, & R, sparsity pattern

* Determine P, & R,’s coefs
. ,f'/ﬁ\j-}t ,*”’;—”/1;’;/1"!/
* Project: A, =R, A, P, S
2 G
Smooth A,u;=f;. Set f, = R,r;. Set 3 = u; + Pou,. Brandt, McCormick,
Ruge, Stubén
Smooth A,u,=f,. Set /=R 7. Set u, = u, + Pu,.

) Sandia
Solve A,u,=f, directly. @ National

Laboratories



Prior Accomplishments: Incompressible flow

F V V —I , Murphy, Golub,
A= , M/ = Al & S=V-F 'V wathen
V. 0 4 >
1 A4 Elman ,Loghin,
AMG S=(V-VF = § =F\ Kay, Silvester,

Wathen’01-'03

- Algebraic S .
+ § for stabilized A, A, # 0 [ e HFPV — VI H ]
« New BC treatmentin S

V0000000

* Integration in Sandia application codes

* Smoothed Aggregation: new  AMG method for A # AT
» Low cost/iteration
» Accurate interpolation of difficult modes
> P=(1-QA) P, R=(P)'(l- A®)
> Local minimization based on ATA norm

R=?, 0="7
Minimize what?

= New alqgorithm fairly robust & often gives mesh independent convergence
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() Least-squares preconditioners for stabilized ... Navier-Stokes Equations, Elman,Howle, S, Silvester, T, SISC’07.
2 A Taxonomy ... of Parallel Block Multilevel Preconditioners ..., Elman, Howle, S, Shuttleworth, T, JCP 08.

) Boundary Conditions in Approximate Commutator Preconditioners ..., Elman, T, submitted to ETNA.
W A new Petrov-Galerkin smoothed aggregation preconditioner for nonsymmetric linear systems, Sala & T, SISC’08.
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Prior Accomplishments: AMG & Maxwell

VxVx+o xact Discrete oV
Small Reformulation
= large near null space O'V_- _
\:> iterative solver problemj - \= Laplacian dominated ~

New blk diagonal preconditioner\
- standard AMG on (2,2)
- 1 special prolongator +

\_ standard AMG
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Ascher,Haber, Beck, Hiptmair,Xu,
Kolev, Pasciak, Vassilevski, SNL
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Irreqular Coarsening
» detection
z,=-Az + o with z(0) =0
Zt (At) zAtA 5,' + 5,'

z(c0) = A1 5

—

 prolongator basis functions

Brannick, Brezina, MacLachlan,
Mantueffel, McCormick
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Red Storm Weak Scaling

=== New Solver

|| —®=0Id Solver
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'ormulation

ts: AMG & Maxwell
-~

ct Discrete oV

oV -

\_= Laplacian dominated ~/

New blk diagonal preconditioner\

- standard AMG on (2,2)
- 1 special prolongator +

| \_ standard AMG

M An AMG approach based on a compatible gauge reformulation of Maxwell s equations, Bochev, H, S & T, SISC’08.
2 Auxiliary AMG preconditioners for Mixed Finite Element Methods, T., J. Xu, Y. Zhu, submitted to DD’08.
) 4 new smoothed aggregation multigrid method for anisotropic problems, Gee, H, T, NLAA, 09.

4 A Generalized Stren
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gth Measure for Algebraic Multigrid, Sch

J
" Olson, submitted to NLAA.
Y ~DOFs | Coefs| ope |
| 2k 33| 13
14k 67| 13
110k 129 | 18




l]] A Massively Parallel

| & Algebraic Multigrid Solver

Towdrls Oplemal Pemnciie Sisulioons

Smoothed Aggregation Capabilities

-ariable dofs/block support

« Aggregation with arbitrary coarsening, load balancing, ...
Variety of Smoothers
Leverages Trilinos, PETSc, SuperLU, kLU, ParMETIS, ... —

ﬁmoothed Aggregation Advantages/Disadvantages
+ mesh independent convergence on many problems
+ ability to emphasize accurate interpolation of important modes

+ relatively inexpensive cost per iteration and setup cost

= rigid rules followed during coarsening/aggregation

-Constructing P’s coefficients[:> very modest control over P's sparsity pattern ]

'-Accurate interpolation of special modes requires widening P ]

N




Prolongation & Minimization: || P ||, c-point

Consider
7))
Then uc bc
i I, P b I
f R BRI P=19R=(Rf]c)
R, A. N0 I, )\, Rb ;
L / A, =RAP
< 2 level AMG with (Ag)T as relaxation
Aﬁ, Brandt, Brannick, Livne,
— want EC=(A/7 Afc)P & E =R y to be small Falgout, Zikatinov
of

= want A, to be well-conditioned

_ 4
|deal Pf_ AﬂAfc

Difficult to do some of these things in smoothed aggregation

= perhaps use to guide sparsity pattern of P;
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Energy Minimizing Prolongators

Py
subject to  B| : |=g , P=[p, p, - D,]

P

B : accurate interpolation of important modes, e.g. P const = const

2
A

m_in§ ;. le
P .
1

- A D ﬁ)onstraints improve conditioning!
4 g | P »r
A p;|=|0 BRET"
A Pq - e e
? 1) o8 2
1) Solve via CG & enforce constraints each iteration:K
QAQ p=rhs Q=/-B"(BB")'B Mandel, Brezina, Vanek,

2) Each iteration ... Brannick, Zikatanov, Wan

a) AP
b) Remove nonzeros that extend beyond desired sparsity pattern
c) Apply projection @

Sandia
National _
Laboratories



Research Issues

Cost of P’s construction g \—ﬁ—\
— smoothed aggregation connection SA-like minimUilzation
— selective iteration T aw ¥ =

— Amortize multiple linear systems V\/
—> Criteria for acceptable columns of P

Prolongator sparsity patterns
— easy to consider irregular sparsity patterns

application driven vs. P, =—A, 4,
— widening P & linear independence

Nonsymmetric
— Perhaps GMRES on
QA Q »P« =0 Q=/-B"(BB')'B
QATQ »R«=0
— Norms/scaling for minimization

Brezina, Falgout,

Additional constraints MacLachlan, Manteuffel,

L , _ McCormick, Ruge, Sandia
— application driven vs. adaptive AMG Sanders @ National

Laboratories



XFEM & AMG

1 =20 ]
u(x)= 2.9+ 2 HWHXz +. . HX)=1, eo [ =E@NI0Ey)=0
How to interpolate to special degrees of freedom? 1v u u
XFEM philosophy would probably coarsen normally 38 g g KR
but have coarse special functions embedded in A, e ; s o s -
Could project level set information to coarse grids? i BB o
sparsity pattern - L3k . i
» coarse special DOFs interpolate only to fine special DOFS
= restrict basis function support to one side of discontinuity B %%B EB
i = &
. . e
special constraints? : Wb e
= enforce accurate interpolation of Heaviside function? - LARdLd

Belytschkoet. al. ’99  []  [I[3



MHD

Hov) +V: [pvev—-T]|—-|JxB|=0; T——(P+§M(V°u))1+#[VU+VuT]

R =
ot

R, =2 v =0 lon Momentum Diffusion 107 — 10-3
a?;e) Magnetic Flux Diffusion 107 — 10-3
Re=—3 = +V-[pvetq ~T: Vv I’ Q" +Q =0 lon Momentum Advection 104 — 102
OB 1 . Alfven Wave 104 — 10-2
Ba=g #VXE=0 J=p¥xB E=-mxSimlrgh< —vo Whistler Wave 107 — 10"
= Magnetic Island Sloshing 10°

Magnetic Island Merging 101

= Strongly Coupled, Multiple Time- and Length-Scale, Nonlinear,

Nonsymmetric System with Parabolic and Hyperbolic Character

Weak Scaling Study: Resisitve MHD VP
Formulation (2D MHD Pump)

Steady-state Resistive MHD _ 3000 s—
« 1* Billion unknowns & 2500 1— e -
* 6000 cores Cray XT3/4 § 2000 —immEh
- Newton-GMRES/ML 4 level : s
* 18 Newton steps & <= 7
« 223 Avg. Linear Its./ Newton step @ 1000 i
« 84 min. for solution - ‘0 A
s 500 s
¢ rocs.
. 15@{ s
1.0E+05 1.0E+06 1.0E+07 1.0E+08

Number of Unknowns



MHD & AMG

« EXxplore better minimization prolongators
* Possibly new constraints based on analysis

A R
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" B _ = =
Use * F/C choice via compatible
F F BT relaxation-like
( S] ot (B $ ] - Sparsity pattern choice via
A iteration
— generate hierarchy * Schur complement-based
—> generate prolongators smoothers
CICl" 5]
. . ],
Grid/spatially based block Pernice. Tocci. ») \p $

smoothers Chacon, Knoll



Stochastic PDEs u=2, u, (0¥ (0)

=2 ()Y, (o)
M= [¥Y ¥, du
-E) [E M) [, =
Different diffusion coefficients = different features, e.g. >, Myk/l
Gaussian variables = potential loss of SPD ©
M, R R .
spatial - . L
coarsening M= Mzz P= })2 P=|. P2 .
M., K, oo B
Nonintrusive » Intrusive

[Addi=P; Ay P, P« AMG(A;))

Elman, Furnival, Powell,
LeMaire, Knio,

» Stochastic coarsening (or spectral coarsenin
9 ( P g) Debusschere, Najm,

— Interplay with spatial coarsening Ghanem
— Special constraints when nearly non-spd? @ ﬁandial
- . S : ational
 Drop higher order terms or leave choice to energy minimization Laboratories



Summary

« Energy minimizing framework (Tuminaro,Hu)
— Sparsity patterns
— Family of methods with varying costs
— Nonsymmetric
— Multiple constraints

« XFEM with Waisman(Columbia) & within SNL applications (Tuminaro)
— Broaden variable block capability
— Coarse level sets & additional constraints
— Sparsity patterns

 MHD with Shadid(SNL)/Chacon(Oakridge) (Tuminaro,Cyr,Hu)
— Schur complements & smoothers
— Special constraints to address difficult modes

« Stochastic PDEs with Phipps/Najm(SNL), EIman(Maryland) (Tuminaro)
— Stochastic coarsening
— Special constaints as system approaches non-SPD

-
Application areas are important ... but research is

applicable to a broader class of difficult problems Sandia

National _
\ Laboratories




