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Above-ground scintillator studies
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Scintillator motivation
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Review: The Inverse Beta Signal

The scintillation detector will utilize inverse beta decay to generate events:
v +tp2>e"+n
* inverse beta-decay produces a pair of correlated events in the detector

Gd or other neutron capture agent loaded into liquid scintillator captures
the resulting neutron after a relatively short time
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Inverse Beta Backgrounds

= Uncorrelated Backgrounds

= Random coincidences, Poisson
time distribution
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= Correlated Backgrounds

Have the same time structure as
antineutrino interactions
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What Particle ID or Insensitivity Can Do
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How can Particle ID be Implemented?

= Fast Neutron Scatter (proton recoil)
* Pulse Shape Discrimination in Liquid Scintillator
- Resolve multiple neutron scatters via segmentation (?)

= Neutron Capture
« Pulse Shape Discrimination in 6Li or 1°B doped Liquid Scintillator
- Separate neutron capture detector (e.g. *He tubes)
« Multiplicity of Gd gamma ray shower via segmentation (?)
* (LiZnS, LGB later in talk)

= Positron

- |dentify back-to-back 511 keV annihilation gammas via
segmentation
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Segmentation concept
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Signal generation within a single unit cell

= There are four possible configurations of a detector
segment:

« Homogeneous scintillator without particle 1D

— Impossible in above-ground backgrounds with no
segmentation

« Homogeneous scintillator with particle ID (example:
PSD in a liquid scintillator to exclude proton recoils)

« Separate detection media for positron and neutron
capture, single readout

« Separate detection media for positron and neutron
capture, independent readout
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LGB: Separate detection media, single readout

= LiGd(BO,),;:Ce is being investigated at LLNL

= LGB is an inorganic crystal scintillator composed of neutron
capture agents (!)

= SLjand '°B neutron captures are bright compared to Li or B doped
organic scintillators

- Lower quenching of high dE/dx interactions than organics
- Light yield from 6Li + n -> 3H + 4He is ~40,000 photons
= Time constant of inorganic scint. is very long (~200ns) compared
to organics (~ few ns)
= To some extent, isotopics can be selected, e.qg.

5LjntGd(11BO,),:Ce
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LGB as an antineutrino detection medium

Small grains of crystal (~1mm) mixed
with plastic scintillator:

= H for antineutrino target

= e*in plastic scintillator

= LGB for neutron capture (via PSD
= BUT: little to no fast n rejection

LGB index (n = 1.65) is well matched
to plastic (n = 1.58)

5 inch right cylinder sample is 1% by weight LGB
= 0.1% by weight 6Li
= 0.4% by weight "2Gd

Good for uncorrelated background reduction; poor correlated proton
recoil/capture background discrimination

m) L.




Neutron Capture Selection via PSD
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ZnS:Ag/°LiF: Separate detection media, single readout

= ZnS:Ag/®LiF is an inorganic crystal scintillator
« Reduced quenching of heavy ion depositions

« Time constant is very long (~200ns) compared to
organics (~ few ns)
- SLiis a strong thermal neutron absorber
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ZnS:Ag/°LiF: Proposed Design

ZnS:Ag/SLiF
scintillator

« Antineutrino interaction signature

— Positron

» Electron-like event in
hydrogenous scintillator (fast
pulse decay)

— Neutron

» Bright ZnS pulse in two
adjacent cells about ~10 us
after positron
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ZnS:Ag/°LiF experiments: painted inserts

= Coated inserts in a liquid scintillator cell

= Liquid scintillator produced gamma and fast neutron
differentiation; paint generates thermal neutron capture
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ZnS:Ag/°LiF: Separate detection media,
independent readout

= |f time multiplexing does not
work, may have to read out Zn_S:Ag/GLiF
ZnS layers separately scintillator

Wavelength shifting optical fiber
e—

ZnS coated acrylic bar uL'
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WLS fiber readout is a proven concept

= Success reported in the literature (LANL, U. of Tokyo)

= Flexible geometries allow placement of fiber-readout PMTs outside
of detection volume

WLS fiber
bundles

LiZnS bars

Reprinted from Belian et al, NIM A 505 (2003) 54-57. UL'
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Summary

= The above-ground backgrounds necessitate
advancement of the current SONGS scintillator
technology

» Particle ID
¢ Segmentation

= LGB and ZnS:Ag/CLiF produce distinct thermal neutron
signatures

» Cost, availability, overall efficiency in system
= ZnS:Ag/CLiF plastic bars with WLS fibers are another
option
* Proven technology
« Geometry flexibility
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Cell size optimization studies

= (Use Lorraine’s simulations to show optimal cell sizing
for neutron capture efficiency vs. hydrogen
displacement)

= Slow experimental progress is due to focus on
materials development and lack of definite material
choice.
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Capture Time distributions
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Neutron Capture Cross Sections Relative to H

in 99% Plastic - 1% °Li.,"Gd(''BO,),
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