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Scintillator motivation

 Scintillator proven for this application in SONGS1 
deployment

• Event defined by successive PMT pulses in a fixed 
gate & pulse height cuts

 1st from positron

 2nd from Gd capture gammas

No particle ID, just timing info

• Overburden and muon paddles reduce background

 Expected above-ground backgrounds require 
advancements in particle ID and/or background 
rejection

• See N. Bowden’s earlier presentation
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Review: The Inverse Beta Signal

 The scintillation detector will utilize inverse beta decay to generate events:

+ p  e+ + n
• inverse beta-decay produces a pair of correlated events in the detector 

 Gd or other neutron capture agent loaded into liquid scintillator captures 
the resulting neutron after a relatively short time

 Positron

• Immediate

• 1- 8 MeV (incl. 511 keV s) 

 Neutron

• Delayed (= 28 s for Gd)

• ~ 8 MeV gamma shower
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Inverse Beta Backgrounds

n

n deposits energy

 ~ 8 MeV

Gd
 ~ 30 s

 Correlated Backgrounds 
• Have the same time structure as 

antineutrino interactions 

 Uncorrelated Backgrounds

 Random coincidences, Poisson 
time distribution 
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What Particle ID or Insensitivity Can Do
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How can Particle ID be Implemented?

 Fast Neutron Scatter (proton recoil)
• Pulse Shape Discrimination in Liquid Scintillator

• Resolve multiple neutron scatters via segmentation (?)

 Neutron Capture
• Pulse Shape Discrimination in 6Li or 10B doped Liquid Scintillator

• Separate neutron capture detector (e.g. 3He tubes)

• Multiplicity of Gd gamma ray shower via segmentation (?)

• (LiZnS, LGB later in talk)

 Positron
• Identify back-to-back 511 keV annihilation gammas via 

segmentation 
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Segmentation concept
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Signal generation within a single unit cell

 There are four possible configurations of a detector 
segment:

• Homogeneous scintillator without particle ID

 Impossible in above-ground backgrounds with no 
segmentation

• Homogeneous scintillator with particle ID (example: 
PSD in a liquid scintillator to exclude proton recoils)

• Separate detection media for positron and neutron 
capture, single readout

• Separate detection media for positron and neutron 
capture, independent readout
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LGB: Separate detection media, single readout

 LiGd(BO3)3:Ce is being investigated at LLNL

 LGB is an inorganic crystal scintillator composed of neutron 
capture agents (!)

 6Li and 10B neutron captures are bright compared to Li or B doped 
organic scintillators 

• Lower quenching of high dE/dx interactions than organics

• Light yield from 6Li + n -> 3H + 4He is ~40,000 photons 

 Time constant of inorganic scint. is very long (~200ns) compared 
to organics (~ few ns)

 To some extent, isotopics can be selected, e.g. 

6LinatGd(11BO3)3:Ce
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LGB as an antineutrino detection medium

 Small grains of crystal (~1mm) mixed 
with plastic scintillator:

 H for antineutrino target

 e+ in plastic scintillator

 LGB for neutron capture (via PSD)

 BUT: little to no fast n rejection

 LGB index (n = 1.65) is well matched 
to plastic   (n = 1.58)

 5 inch right cylinder sample is 1% by weight LGB

 0.1% by weight 6Li

 0.4% by weight natGd

 Good for uncorrelated background reduction; poor correlated proton 
recoil/capture background discrimination
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Neutron Capture Selection via PSD

Background
252Cf + background
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ZnS:Ag/6LiF: Separate detection media, single readout

 ZnS:Ag/6LiF is an inorganic crystal scintillator

• Reduced quenching of heavy ion depositions

• Time constant is very long (~200ns) compared to 
organics (~ few ns)

• 6Li is a strong thermal neutron absorber 
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ZnS:Ag/6LiF: Proposed Design

ZnS:Ag/6LiF 
scintillator
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• Antineutrino interaction signature

– Positron 
• Electron-like event in 

hydrogenous scintillator (fast 
pulse decay)

– Neutron
• Bright ZnS pulse in two 

adjacent cells about ~10 s 
after positron
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ZnS:Ag/6LiF experiments: painted inserts

 Coated inserts in a liquid scintillator cell

 Liquid scintillator produced gamma and fast neutron 
differentiation; paint generates thermal neutron capture 
signal
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ZnS:Ag/6LiF: Separate detection media, 
independent readout

 If time multiplexing does not 
work, may have to read out 
ZnS layers separately

ZnS:Ag/6LiF 
scintillator
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ZnS coated acrylic bar

Wavelength shifting optical fiber
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WLS fiber readout is a proven concept

 Success reported in the literature (LANL, U. of Tokyo)

 Flexible geometries allow placement of fiber-readout PMTs outside 
of detection volume

LiZnS bars

WLS fiber 
bundles

Reprinted from Belian et al, NIM A 505 (2003) 54-57.
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Summary

 The above-ground backgrounds necessitate 
advancement of the current SONGS scintillator 
technology

• Particle ID

• Segmentation

 LGB and ZnS:Ag/6LiF produce distinct thermal neutron 
signatures

• Cost, availability, overall efficiency in system

 ZnS:Ag/6LiF plastic bars with WLS fibers are another 
option

• Proven technology

• Geometry flexibility
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Cell size optimization studies

 (Use Lorraine’s simulations to show optimal cell sizing 
for neutron capture efficiency vs. hydrogen 
displacement)

 Slow experimental progress is due to focus on 
materials development and lack of definite material 
choice.
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Capture Time distributions

Background

252Cf + background
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Neutron Capture Cross Sections 
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Neutron Capture Cross Sections Relative to H

in 99% Plastic - 1% 6Li6
natGd(11BO3)3
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