SAND2009- 3060P

CCA

mmon Component Architecture

Progress in Rapid, Sustainable
Development for Complex HPC Software

19 May 2008

Benjamin Allan &

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/
tutorial-wg@cca-forum.org

nnnnnnnnnnnnnnnnnnnnnnnnnnn

Who We Are: The Common Component
Architecture (CCA) Forum

« Combination of standards body and user group for the CCA

« Define specifications for high-performance scientific components
& frameworks

 Promote development of HPC tools for component-based
software development, components, and component applications

 Open membership, quarterly meetings...

General mailing list: cca-forum@cca-forum.org
Web: http://www.cca-forum.org/

« Center for Technology for Advanced Scientific Component

Software (TASCS)
— Funded by the US DOE SciDAC program
— Core development team for CCA technologies

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Our HPC software tools help HPC code...

e Technical leaders to manage change and to
enforce programming discipline.

 Managers and teams to work across complex
organizational barriers.

* Developers to cross programming language
and build system barriers.

CCA

nnnnn Component Architecture

Leaders Managing Code Complexity

Some Common Situations:

* Your code is so large and complex it has become fragile and
hard to keep running

* You have a simple code, and you want to extend its capabilities
— rationally
e You want to develop a modular “toolkit” that

— Can be assembled in different ways to perform different scientific
calculations

— Gives users without programming experience access to a flexible
tool for simulation

— Gives users without HPC experience use of HPC-ready software

How CCA Can Help:

« Components help you think about software in manageable
chunks that interact only in well-defined ways

« Components provide a “plug-and-play” environment that allows
easy, flexible application assembly

CCA

nnnnn Component Architecture

Example: Computational Facility for
Reacting Flow Science (CFRFS)

« A toolkit to perform
simulations of unsteady
flames

e Solve the Navier-Stokes
with detailed chemistry
— Any mechanism
— Structured adaptive
mesh refinement

« CFRFS today:
— 100+ components
— 9 external libraries
— 13 contributors

“Wiring diagram” for a typical CFRFS
simulation, utilizing 12 components.

CCA tools reused: Ccaffeine
framework and GUI
Languages: C, C++, F77

10

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Teams working across organizations

Some Common Situations:

 Many (geographically distributed) developers creating
a large software system.

— Hard to coordinate, different parts of the software don’t work
together as required.

o Groups of developers with different expertise.

 Builld communities to standardize interfaces and
share code.

How CCA Can Help:

 Components are natural units for
— EXpressing software architecture
— Encapsulating particular expertise

— Separating the interface from the implementation

11

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Example: Quantum Chemistry

* Integrated state-of-the-art | e 3—| mesowr 3| cosiarer
optimization technology —]
into two quantum . 1
chemistry packages to e | L e
explore effectiveness in =~ w« wom | ;
chemistry applications Schematic of CCA-based molecular
» Geographically distributed structure determination quantum
expertise: chemistry application.
— California - chemistry
— lllinois - optimization Components based on: MPQC,

— Washington — chemistry, ~ NWChem (quantum chem.), TAO
parallel data management (optimization), Global Arrays, PETSc

« Effective collaboration (parallel linear algebra)
with minimal face-to-face CCA tools used: Babel, Ccaffeine
interaction framework and Gui

Languages: C, C++, F77, Python

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Developers using multiple languages

Some Common Situations:

* Need to use existing libraries written in multiple
languages in the same application.

« \Want to allow others to access your library from
multiple languages.

How CCA Can Help:

« SIDL (language interoperability standard) and Babel
(a SIDL compiler). Every language can call every
other.

* Describing components and interfaces with SIDL
focuses the design discussion away from the ‘favorite
language' wars.

13

nnnnnnnnnnnnnnnnnnnnnnnnnnn

f&% Examples

hypre LAPACKO7

 Update to LAPACK Ilnear
algebra library

— To be released 2007

-K

K

o I I A

>» > » > »

T I VTYVIY

>3 > > > >

ANRNAAARN
=

-K

e High performance
preconditioners and linear

solvers — Library written in F77, F95
 Library written in C « Will use Babel-generated
. Babel ted obiect Interfaces for: C, C++,
abel-genstaied object- F77, F95, Java, Python
oriented interfaces e Possibly also ScaLAPACK
provided in C, C++, Fortran (distributed version)

“I implemented a Babel-based interface for the hypre library of linear
equation solvers. The Babel interface was straightforward to write and
gave us interfaces to several languages for less effort than it would take
to interface to a single language.”

-- Jeff Painter, LLNL. 2 June 2003

CCA tools used: Babel, Chasm 14

CCA

mmon Component Architecture

A Simple Example:
Numerical Integration Components

Interoperable components
(provide same interfaces)

FunctionPort

IntegratorPort FunctionPort

NonlinearFunction

FunctionPort

LinearFunction

Midpointintegrator

IntegratorPort

. FunctionPort
Driver

IntegratorPort FunctionPort

PiFunction

RandomGeneratorPort

RandomGeneratorPort

MonteCarlolntegrator

RandomGenerator

19

SOME RIGHTS RESERYVED

CCA

mmon Component Architecture

And Many More...

Dashed lines
indicate alternate
connections

EEEEEEEEERER
EEEEEEEEEER
*

ny

FunctionPort ¢,

“ FunctionPort

NonlinearFunction

Midpointintegrator

IntegratorPort ¥,

LinearFunction

Driver .,

IntegratorPort FunctionPort {

FunctionPort

PiFunction

RandomGeneratorPort

|
MonteCarlolntegrator

Create different applications
in "plug-and-play" fashion

RandomGeneratorPort

RandomGenerator

SOME RIGHTS RESERYVED

22

nnnnnnnnnnnnnnnnnnnnnnnnnn

Special Needs of Scientific HPC

Support for legacy software
— How much change required for component environment?

Performance is important
— What overheads are imposed by the component
environment?
Both parallel and distributed computing are important
— What approaches does the component model support?
— What constraints are imposed?
— What are the performance costs?

Support for languages, data types, and platforms
— Fortran?

— Complex numbers? Arrays? (as first-class objects)
— Is it available on my parallel computer?

27

nnnnnnnnnnnnnnnnnnnnnnnnnnn

CCA: Concept and Practice

* In the following slides, we explain important concepts
of component-based software from the CCA
perspective

 We also sketch how these concepts are manifested in
code (full detalls in the Hands-On)

« The CCA Specification is the mapping between

concept and code
— A standard established by the CCA Forum

— Expressed in the Scientific Interface Definition Language
(SIDL) for language neutrality (syntax similar to Java)

— SIDL can be translated into bindings for specific programming
languages using, e.g., the Babel language interoperability tool

28

CCA

mmon Component Arc hitecture

CCA Concept: Ports

IntegratorPort FunctionPort

Midpointintegrator NonlinearFunction

 Components interact through well-defined interfaces,
or ports
— A port expresses some computational functionality
— In Fortran, a port is a bunch of subroutines or a module
— In OO languages, a port is an abstract class or interface

* Ports and connections between them are a
procedural (caller/callee) relationship, not dataflow!

— e.g., FunctionPort could contain a method like
evaluate(in Arg, out Result) with data flowing both
ways

30

CCA

mmon Component Architecture

Components and Ports (in SIDL)

package gov.cca {
interface Component {
void setServices(..);

. by

"

package gov.cca {
interface Port {

package integrators {
interface IntegratorPort
extends gov.cca.Port

IntegratorPort FunctionPort {
' double 1ntegrate(.};

Midpointintegrator >} g

class Midpoint implements
gov.cca.Component,

integrator. IntegratorPort Key:
{ 4 .
double integrate(.); : = Inheritance
void setServices(..); SIDL inheritance

T} keywords

32

SOME RIGHTS RESERYVED

IntegratorPort FunctionPort

Midpointintegrator NonlinearFunction

e Calling methods on a port you use requires that you first
obtain a “handle” for the port

— Done by invoking getPort() on the user’s
gov.cca.Services object

— Free up handle by invoking releasePort() when done with
port

» Best practice is to bracket actual port usage as closely
as possible without using getPort(), releasePort()
too frequently

— Get/Release may be expensive operations, especially in
distributed computing contexts

— Performance is in tension with dynamism

e can'’t “re-wire” a ports that is “in use”
33

CCA

mmon Component Architecture

SOME RIGHTS RESERYVED

CCA Concepts:

nnnnnn

e All [e AS.. Show DutpuL
| WPen HEateRan =
. mmmmm [[t comepun
- I 1T T R
S T -
(______xponkadown |
| ,
— | AFstate I
"]
[wefon
| EqiRzRad0 |

Frameworks

gl |87
& H IR
] L z
B] |2
3

07 men]

The framework is the tool that holds the components and
composes them into applications at user's direction.

Frameworks allow connection of ports without exposing
component implementation details

Frameworks provide a small set of standard services to
components
— Framework services are CCA ports, just like on components

— Components can register ports as services using the
ServiceProvider port

Currently: framework implementations are specialized for
specific computing models (parallel, distributed, etc.)

Future: interoperability of frameworks

36

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

IntegratorPort FunctionPort

Midpointintegrator NonlinearFunction

« Components must tell the framework about the ports
they are providing and using
— Framework will not allow connections to ports it isn’t aware of

* Register them using methods on the component’s
gov.cca.Services object

— addProvidesPort() and removeProvidesPort()
— registerUsesPort() and unregisterUsesPort()

— All are defined in the CCA specification

e Ports are usually registered in the component’s
setServmese/) method

— Can also be added/removed dynamically at runtime.

37

mmmmmmmmmmmmmmmmmmmmmmmmm

CCA Supports Parallelism -- by
“*Staying Out of the Way” of it

* Single component multiple data PO P1 P2 P3
(SCMD) model is component

analog of widely used SPMD
model

* Each process |oaded with the B

same set of components wired -— % — % > %

the same way

| process “talk to each” other via
ports and the framework |

| ports and the framework | -~ D~ 2 —~ 2

SCLLR LT LE e L L LR L EEER L EEL DAL EEE essrnaneneneny : Components Blue’ Green’ Red
: «Same component in different

: processes talk to each other Framework: Gray

: through their favorite _
: communications layer (i.e. Any parallel programming

© MPI, PVM, GA) environments that can be mixed
: ’ ’ outside of CCA can be mixed inside

40

Maintaining HPC Performance

« The performance of your More about
application is as important to performance in notes
us as it is to you

« The CCA is designed to provide maximum
performance

— But the best we can do is to make your code perform no
worse, unless we give easy access to new algorithms.

e Facts:
— Measured overheads per function call are low

— Mcl)lst overheads easily amortized by doing enough work per
ca

— Other changes made during componentization may also
have performance impacts

— Awareness of costs of abstraction and language
Interoperability improves designs for high performance

44

CCA

mmon Component Arc hitecture

The Proxy Component Pattern

* A “proxy” component can be
Inserted between the user and
provider of a port without either
being aware of it (non-invasive)

» Proxy can observe or act on all
iInvocations of the interface

e For many purposes, proxies can
be generated automatically from
SIDL definition of the port

Sample uses for proxy components:

» Performance: instrumentation of
method calls

* Debugging: execution tracing,
watching data values

* Testing: Capture/replay

Performance Monitoring with TAU

Before:

Componentl Cpmponent2

i 4

After:

Proxy for
Component2

Componentl \ Component2

MasterMind TAU

(database) (measure-
’l D{] ment)

47

mmon Component Architecture

_ Additional
Component Lifecycle material

IN notes

« Composition Phase (assembling application)
— Component is instantiated in framework
— Component interfaces are connected appropriately

 Execution Phase (running application)

— Code in components uses functions provided by another
component

« Decomposition Phase (termination of application)
— Connections between component interfaces may be broken
— Component may be destroyed

In an application, individual components may be in
different phases at different times

Steps may be under human or software control o

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Is CCA for You?

 Much of what CCA does can be done without such tools if
you have sufficient discipline
— The larger a group, the harder it becomes to impose the necessary
discipline
* Projects may use different aspects of the CCA

— CCA is not monolithic — use what you need
— Few projects use all features of the CCA... at first.

« Evaluate what your project needs against CCA’s
capabilities
— Other groups’ criteria probably differ from yours
— CCA continues to evolve, so earlier evaluations may be out of date

« Evaluate CCA against other ways of obtaining the desired
capabilities

e Suggested starting point:
— CCA tutorial “hands-on” exercises

52

CCA

mmon Component Arc hitecture

Take an Evolutionary Approach

« The CCA is designed to allow selective use and
Incremental adoption

o “SIDLize” interfaces incrementally
— Start with essential interfaces

— Remember, only externally exposed interfaces need to be in
SIDL.

« Componentize at successively finer granularities
— Start with whole application as one component
» Basic feel for components without “ripping apart” your app.
— Subdivide into finer-grain components as appropriate

« Code reuse opportunities

» Plans for code evolution
53

nnnnnnnnnnnnnnnnnnnnnnnnnnn

The tools

 Bocca — project environment

e Ccaffeine — framework

e SIDL - interoperability language

 Babel — HPC language binding generator

o CCA - specification for components,
frameworks

nnnnnnnnnnnnnnnnnnnnnnnnnnn

Bocca Development Environment

* Provides a text-based, portable environment
— Create or import SIDL and CCA based codes.
— Automatic build system maintenance.
— Easy to adopt or abandon while preserving code, build.

 No GUI required.

« Still in the early beta stage of development

— Being tested by managing the tutorial source and a
regression test suite.

— Basis for common CCA toolkit installation.

— Manages components in all Babel-supported languages (C,
C++, Fortran 77, Fortran 90, Java, Python).

58

oooooooooooo

lllllllllllllll

Bocca Creates Skeletons for CCA

Including ports and interfaces
— Give the SIDL name and an empty port or interface is created.

Including components and classes
— Give the name and an empty component or class is created.

— Some extra options: the component uses/provides ports,
Implemented interfaces or extended classes

Including the build system
— For all ports/components in the project
— Implemented in any CCA supported language

Create applications with Ccaffeine GUI
Including application composition (coming soon)

59

nnnnnnnnnnnnnnnnnnnnnnnnnnn

Bocca Example

create an empty but buildable CCA skeleton
bocca create project myproj

cd myproj

Jconfigure

bocca create port myJob
bocca create component myWorker —provides=myJob:jobl

fill in public functionality
bocca edit port myJob

fill in implementation
bocca edit component —i myWorker

make

60

nnnnnnnnnnnnnnnnnnnnnnnnnnn

Ccaffeine is a Direct-Connect,
Parallel-Friendly Framework

e Supports SIDL/Babel components
— Conforms to latest CCA specification (0.8)

— Also supports legacy CCA specification (0.5)
« Any C++ allowed with C and Fortran by C++ wrappers

* Provides command-line and GUI for compaosition
— Scripting supports batch mode for SPMD
— MPMD/SPMD custom drivers in any Babel language

Supported on Linux, AlX, OSX and is portable to modern UNIXes.

62

CCA

mmon Component Architecture

User Connects Ports

Can only connect
caller(right) and callee(left) — [EEEEIEEITE

|] Common Component Architecture: Untitled_0.bld (changed)

File CCA Info
Actions

| Run || Remove || Remove All || Open... || Save H Save As..

Ports connected by type

— Port instance names are
unigue within a component

— Port types match across a
connection

Framework puts info about
provider of port into the using
component’s Services
handle

connect Driver IntegratorPort MonteCarloIntegrator IntegratorPori
connect MonteCarlolntegrator FunctionPort LinearFunction FunctionPort..*

“

SOME RIGHTS RESERYVED

64

nnnnnnnnnnnnnnnnnnnnnnnnnnn

SIDL Facilitates Scientific
Programming Language Interoperability

* Programming language-neutral interface descriptions

« Native support for basic scientific data types
— Complex numbers
— Multi-dimensional, multi-strided arrays

e Automatic object-oriented wrapper generation
e Usable standalone or in CCA environment

C fo0 C fo0
C++ Python

C++ Python

Java Java

Supported on Linux, AlX, works on OSX, catamount;
(ANSI C), C++ (GCC), F77 (g77, Sun f77), F90 (Intel, Lahey, GNU, Absoft, PGI), Java (1.4

e

—

))

68

mmon Component Architecture

The SIDL File that defines the
“greetings.English” type

@®@| package greetings version 1.0 {
interface Hello {
© void setName(in string name);

string saylt ();
}

®| class English implements-all Hello { }

70

@m mon Component Architecture

Working Code: “Hello World” in FOO0
Using a Babel Type

program helloclient
use greetings_English <
use sidl _Baselnterface
implicit none
type(greetings_English_t) :: obj
type(sidl _Baselnterface_t):: exc

Looks like a native
FOO0 derived type

character (len=80) ©: msg These subroutines
character (len=20) :: name were specified in the
name="World’ SIDL.

call new(obj, exc) “—
call setName(obj, name, exc
call saylt(obj, msg, exc)
call deleteRef(obj, exc)*
print *, msg

end program helloclient

Other basic subroutines
are “built in” to all Babel

types.

74

mmon Component Al

nt Architecture

Question: What language is “obj” really
iImplemented In?

program helloclient
use greetings_English
use sidl _Baselnterface
implicit none
type(greetings_English_t) :: obj
type(sidl _Baselnterface_t):: exc
character (Ien=80) .. msg
character (len=20) > hame
name="\World’
call new(obj, exc)
call setName(obj, name, exc)
call saylt(obj, msg, exc)

call deleteRef(obj, exc)
print *, msg

Answer: Can't Know!

With Babel, it could be C,
C++, Python, Java, Fortran77,
or Fortran90/95

In fact, it could change on
different runs without
recompiling this code!

end program helloclient]

75

mmon Com ponent Arc hitecture

CCA uses Babel for high-performance
n-way language interoperabilty

| Each one of these red lines, is
potentially a bridge between two
languages. No telling which
language your component will be
connected to when you write it.

76

CCA

mmon Compo Architecture

Implementation Details Must be Filled In
Between Splicer Blocks

namespace greetings {
class English_impl {
private:
[/ DO-NOT-DELETE splicer.begin(greetings.English._impl
string d_name;

// DO-NOT-DELETE splicer.end(greetings.English._impl)
string
greetings::English_impl::saylt()
throw ()
{

I/ DO-NOT-DELETE splicer.begin(greetings.English.saylt)
string msg(“Hello “);

return msg +d_name + “!7;

I/ DO-NOT-DELETE spl|cer.end(greetings.Eninsh.saylt)

CCA

mmon Component Arc hitecture

Resources: Its All Online

* Information about all CCA tutorials, past, present, and future:
http://www.cca-forum.org/tutorials/

o Specifically...
— Latest versions of hands-on materials and code:

http://www.cca-forum.org/tutorials/#sources
* Hands-On designed for self-study as well as use in an organized tutorial
» Should work on most Linux distributions, less tested on other unixen
 Still evolving, so please contact us if you have questions or problems

— Archives of all tutorial presentations:
http://www.cca-forum.org/tutorials/archives/

e Questions...
help@cca-forum.org or cca-tutorial@cca-forum.org

107

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

What else is in development?

e Toolkits of numerics, meshes, & other basics.

e Automatic wrapping tools for C/C++/Fortran
(generate the SIDL and implementation from
your non-CCA primary sources).

 Comprehensive documentation.

e Support for programming-by-contract.

113

	 �Progress in Rapid, Sustainable Development for Complex HPC Software
	Who We Are: The Common Component Architecture (CCA) Forum
	Our HPC software tools help HPC code...
	Leaders Managing Code Complexity
	Example: Computational Facility for Reacting Flow Science (CFRFS)
	Teams working across organizations
	Example: Quantum Chemistry
	Developers using multiple languages
	Examples
	A Simple Example: �Numerical Integration Components
	And Many More…
	Special Needs of Scientific HPC
	CCA: Concept and Practice
	CCA Concept: Ports
	Components and Ports (in SIDL)
	Using Ports
	CCA Concepts: Frameworks
	Components Must Keep Frameworks Informed
	CCA Supports Parallelism -- by “Staying Out of the Way” of it
	Maintaining HPC Performance
	The Proxy Component Pattern
	Component Lifecycle
	Is CCA for You?
	Take an Evolutionary Approach
	The tools
	Bocca Development Environment
	Bocca Creates Skeletons for CCA
	Bocca Example
	Ccaffeine is a Direct-Connect, �Parallel-Friendly Framework
	User Connects Ports
	SIDL Facilitates Scientific �Programming Language Interoperability
	The SIDL File that defines the “greetings.English” type
	Working Code: “Hello World” in F90 �Using a Babel Type
	Question: What language is “obj” really implemented in?
	CCA uses Babel for high-performance n-way language interoperabilty
	Implementation Details Must be Filled in Between Splicer Blocks
	Resources: Its All Online
	What else is in development?

