
CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

This work is licensed under a Creative Commons Attribution 2.5 License 1

Progress in Rapid, Sustainable
Development for Complex HPC Software

19 May 2008

Benjamin Allan &

SAND2009-3060P

CCA
Common Component Architecture

6

Who We Are: The Common Component
Architecture (CCA) Forum

• Combination of standards body and user group for the CCA
• Define specifications for high-performance scientific components

& frameworks
• Promote development of HPC tools for component-based

software development, components, and component applications
• Open membership, quarterly meetings…

General mailing list: cca-forum@cca-forum.org
Web: http://www.cca-forum.org/

• Center for Technology for Advanced Scientific Component
Software (TASCS)
– Funded by the US DOE SciDAC program
– Core development team for CCA technologies

CCA
Common Component Architecture

7

Our HPC software tools help HPC code...

• Technical leaders to manage change and to
enforce programming discipline.

• Managers and teams to work across complex
organizational barriers.

• Developers to cross programming language
and build system barriers.

CCA
Common Component Architecture

9

Leaders Managing Code Complexity

Some Common Situations:
• Your code is so large and complex it has become fragile and

hard to keep running
• You have a simple code, and you want to extend its capabilities

– rationally
• You want to develop a modular “toolkit” that

– Can be assembled in different ways to perform different scientific
calculations

– Gives users without programming experience access to a flexible
tool for simulation

– Gives users without HPC experience use of HPC-ready software

How CCA Can Help:
• Components help you think about software in manageable

chunks that interact only in well-defined ways
• Components provide a “plug-and-play” environment that allows

easy, flexible application assembly

CCA
Common Component Architecture

10

Example: Computational Facility for
Reacting Flow Science (CFRFS)

• A toolkit to perform
simulations of unsteady
flames

• Solve the Navier-Stokes
with detailed chemistry
– Any mechanism
– Structured adaptive

mesh refinement
• CFRFS today:

– 100+ components
– 9 external libraries
– 13 contributors

“Wiring diagram” for a typical CFRFS
simulation, utilizing 12 components.

CCA tools reused: Ccaffeine
framework and GUI
Languages: C, C++, F77

CCA
Common Component Architecture

11

Teams working across organizations
Some Common Situations:
• Many (geographically distributed) developers creating

a large software system.
– Hard to coordinate, different parts of the software don’t work

together as required.
• Groups of developers with different expertise.
• Build communities to standardize interfaces and

share code.

How CCA Can Help:
• Components are natural units for

– Expressing software architecture
– Encapsulating particular expertise
– Separating the interface from the implementation

CCA
Common Component Architecture

12

Schematic of CCA-based molecular
structure determination quantum
chemistry application.

Components based on: MPQC,
NWChem (quantum chem.), TAO
(optimization), Global Arrays, PETSc
(parallel linear algebra)
CCA tools used: Babel, Ccaffeine
framework and Gui
Languages: C, C++, F77, Python

Example: Quantum Chemistry
• Integrated state-of-the-art

optimization technology
into two quantum
chemistry packages to
explore effectiveness in
chemistry applications

• Geographically distributed
expertise:
– California - chemistry
– Illinois - optimization
– Washington – chemistry,

parallel data management
• Effective collaboration

with minimal face-to-face
interaction

CCA
Common Component Architecture

13

Developers using multiple languages

Some Common Situations:
• Need to use existing libraries written in multiple

languages in the same application.
• Want to allow others to access your library from

multiple languages.

How CCA Can Help:
• SIDL (language interoperability standard) and Babel

(a SIDL compiler). Every language can call every
other.

• Describing components and interfaces with SIDL
focuses the design discussion away from the 'favorite
language' wars.

CCA
Common Component Architecture

14

Examples

hypre
• High performance

preconditioners and linear
solvers

• Library written in C
• Babel-generated object-

oriented interfaces
provided in C, C++, Fortran

LAPACK07
• Update to LAPACK linear

algebra library
– To be released 2007
– Library written in F77, F95

• Will use Babel-generated
interfaces for: C, C++,
F77, F95, Java, Python

• Possibly also ScaLAPACK
(distributed version)

CCA tools used: Babel, Chasm

“I implemented a Babel-based interface for the hypre library of linear
equation solvers. The Babel interface was straightforward to write and
gave us interfaces to several languages for less effort than it would take
to interface to a single language.”

-- Jeff Painter, LLNL. 2 June 2003

CCA
Common Component Architecture

19

A Simple Example:
Numerical Integration Components

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Interoperable components
(provide same interfaces)

•

CCA
Common Component Architecture

22

And Many More…

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Create different applications
in "plug-and-play" fashion

CCA
Common Component Architecture

27

Special Needs of Scientific HPC

• Support for legacy software
– How much change required for component environment?

• Performance is important
– What overheads are imposed by the component

environment?
• Both parallel and distributed computing are important

– What approaches does the component model support?
– What constraints are imposed?
– What are the performance costs?

• Support for languages, data types, and platforms
– Fortran?
– Complex numbers? Arrays? (as first-class objects)
– Is it available on my parallel computer?

CCA
Common Component Architecture

28

CCA: Concept and Practice

• In the following slides, we explain important concepts
of component-based software from the CCA
perspective

• We also sketch how these concepts are manifested in
code (full details in the Hands-On)

• The CCA Specification is the mapping between
concept and code
– A standard established by the CCA Forum
– Expressed in the Scientific Interface Definition Language

(SIDL) for language neutrality (syntax similar to Java)
– SIDL can be translated into bindings for specific programming

languages using, e.g., the Babel language interoperability tool

CCA
Common Component Architecture

30

CCA Concept: Ports

• Components interact through well-defined interfaces,
or ports
– A port expresses some computational functionality
– In Fortran, a port is a bunch of subroutines or a module
– In OO languages, a port is an abstract class or interface

• Ports and connections between them are a
procedural (caller/callee) relationship, not dataflow!
– e.g., FunctionPort could contain a method like
evaluate(in Arg, out Result) with data flowing both
ways

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

CCA
Common Component Architecture

32

package integrators {
interface IntegratorPort

{
double integrate(…};

} }

package integrators {
class Midpoint

{

} }

Components and Ports (in SIDL)
•••

package gov.cca {
interface Component {
void setServices(…);

} }

package gov.cca {
interface Port {

} }

gov.cca.Component,
integrator.IntegratorPort

double integrate(…);
void setServices(…);

implements

extends gov.cca.Port
FunctionPort

MidpointIntegrator

IntegratorPort

= Inheritance

SIDL inheritance
keywords

Key:

CCA
Common Component Architecture

33

Using Ports

• Calling methods on a port you use requires that you first
obtain a “handle” for the port
– Done by invoking getPort() on the user’s
gov.cca.Services object

– Free up handle by invoking releasePort() when done with
port

• Best practice is to bracket actual port usage as closely
as possible without using getPort(), releasePort()
too frequently
– Get/Release may be expensive operations, especially in

distributed computing contexts
– Performance is in tension with dynamism

• can’t “re-wire” a ports that is “in use”

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

CCA
Common Component Architecture

36

CCA Concepts:
Frameworks

• The framework is the tool that holds the components and
composes them into applications at user's direction.

• Frameworks allow connection of ports without exposing
component implementation details

• Frameworks provide a small set of standard services to
components
– Framework services are CCA ports, just like on components
– Components can register ports as services using the

ServiceProvider port

• Currently: framework implementations are specialized for
specific computing models (parallel, distributed, etc.)

• Future: interoperability of frameworks

CCA
Common Component Architecture

37

Components Must Keep Frameworks Informed

• Components must tell the framework about the ports
they are providing and using
– Framework will not allow connections to ports it isn’t aware of

• Register them using methods on the component’s
gov.cca.Services object
– addProvidesPort() and removeProvidesPort()
– registerUsesPort() and unregisterUsesPort()
– All are defined in the CCA specification

• Ports are usually registered in the component’s
setServices() method
– Can also be added/removed dynamically at runtime.

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

CCA
Common Component Architecture

40

CCA Supports Parallelism -- by
“Staying Out of the Way” of it

• Single component multiple data
(SCMD) model is component
analog of widely used SPMD
model

P0 P1 P2 P3

Components: Blue, Green, Red

Framework: Gray

•Different components in same
process “talk to each” other via
ports and the framework

•Same component in different
processes talk to each other
through their favorite
communications layer (i.e.
MPI, PVM, GA)

• Each process loaded with the
same set of components wired
the same way

••••

Any parallel programming
environments that can be mixed
outside of CCA can be mixed inside

CCA
Common Component Architecture

44

Maintaining HPC Performance
• The performance of your

application is as important to
us as it is to you

• The CCA is designed to provide maximum
performance
– But the best we can do is to make your code perform no

worse, unless we give easy access to new algorithms.

• Facts:
– Measured overheads per function call are low
– Most overheads easily amortized by doing enough work per

call
– Other changes made during componentization may also

have performance impacts
– Awareness of costs of abstraction and language

interoperability improves designs for high performance

More about
performance in notes

CCA
Common Component Architecture

47

The Proxy Component Pattern
• A “proxy” component can be

inserted between the user and
provider of a port without either
being aware of it (non-invasive)

• Proxy can observe or act on all
invocations of the interface

• For many purposes, proxies can
be generated automatically from
SIDL definition of the port

Sample uses for proxy components:
• Performance: instrumentation of

method calls
• Debugging: execution tracing,

watching data values
• Testing: Capture/replay

Performance Monitoring with TAU

Component1

Component2Component1

Component2Proxy for
Component2

MasterMind
(database)

TAU
(measure-

ment)

Before:

After:

CCA
Common Component Architecture

48

Component Lifecycle

• Composition Phase (assembling application)
– Component is instantiated in framework
– Component interfaces are connected appropriately

• Execution Phase (running application)
– Code in components uses functions provided by another

component

• Decomposition Phase (termination of application)
– Connections between component interfaces may be broken
– Component may be destroyed

In an application, individual components may be in
different phases at different times

Steps may be under human or software control

Additional
material
in notes

CCA
Common Component Architecture

52

Is CCA for You?
• Much of what CCA does can be done without such tools if

you have sufficient discipline
– The larger a group, the harder it becomes to impose the necessary

discipline
• Projects may use different aspects of the CCA

– CCA is not monolithic – use what you need
– Few projects use all features of the CCA… at first.

• Evaluate what your project needs against CCA’s
capabilities
– Other groups’ criteria probably differ from yours
– CCA continues to evolve, so earlier evaluations may be out of date

• Evaluate CCA against other ways of obtaining the desired
capabilities

• Suggested starting point:
– CCA tutorial “hands-on” exercises

CCA
Common Component Architecture

53

Take an Evolutionary Approach

• The CCA is designed to allow selective use and
incremental adoption

• “SIDLize” interfaces incrementally
– Start with essential interfaces
– Remember, only externally exposed interfaces need to be in

SIDL.

• Componentize at successively finer granularities
– Start with whole application as one component

• Basic feel for components without “ripping apart” your app.
– Subdivide into finer-grain components as appropriate

• Code reuse opportunities
• Plans for code evolution

CCA
Common Component Architecture

56

The tools

• Bocca – project environment
• Ccaffeine – framework
• SIDL – interoperability language
• Babel – HPC language binding generator
• CCA – specification for components,

frameworks

CCA
Common Component Architecture

58

Bocca Development Environment

• Provides a text-based, portable environment
– Create or import SIDL and CCA based codes.
– Automatic build system maintenance.
– Easy to adopt or abandon while preserving code, build.

• No GUI required.

• Still in the early beta stage of development
– Being tested by managing the tutorial source and a

regression test suite.
– Basis for common CCA toolkit installation.
– Manages components in all Babel-supported languages (C,

C++, Fortran 77, Fortran 90, Java, Python).

CCA
Common Component Architecture

59

Bocca Creates Skeletons for CCA

• Including ports and interfaces
– Give the SIDL name and an empty port or interface is created.

• Including components and classes
– Give the name and an empty component or class is created.
– Some extra options: the component uses/provides ports,

implemented interfaces or extended classes
• Including the build system

– For all ports/components in the project
– Implemented in any CCA supported language

• Create applications with Ccaffeine GUI
• Including application composition (coming soon)

CCA
Common Component Architecture

60

Bocca Example
create an empty but buildable CCA skeleton
bocca create project myproj
cd myproj
./configure

bocca create port myJob
bocca create component myWorker –provides=myJob:job1

fill in public functionality
bocca edit port myJob

fill in implementation
bocca edit component –i myWorker

make

CCA
Common Component Architecture

62

Ccaffeine is a Direct-Connect,
Parallel-Friendly Framework

• Supports SIDL/Babel components
– Conforms to latest CCA specification (0.8)
– Also supports legacy CCA specification (0.5)

• Any C++ allowed with C and Fortran by C++ wrappers

• Provides command-line and GUI for composition
– Scripting supports batch mode for SPMD
– MPMD/SPMD custom drivers in any Babel language

Supported on Linux, AIX, OSX and is portable to modern UNIXes.Supported on Linux, AIX, OSX and is portable to modern UNIXes.

CCA
Common Component Architecture

64

connect Driver IntegratorPort MonteCarloIntegrator IntegratorPort
connect MonteCarloIntegrator FunctionPort LinearFunction FunctionPort
…

User Connects Ports

• Can only connect
caller(right) and callee(left)

• Ports connected by type
– Port instance names are

unique within a component
– Port types match across a

connection

• Framework puts info about
provider of port into the using
component’s Services
handle

CCA
Common Component Architecture

68

SIDL Facilitates Scientific
Programming Language Interoperability
• Programming language-neutral interface descriptions
• Native support for basic scientific data types

– Complex numbers
– Multi-dimensional, multi-strided arrays

• Automatic object-oriented wrapper generation
• Usable standalone or in CCA environment

Supported on Linux, AIX, works on OSX, catamount;
C (ANSI C), C++ (GCC), F77 (g77, Sun f77), F90 (Intel, Lahey, GNU, Absoft, PGI), Java (1.4)

Supported on Linux, AIX, works on OSX, catamount;
C (ANSI C), C++ (GCC), F77 (g77, Sun f77), F90 (Intel, Lahey, GNU, Absoft, PGI), Java (1.4)

C

C++

f77

f90

Python

Java

vs.
C

C++

f77

f90

Python

Java

Babel

CCA
Common Component Architecture

70

The SIDL File that defines the
“greetings.English” type

package greetings version 1.0 {
interface Hello {

void setName(in string name);
string sayIt ();

}
class English implements-all Hello { }

}

package greetings version 1.0 {
interface Hello {

void setName(in string name);
string sayIt ();

}
class English implements-all Hello { }

}









CCA
Common Component Architecture

74

Working Code: “Hello World” in F90
Using a Babel Type

program helloclient
use greetings_English
use sidl_BaseInterface
implicit none
type(greetings_English_t) :: obj
type(sidl_BaseInterface_t):: exc
character (len=80) :: msg
character (len=20) :: name
name=’World’
call new(obj, exc)
call setName(obj, name, exc)
call sayIt(obj, msg, exc)
call deleteRef(obj, exc)
print *, msg

end program helloclient

program helloclient
use greetings_English
use sidl_BaseInterface
implicit none
type(greetings_English_t) :: obj
type(sidl_BaseInterface_t):: exc
character (len=80) :: msg
character (len=20) :: name
name=’World’
call new(obj, exc)
call setName(obj, name, exc)
call sayIt(obj, msg, exc)
call deleteRef(obj, exc)
print *, msg

end program helloclient

These subroutines
were specified in the
SIDL.

These subroutines
were specified in the
SIDL.

Other basic subroutines
are “built in” to all Babel
types.

Other basic subroutines
are “built in” to all Babel
types.

••

Looks like a native
F90 derived type
Looks like a native
F90 derived type

CCA
Common Component Architecture

75

program helloclient
use greetings_English
use sidl_BaseInterface
implicit none
type(greetings_English_t) :: obj
type(sidl_BaseInterface_t):: exc
character (len=80) :: msg
character (len=20) :: name
name=’World’
call new(obj, exc)
call setName(obj, name, exc)
call sayIt(obj, msg, exc)
call deleteRef(obj, exc)
print *, msg

end program helloclient

program helloclient
use greetings_English
use sidl_BaseInterface
implicit none
type(greetings_English_t) :: obj
type(sidl_BaseInterface_t):: exc
character (len=80) :: msg
character (len=20) :: name
name=’World’
call new(obj, exc)
call setName(obj, name, exc)
call sayIt(obj, msg, exc)
call deleteRef(obj, exc)
print *, msg

end program helloclient

Question: What language is “obj” really
implemented in?

••

Answer: Can’t Know!

With Babel, it could be C,
C++, Python, Java, Fortran77,
or Fortran90/95

In fact, it could change on
different runs without
recompiling this code!

CCA
Common Component Architecture

76

CCA uses Babel for high-performance
n-way language interoperabilty

Each one of these red lines, is
potentially a bridge between two
languages. No telling which
language your component will be
connected to when you write it.

CCA
Common Component Architecture

77

Implementation Details Must be Filled in
Between Splicer Blocks

string
greetings::English_impl::sayIt()
throw ()
{
// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)
string msg(“Hello “);
return msg + d_name + “!”;
// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

string
greetings::English_impl::sayIt()
throw ()
{
// DO-NOT-DELETE splicer.begin(greetings.English.sayIt)
string msg(“Hello “);
return msg + d_name + “!”;
// DO-NOT-DELETE splicer.end(greetings.English.sayIt)

}

namespace greetings {
class English_impl {
private:

// DO-NOT-DELETE splicer.begin(greetings.English._impl)
string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)

namespace greetings {
class English_impl {
private:

// DO-NOT-DELETE splicer.begin(greetings.English._impl)
string d_name;
// DO-NOT-DELETE splicer.end(greetings.English._impl)

CCA
Common Component Architecture

107

Resources: Its All Online
• Information about all CCA tutorials, past, present, and future:

http://www.cca-forum.org/tutorials/

• Specifically…
– Latest versions of hands-on materials and code:

http://www.cca-forum.org/tutorials/#sources
• Hands-On designed for self-study as well as use in an organized tutorial
• Should work on most Linux distributions, less tested on other unixen
• Still evolving, so please contact us if you have questions or problems

– Archives of all tutorial presentations:
http://www.cca-forum.org/tutorials/archives/

• Questions…
help@cca-forum.org or cca-tutorial@cca-forum.org

CCA
Common Component Architecture

113

What else is in development?

• Toolkits of numerics, meshes, & other basics.

• Automatic wrapping tools for C/C++/Fortran
(generate the SIDL and implementation from
your non-CCA primary sources).

• Comprehensive documentation.

• Support for programming-by-contract.

	 �Progress in Rapid, Sustainable Development for Complex HPC Software
	Who We Are: The Common Component Architecture (CCA) Forum
	Our HPC software tools help HPC code...
	Leaders Managing Code Complexity
	Example: Computational Facility for Reacting Flow Science (CFRFS)
	Teams working across organizations
	Example: Quantum Chemistry
	Developers using multiple languages
	Examples
	A Simple Example: �Numerical Integration Components
	And Many More…
	Special Needs of Scientific HPC
	CCA: Concept and Practice
	CCA Concept: Ports
	Components and Ports (in SIDL)
	Using Ports
	CCA Concepts: Frameworks
	Components Must Keep Frameworks Informed
	CCA Supports Parallelism -- by “Staying Out of the Way” of it
	Maintaining HPC Performance
	The Proxy Component Pattern
	Component Lifecycle
	Is CCA for You?
	Take an Evolutionary Approach
	The tools
	Bocca Development Environment
	Bocca Creates Skeletons for CCA
	Bocca Example
	Ccaffeine is a Direct-Connect, �Parallel-Friendly Framework
	User Connects Ports
	SIDL Facilitates Scientific �Programming Language Interoperability
	The SIDL File that defines the “greetings.English” type
	Working Code: “Hello World” in F90 �Using a Babel Type
	Question: What language is “obj” really implemented in?
	CCA uses Babel for high-performance n-way language interoperabilty
	Implementation Details Must be Filled in Between Splicer Blocks
	Resources: Its All Online
	What else is in development?

