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Highlights:
Leaf chlorophyll content (visible spectra) and nitrogen concentration (infrared signals) have key
and unique contributions to predict maize photosynthetic capacity. RTM accurately predicts

chlorophyll, while generalized PLSR estimates nitrogen better.
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Abstract:

The photosynthetic capacity or COz-saturated photosynthetic rate (Vmax), chlorophyll, and nitrogen
are closely linked leaf traits that determine Cs4 crop photosynthesis and yield. Accurate, timely,
rapid, and nondestructive approaches to predict leaf photosynthetic traits from hyperspectral
reflectance are urgently needed for high-throughput crop monitoring to ensure food and bioenergy
security. Therefore, this study thoroughly evaluated the state-of-the-art physically-based radiative
transfer models (RTMs), data-driven partial-least-squares regression (PLSR), and generalized
PLSR (gPLSR) models to estimate leaf traits from leaf-clip hyperspectral reflectance, which was
collected from maize (Zea mays L.) bioenergy plots with diverse genotypes, growth stages,
treatments of nitrogen fertilizers and ozone stresses in three growing seasons. Results show that
leaf RTMs considering bidirectional effects can give accurate estimates of chlorophyll content
(Pearson correlation r = 0.95), while gPLSR enabled retrieval of leaf nitrogen concentration (r =
0.85). Using PLSR with field measurements for training, the cross-validation indicates that Vimax
can be well predicted from spectra (r = 0.81). The integration of chlorophyll content (strongly
related to visible spectra) and nitrogen concentration (linked to shortwave infrared signals) can
provide better predictions of Vmax (r = 0.71) than only using either chlorophyll or nitrogen
individually. This study highlights leaf chlorophyll content and nitrogen concentration have key

and unique contributions to Vmax prediction.

Keywords: Hyperspectral leaf reflectance; the CO:2 saturated photosynthetic rate; chlorophyll;

nitrogen; partial-least-squares regression; radiative transfer model; maize; bioenergy crop
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1. Introduction

Photosynthesis captures and converts solar radiation into chemical energy to drive COz2 fixation
into carbohydrates that ultimately power ecosystems and feed humanity (Ainsworth, 2018). The
conservation of photosynthetic proteins and enzymes has aided the mathematical modeling of
photosynthetic processes (Farquhar et al, 1980; Caemmerer and Furbank, 1999). In Cs
photosynthesis models, carbon assimilation is limited by PEP carboxylation in mesophyll and
Rubisco carboxylation of bundle sheath cells (Von Caemmerer, 2000; Sage & Kubien, 2007). With
the ability to concentrate CO2 around Rubisco, the photosynthesis of Ca crops (e.g. Zea mays,
Miscanthus sinensis, and Panicum virgatum) in current atmospheric conditions is often limited by
the CO:2 saturated photosynthesis rate Vmax, which corresponds to the maximal Rubisco
carboxylation rate (Leakey et al., 2019). However, due to limited in-situ measurements and
knowledge of Vmax, most crop and terrestrial ecosystem models ignore such variability and specify
a fixed value of Vmax for each plant functional type (Kattge et al., 2009). Inaccurate temporal and
spatial representation of Vmax can cause significant uncertainties in photosynthesis models and
crop yield predictions (Hu et al., 2014). Thus, accurate, timely, rapid, nondestructive, and cost-
effective approaches to estimate Vmax are highly needed for yield forecasting, bioenergy

production, and agricultural management.

Vmax s sensitive to leaf nitrogen, temperature, ozone, and pathogens, and shows spatial, temporal
and developmental variability (Bernacchi et al., 2001; Ainsworth et al., 2014; Kucharik et al.,
2016). Leaf nitrogen is often cited as the primary mechanism controlling Vmax, as multiple studies
have shown that Vmax standardized to a certain temperature shows a strong relationship with leaf
total nitrogen content or concentration (Walker et al., 2014; Dechant et al., 2017; Yendrek et al.,
2017). Other studies, however, reveal that the Vmax and nitrogen relationships are complicated. For
instance, plants in soils with low nitrogen availability can achieve high Vmax per leaf nitrogen
(Ainsworth and Rogers, 2007). Miner and Bauerle (2019) found nitrogen content and the Rubisco
carboxylation rate were not correlated for Sunflower. The Rubisco activity of soybean did not
significantly correlate to leaf nitrogen due to the excessive nitrogen storage in leaves (Koester et
al., 2016). For tree species aspen, maple and ash, Croft et al. (2017) found that Rubisco
carboxylation rates were more sensitive to Chl than leaf nitrogen content. The high correlation

between Chl and Vmax could be explained by the nitrogen resource optimality allocation (Dewar,
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1996; Evans and Clarke, 2019; Smith et al., 2019). As light and dark reactions should be well
coordinated to maximize leaf photosynthesis, nitrogen investment in light harvesting Chl and
Rubisco should be optimized. Although these studies imply strong connections among nitrogen,
Chl and Vmax, it is still debated whether the use of Chl (Houborg et al., 2015; Croft et al., 2017),
nitrogen content/concentration (Yendrek et al., 2017; Dechant et al., 2017), or their derivatives

(e.g. Chl*carotenoids, Chou et al., 2020) as the proxy for Vmax.

Traditional methods to estimate leaf Vmax by A/Ci (net photosynthesis / intercellular CO2
concentration) curves from leaf gas exchange experiments (Von Caemmerer, 2013) provide
accurate measurements, but are time-consuming and not suitable for high-throughput crop
monitoring in the context of field phenotyping and precision agriculture. Sensing techniques such
as optical reflectance, solar-induced fluorescence, or thermal infrared data are rapid, non-
destructive, and cost-effective ways to quantify crop traits (Houborg et al., 2013; Serbin et al.,
2015; Guan et al., 2017). Particularly, spectroscopy can exploit spectral information of the entire
optical range (400 - 2500 nm) through either physically-based radiative transfer models (RTMs,
e.g. Jacquemoud and Baret, 1990; Vilfan et al., 2019) or data-driven methods (Serbin et al., 2012;
e.g. Ainsworth et al., 2014; Yendrek et al., 2017) to estimate traits. These estimates include
photosynthetic traits (Chl, nitrogen and Vmax), structural parameters, chemical composition, and
photo-protective pigments (Townsend et al., 2003; Weber et al., 2012; Singh et al., 2015). The
information of diverse traits from spectroscopy provides opportunities to interpret the linkage of

leaf traits and Vmax to evaluate using Chl, nitrogen, or other traits as the proxy of Vmax.

The RTM approaches, for instance the pre-calibrated generalized plate-based turbid medium
PROSPECT (Jacquemoud and Baret, 1990) or PROSPECT-DyN (Wang et al., 2015, 2018b)
models, have merits to operationally predict foliar traits such as Chl, nitrogen and water content
across species, growth stages, and environmental conditions. However, the accuracy and number
of predictable traits from RTMs are limited (Verrelst et al., 2019). For instance, due to the weak
absorption features of Rubisco protein, existing RTMs do not include the spectral absorption
coefficients of Rubisco protein to directly predict Vmax. The prediction of Vmax through RTMs
often relies on statistical regression with RTM based traits (Houborg et al., 2013; Croftet al., 2017;
Dechant et al., 2017) or detecting photosynthetic functioning (Vilfan et al., 2019; Zheng and Chen,
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2017; Bayat et al., 2018). Additionally, leaf RTMs are developed with hemispherical reflectance
measured with integrating spheres. These reflectance measurements are different from conical
reflectance (Schaepman-Strub et al., 2006) collected by the leaf-clip, which is the high-throughput
approach for spectra collection in fields. To solve the above issues, the close-range spectral
imaging of leaves model (COSINE, Jay ef al., 2016), which accounts for bi-directional reflectance
factors, needs to be combined with PROSPECT to simulate leaf conical reflectance. Conversely,
data-driven approaches, e.g. partial-least-squares regression (PLSR), can flexibly fit leaf spectra
with diverse measured traits with high predictive performance. For instance, a few studies have
demonstrated that Vmax can be accurately estimated from leaf spectra (Serbin ef al., 2012; Yendrek
et al.,2017; Wu et al., 2019). However, the performance of PLSR models can vary significantly
depending on species, plant growth stages, and sensor configurations (Wang et al., 2019). In
addition, PLSR requires sufficient samples of measured traits for model training, which is less
operational compared with RTMs. The pre-trained generalized PLSR (gPLSR) models, which
were developed from a large database of in-sifu observations, can be promising for applications
lacking measured trait data for modeling training (Wang et al., 2020). The traits Chl, nitrogen, and
Vmax can be retrieved from leaf spectra through RTMs, PLSR, or gPLSR, but it remains uncertain
for the performance comparison of these approaches. A comprehensive evaluation of these
approaches to quantify Chl, nitrogen, and Vmax for high-throughput crop monitoring is highly

needed.

Maize (Zea mays L.) is one of the major nitrogen-deficient staple and bioenergy crops, which
represents a model for species with the Cs4 photosynthesis pathway. Due to environmental factors
or management strategies (e.g. shortage of nitrogen fertilizers), maize Vmax is often suppressed and
the average yield reaches only 64% of maximum potential globally (Neumann et al., 2010). In this
study, we collected leaf gas exchange measurements, leaf-level hyperspectral reflectance, nitrogen
and chlorophyll data from maize experimental plots with various genotypes, growth stages,
treatments of nitrogen fertilizers and ozone stress during three growing seasons. The objective was
to develop and evaluate spectroscopy approaches for estimating photosynthetic traits from leaf-
clip spectra and to understand the relationship among Chl, nitrogen, and Vmax. Two key questions
were addressed: (1) Among RTMs, PLSR, and gPLSR approaches, which method performs best

to estimate Chl and nitrogen from the leaf-clip reflectance? (2) Can we utilize leaf spectra or
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spectra-based traits to accurately estimate Vmax? If so, what are the key spectra or traits for Vmax
prediction? By answering these questions, this study aimed to identify the operational approaches
to predict photosynthetic traits using leaf hyperspectral reflectance and understand the linkage

among Chl, nitrogen, and Vmax prediction.

2. Materials and methods

2.1 Leaf spectra and photosynthetic trait measurements

The maize experimental plots of diverse genotypes were treated with nitrogen fertilizers (maize
nitrogen plots, Fig. S1) and ozone (SoyFACE, Fig. S1) in Champaign, Illinois, and measured
during the growing seasons of 2014, 2015 and 2019. The ozone experiment was previously
described by Yendrek et al. (2017), along with hyperspectral reflectance, gas exchange, and
biochemical data from the ozone experiments. The nitrogen experiment was designed with
management practices of different nitrogen fertilization amounts (0, 50, 100, 150, 200 and 250
pounds per acre), time (planting, V6, and V10 stages) and approaches (middle-row injection and
in-row dribble). The ozone and nitrogen fertilization experiments provided test cases to evaluate
the approaches to retrieve photosynthetic traits from leaf-clip spectra, and further to identify the

relationship among leaf Vmax, nitrogen, and Chl.

Leaf reflectance spectra (500 - 2400 nm) were acquired from the central section of the leaf adaxial
surface using ASD FieldSpec 4 Standard Res full-range spectroradiometers (Analytical Spectral
Devices Inc., Colorado, the USA) equipped with an illuminated leaf-clip contact probe. A/Ci
curves were measured with LI-COR 6400 and 6800 portable photosynthesis systems (LI-COR Inc.,
Nebraska, the USA) after measurements of leaf-clip reflectance. The A/Ci measurements were
conducted with the leaf positioned in the chamber with air humidity of 55% and leaf temperature
close to the ambient conditions (25-32 °C). The leaf adaxial side was placed facing the light source
with an intensity of 2000 pmol-m-s™!. For each A/Ci curve, the ambient CO2 concentrations were
set to the sequences of 400, 50, 100, 150, 250, 350, 500, 700, 900, and 1200 ppm. To ensure the
accuracy of measured Vmax from gas-exchange measurements, we have tested the reproducibility
of LiCOR machines in our experiments. This study followed the Yendrek et al. (2017) protocol to
use the horizontal asymptote of a four-parameter non-rectangular hyperbolic function to process

the measured A/Ci curves to estimate Vmax. Furthermore, we collected Vmax measurements of the
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same leaves with different leaf temperatures to quantify the Vmax temperature response curve using
the Q10 formula and temperature inhibition curves (Leuning, 2002). By using the fitted
temperature response curve of maize, Vmax measurements of this study were standardized to the
reference temperature. 25°C is a commonly used reference temperature to normalize the
temperature impacts on Vmax. However, this study selected 27 °C as the reference temperature due
to the following reasons. 60% of the field Vmax measurements were collected at 27 °C and using
Vmax,27 could reduce uncertainties of temperature normalization. Furthermore, as 27 °C is close to
ambient temperature in the peak growing season of our study site, using Vmax,27 agrees with our
desire to estimate biochemical limitations to photosynthesis close to growth temperature.
Additionally, with the measured temperature correction curve of Fig. S3, all Vmax27 relationships

of this study can be converted to Vmax,25 (Vmax,25 = 0.875Vmax,27).

After A/Ci measurements, leaf tissues were sampled using a cork borer and stored in liquid
nitrogen. The wet laboratory experiments were conducted to measure Chl content and nitrogen
concentration of leaf samples. For Chl, one leaf disc (approximately 1.4 cm?) was incubated in 96%
(v/v) ethanol to determine Chl content using the equations of Lichtenthaler and Wellburn (1983).
Three leaf discs were dried in an oven (60 °C) for three weeks to determine leaf dry mass. An
analytical balance (ME204TE/00, Mettler Toledo Inc., Ohio, the USA) was used to measure the
dry matter weight per area (Cdm, g cm™) of leaf samples. The dried leaf tissues were ground to a
fine powder and combusted with oxygen in an elemental analyzer (Costech 4010, Costech
Analytical Technologies Inc., California, the USA). The nitrogen per mass (Nmass, %) was
determined by comparing experimental samples with an acetanilide standard curve. In total, we
collected 460 leaf spectra, 297 leaf Vmax measurements, 177 leaf Chl measurements, 350 leaf Nmass
and Cdm measurements. Raw data and experiment sources of these measurements can be found in
the supplementary Dataset S1. A correlation matrix among the measured photosynthetic traits of
Vmax27, Chl, Nmass, and nitrogen per area (Narca, NmassX Cdm, mg cm™), was calculated to

characterize their relationships.

2.2 Models to predict traits from leaf spectra

2.2.1 Radiative transfer modeling
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The PROSPECT models (Jacquemoud and Baret, 1990) were employed in this study to simulate
leaf hemispherical reflectance over the optical domain from 400 to 2500 nm to retrieve the
photosynthetic traits Chl and nitrogen. PROSPECT-D can utilize leaf reflectance to estimate
multiple traits, e.g. leaf structure parameter (N), leaf Chl content (Chl, pg/cm?), equivalent water
thickness (Cw, cm), leaf mass per area (Cdm, g/cm?), and the senescent (brown) materials (Féret
etal.,2017). The PROSPECT-DyN model was utilized to incorporate protein, cellulose, and lignin
by recalibrating spectral absorption coefficients (Wang et al., 2015, 2018b). As leaf protein
strongly linearly correlates with nitrogen (Yeoh and Wee, 1994), estimated protein content was
converted to the nitrogen content. PROSPECT was developed to simulate the hemispherical
reflectance of leaves, but the leaf-clip reflectance collected in this study was conical. To convert
the conical reflectance to the hemispherical, the COSINE model (Jay et al, 2016) was
implemented with PROSPECT models. Detailed information about the parameters of these three

models can be found in Table 1.

The retrieval of foliar traits was conducted through a numerical inversion of RTMs by minimizing
the root mean square deviation (RMSD) between the measured leaf-clip and simulated reflectance.
The numerical optimization procedure used the same constrained Powell's line-search method as
Féret et al. (2017). As nitrogen is sensitive to the shortwave infrared, a two-step retrieval following
Wang et al. (2015) was performed. The first step was to use the entire optical domain 500-2400
nm to invert the leaf structural parameter (N) and Chl content (Chl). Then we applied the shortwave
infrared domain 2100-2300 nm to invert PROSPECT-DyN to estimate the protein content (Cp),
which was further converted to nitrogen content using the ratio of 4.43 (Wang et al., 2018b).

2.2.2 Partial Least Squares Regression (PLSR)

The PLSR approach has been widely applied to process hyperspectral reflectance with high
collinearity. PLSR can minimize predictor variables to a few orthogonal latent components (Geladi
and Kowalski, 1986; Wold et al., 2001). In this study, we selected PLSR to develop models to
predict photosynthetic traits (i.e. Chl, nitrogen, and Vmax) from the measured leaf spectra. We
conducted four-fold cross-validation to split the collected spectra and traits into training and testing.
In each training data set, the model between leaf spectra and traits was developed. Then this model

was tested using the independent testing data set. The uncertainty analysis of the PLSR models
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was conducted by splitting the training dataset via 100 permutations and generating the new model
coefficients following Meerdink et al. (2016). Then we used the ensemble mean of PLSR models
to predict the photosynthetic traits. By doing so, we obtained both predictive values and
uncertainties for traits. Notably, the leaf reflectance from 500 to 2400 nm was utilized to develop
the PLSR models between spectra and Vmax or Chl. However, as nitrogen is well known to be
linked to the shortwave infrared (Curran, 1988; Serbin et al., 2014; Yendrek et al., 2017), we used
leaf reflectance of 1500-2400 nm to generate PLSR models to predict nitrogen. To avoid
overfitting between spectra and foliar traits, we optimized the number of PLSR components by
minimizing the prediction residual sum of squares (PRESS) statistic (e.g. Meerdink et al., 2016).
PRESS of successive model components was calculated through a cross-validation analysis. We
selected model components corresponding to the minimum PRESS statistic until successive PLSR

components did not significantly increase the model predictive accuracy (Serbin et al., 2014).

2.2.3 Generalized Partial Least Squares Regression (gPLSR)

The generation of PLSR models requires sufficient measured traits to be collected for modeling
training, which could limit the applicability of PLSR in a fast and operational manner. To deal
with such limitations, we tested the pre-trained gPLSR models (Wang et al., 2020) to predict leaf
Chl and nitrogen. The gPLSR models were generated from a database of leaf spectra and traits of
40 species (including maize) across NEON field sites in the Eastern U.S (data available from
doi:10.21232/e2jt-5209 and model code at ecosml.org). The pre-trained gPLSR model has
advantages of free calibration and only requires leaf spectra data to predict foliar traits. In this
study, we tested whether such gPLSR models can be applied to agricultural sites with different

environmental conditions and sampling time.

2.3 Model application and evaluation

Our workflow to compare the predictive ability of RTMs, PLSR, and gPLSR to estimate leaf Chl,
nitrogen, and Vmax is illustrated in Fig. 1. We evaluated the performance of the PLSR, gPLSR, and
RTMs to estimate leaf Chl and nitrogen. Then we conducted a comparison of various approaches
to estimate Vmax. The first approach utilized the leaf Chl or nitrogen to develop the linear regression
models to estimate Vmax. We conducted four-fold cross-validation to evaluate the performance of

these linear regression models. Then we tested the accuracy of using the leaf reflectance data to

10
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develop a PLSR model to estimate Vmax. We also applied RTMs and gPLSR to estimate various
leaf traits. Then through these estimated ten traits (N, Chl, Car, Ant, Cs, Cw, Cdm, B, Nmass and
Ccl), we developed the trait-based PLSR model to predict Vimax. Furthermore, as Chl and Nmass are
two commonly used variables to proxy Vmax, we also compared the performance of using only Chl,
Nmass, and their multiplication to predict Vmax. We used the comparison of spectra-based and trait-

based PLSR models to identify the accurate and robust approaches to estimate Vmax.

To comprehensively evaluate the estimated crop traits from leaf spectra, the Taylor diagram
(Taylor, 2001) was used to present these three complementary statistics with a triangle-cosine-law
relationship: the Pearson correlation coefficient (r), normalized standard deviation (NSTD, as Eq.
1), and normalized unbiased root-mean-square deviation (NubRMSD, Eq. 2). The radial distance
stands for the NSTD and the angle in the polar plot represents r. The reference point on the X-axis
with r=1, NSTD=1 and NubRMSD=0 refers to the observation. The distance from the simulation
point to the reference point represents NubRMSD of simulations and stands for the integrated
performance for the simulation. The closer distance from simulation points to the reference point

indicates better simulation performance.
NSTDgjp, = STDgimm/STD,ps Eq. (1)
NubRMSDZy,; i = NSTDZps + NSTDZ,,,, — 2NSTD s NST Dsip COS Tops,sim Eq. (2)

Where sim and obs represent the simulation results and the observations, respectively. N is the
total number, with the subscript i representing the number i of simulations or observations. 7,5 sim
refers to the correlation coefficient between simulations and observations and NSTD is the

normalized standard deviation.

2.4 Analysis of spectral signatures on predicting traits

To identify the contribution of spectral wavelengths to the prediction of Chl, nitrogen and Vmax,
both physical model and statistical method based sensitivity approach were applied. Through the
comparison of these two approaches, this study can get a comprehensive understanding of the

relationship between spectra wavelengths and the prediction of leaf traits.

11
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In the physical model based approach, we conducted a global sensitivity analysis of the
PROSPECT-DyN-COSINE using the Sobol method (Sobol, 2001; Saltelli et al., 2004), which is
based on analysis of variance decomposition to calculate the sensitivity of coupled inputs. The
Sobol analysis can quantify the contribution of model parameters (leaf traits) to the wavelengths
of leaf reflectance. The first order Sobol sensitivity quantifies the independent contribution from
each input to the output variables, while the second-order sensitivity quantifies interactions
between every two inputs to the output variable. The Sobol analysis is sensitive to the configuration
of the model parameter range and distribution. As this study focused on the maize photosynthetic
traits, we utilized the collected 460 leaf spectra to invert RTMs to obtain the parameter distribution.
Then, the kernel density sampling method was applied to generate the input data for sensitivity
analysis. The kernel density sampling method has the advantage of resembling the distribution of
the sampled dataset (Wang et al., 2018a). According to the kernel density distribution of model
parameters, 20,000 samples were generated to assess the sensitivity of simulated leaf spectra to
traits. Additionally, to our best knowledge, this study is the first one to integrate PROSPECT-DyN
and COSINE for the retrieval of foliar traits. Such sensitivity analysis can also give insights into

evaluating the impacts of incorporating COSINE for reflectance simulation.

In the statistical approaches, the PLSR loading, coefficients, and Variable Influence on the
Projection (VIP) scores (Wold et al., 2001) were computed. The wavelengths with high absolute
values of loading, coefficients, and VIP scores indicate a high contribution to the leaf trait
prediction. The similarity and difference of the model loadings, coefficients and VIP scores of the
PLSR models to predict Chl, Nmass, and Vmax were compared to explore the spectral linkage among
these key photosynthetic traits. Notably, this study did not employ RTMs to directly predict Vimax.
The sensitivity of spectral wavelength to Vmax prediction focused on the PLSR approach. In
addition, we also analyzed the PLSR loading of using these estimated ten traits (N, Chl, Car, Ant,
Cs, Cw, Cdm, B, Nmass and Ccl) to predict Vmax. The VIP scores and loading analysis can show the
linkages of these ten traits t0 Vmax.

12
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3. Results

3.1 Measured leaf spectra and photosynthetic traits

The measured leaf spectra (Fig. 2a) followed a general pattern of low reflectance in the visible
region (500-700 nm), high reflectance in the near-infrared region (700-1300 nm) and two water
absorption features in the shortwave infrared region (1300-2400 nm). The coefficient of variation
(CV) of the spectral data (Fig. 2b) indicated that the visible, red edge (700-750 nm), and shortwave
infrared regions, which are strongly linked to leaf pigments and biochemical traits, have greater
variability compared to the near-infrared, which reflects the structural parameters of leaves (e.g.

leaf thickness and dry matter content).

After Vmax was standardized to 27 °C using the fitting temperature response curve in Fig S2 (Vmax.25
= 0.875Vmax,27), the measured leaf biochemical and photosynthetic traits, Chl, Nmass, Narea, and
Vmax.27, were all highly correlated (Fig. 3). Nonetheless, there were differences in the strength of
trait correlations. Among all pairs, Chl and Narea had the highest linear correlation (r = 0.89), and
this high correlation indicated that maize tended to allocate leaf total nitrogen to Chl at a relatively
constant rate. Both Chl and Nmass were highly correlated with Vmax27 (r = 0.77 and 0.75,
respectively), confirming previous findings that Vmax27 of maize is highly correlated with Chl
(Houborg et al., 2013; Croft ef al., 2017) and Nmass (Yendrek et al., 2017). The large variabilities
of measured photosynthetic traits can serve a robust dataset for testing the model performance to

predict traits.

3.2 Predicted photosynthetic traits from leaf spectra

The results of comparing RTM, PLSR and gPLSR (Fig. 1) to estimate leaf photosynthetic traits
are shown in the Taylor Diagram (Fig. 4). For leaf Chl, PLSR achieved the highest r of around
0.95, lowest NubRMSD of about 0.33, and NSTD close to 1. The RTM approach also achieved
high performance with r around 0.95 and NubRMSD around 0.45. The gPLSR approach can obtain
good performance with r of 0.88 and NubRMSD of 0.48. For Nmass, the PLSR method showed the
highest r of around 0.96 and NubRMSD of 0.28. The gPLSR approach can also obtain a relatively
good prediction of nitrogen with r of about 0.85 and NubRMSD of 0.56. The predictive power of
the RTM (PROSPECT-DyN-COSINE) was weaker with r of around 0.60. Detailed scatterplots of
predicting Chl and Nmass are illustrated in Fig. S4.

13
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For Vmax27 predictions, the best performance was achieved by the spectra based PLSR model with
rof 0.81, NubRMSD of around 0.61, and NSTD close to 1. The trait-based PLSR model utilizing
ten spectra based traits (N, Chl, Car, Ant, Cs, Cw, Cdm, B, Nmass and Ccl) to predict Vmax27 also
demonstrated a good predictive skill with r of about 0.72 and NubRMSD of 0.70. These two PLSR
models showed better performance than the linear regression models based on either Chl or Nmass.
The linear regression models based on Chl or Nmass achieved similar and moderate prediction
performance with r of around 0.6. However, the predictive performance of the linear model
significantly improved by using Chl*Nmass. The linear regression model between Chl*Nmass and
Vmax can achieve r of around 0.71 and NubRMSD of 0.70, which is close to the performance of
the trait-based model (Fig. S5). This result indicates that Chl and Nmass play a major role in the
prediction of Vmax27 in the trait-based PLSR model.

3.3 Contribution of spectral signatures on predicting traits

In the RTM based spectra contribution analysis, this study retrieved parameter distribution (Fig.
S3) from the collected 460 leaf spectra. Then, the global sensitivity analysis results of PROSPECT-
COSINE and PROSPECT-DyN-COSINE for the case of simulating maize leaf-clip reflectance
were conducted as Fig. 5. In the visible region, pigments including Chl, Car, Ant, and Cs
contributed to the reflectance variation (Fig. 5a), with red edge and green wavelengths (500-750
nm) influenced primarily by Chl. The leaf structural parameter N, which indicates the leaf
thickness, and dry matter content (protein, cellulose and lignin in PROSPECT-DyN, Fig. 5b)
contributed to the variability of reflectance in near-infrared and shortwave infrared regions that
was not explained by B. In particular, the shortwave infrared 1500-1900 nm and 2000-2400 nm
are the main wavelengths exhibiting the nitrogen signal (Cp on Fig. 5b). The parameter B
representing the bidirectional reflectance factor of leaves showed a significant contribution to the
spectral variability across visible, near-infrared and shortwave infrared, especially in blue and red
wavelengths and the water absorption feature around 1900 nm. This high contribution indicated
the importance of considering the bidirectional effects of leaf reflectance collected from a handheld
leaf-clip spectroradiometer (Li et al., 2019). In general, from the model-based contribution
analysis, the visible information (500-750 nm) has strong implications for Chl estimation, while

the shortwave infrared bands (1500-1900 and 2000-2400 nm) are important for nitrogen prediction.
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In the statistical analysis, the VIP scores, loading, and coefficients of the spectra based PLSR
models were compared to analyze the similarity and difference of using spectra to predict Vimax,27,
Chl and Nmass (Fig. 6 a-c). In general, the visible wavelengths associated with green reflectance
and red absorption (550 and 710 nm) contributed most significantly to the prediction of Chl, while
the SWIR wavelengths in the 1700-1900 nm and 2100-2200 nm SWIR regions were most
important to the prediction of nitrogen. These findings also agree with the model-based sensitivity
analysis (Fig. 5) and confirm the robust performance of RTMs. The shaded grey regions in Fig. 6
correspond to the high absolute values of VIP scores for predicting Vmax27. In the visible part of
the spectrum (500 - 750 nm), the VIP scores, loadings, and coefficients of Vmax,27 and Chl were
very similar. Specifically, the green and red edge (550 and 710 nm) largely contributed to the
prediction of Vmax.27. In the shortwave infrared region, the patterns of VIP scores, loadings, and
coefficients for Vmax,27 were close to those for Nmass. The PLSR models of Vmax,27 and Nmass shared
key wavelengths such as 1590, 1830, 1910, 2030 and 2110 nm. These results indicate that the
spectra signals of Chl and Nmass have complementary contributions to the prediction of Vimax,27.
However, notably, there are also unique wavelengths such as 1500 nm, 2200 nm, and 2300 nm

contributing to the prediction of Vmax27 that are not strongly related to Chl or Nmass.

Similar to the analysis of spectra-based PLSR models, the VIP scores and loading of the trait-
based PLSR model also supported the findings on the large contribution of Chl and Nmass t0 Vmax,27
predictions. In the VIP scores of trait-based PLSR model (Fig. 7a), Chl and Nmass were the two
strongest contributors to the prediction of Vmax.27. The analysis of the components 1 and 2 of PLSR
loading (Fig. 7b) showed that Chl largely contributed to the first component of PLSR loading.
Nmass had a contribution to the first component but also provided unique information in the second
component. This analysis indicated that Chl and Nmass had shared but also unique contributions to
the prediction of Vmax.27. In the VIP scores for the trait-based PLSR model, Car and Cw showed a
high contribution to the model prediction following Chl and Nmass. This contribution was likely
due to the high correlation between Chl and Car (Kopsell et al., 2004). Under drought conditions,
low water availability can alter nitrogen uptake and thus results in a high correlation between leaf

water content and Vmax (Camino et al., 2019).
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4. Discussion

We provided a comprehensive evaluation of spectroscopy methods to retrieve Chl, Nmass, and Vmax.
These analyses could be helpful for the model selection to estimate leaf photosynthetic traits in
high-throughput crop monitoring. First, for pre-trained approaches, the PROSPECT-D coupled
with the COSINE model showed a strong ability to predict Chl, while gPLSR predicted leaf
nitrogen better. With field measurements for model training, PLSR showed the best performance
to predict foliar traits. Second, the spectra-based or trait-based PLSR models can provide accurate
and effective means to predict Vmax. We also found that Chl and Nmass, which are strongly linked
to visible and shortwave infrared signals respectively, showed shared and unique contributions to
the prediction of Vmax. Measurement and model uncertainties, implications on RTM and PLSR

model selection, and mechanisms of controlling Vmax based on these results are further discussed.

4.1 Uncertainty for photosynthetic capacity prediction

Compared with Chl and Nmass prediction, achieving high accuracy to predict Vmax through
spectroscopy has more challenges. These challenges are partially due to the limited amount and
weak absorption features of Rubisco enzyme. Furthermore, uncertainties in field Vmax

measurements and models may also contribute to the performance of Vmax prediction.

This study used commercial gas exchange systems to obtain the A/Ci curves to fit the horizontal
asymptote of a four-parameter non-rectangular hyperbolic function (Yendrek et al.,, 2017) to
quantify Vmax. However, gas leakage, chamber edge effects, and lateral flux through leaf air space
could bring uncertainties for A/Ci curves, when operating systems in fields (Long and Bernacchi,
2003). In addition, the Rubisco capacity Vmax derived from gas-exchange measurements is not
always equal to the amount of Rubisco protein present (Crafts-Brandner & Salvucci, 2000).
However, this study carefully screened all A/Ci curves to exclude the bad fitting of measurement
curves as Kauwe et al. (2016). As multiple machines were employed, we have also tested the
reproducibility of machines to ensure similar A-Ci curves obtained from different machines for
the same leaf. Furthermore, our Vmax measurements are comparable to estimates reported in
previous studies (Houborg et al., 2013; Yendrek et al., 2017; Miner and Bauerle et al., 2019). All

these strategies ensure the high accuracy of the measured Vmax data for this study.
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To diagnose the performance of spectra-Vmax27 model, we further analyzed the relationships
between model prediction residuals with leaf conditions, environmental stressors, experiment year,
and genotypes (Fig. 8). The comparison between model residuals and leaf Vmax27 (Fig. 8a) show
model overestimation of Vmax,27 when leaf Vmax27 is low, while the model underestimates Vmax.27
when leaves have high Vmax27. We also found the model residuals exhibit dependence on O3
treatment (Fig. 8b), which indicates that O3 can alter the leaf spectra and traits relationship
(Yendrek et al., 2017). Similarly, the spectra-trait model also shows a large difference when
applying to different genotypes (Fig. 8d). However, we did not find a significant difference for
model performances in different year data (Fig. 8c), which demonstrates the transferability of

PLSR models for plants across growth stages (Wang et al., 2019).

4.2 Selection of physically-based and data-driven approaches

RTMs are developed based on physically based radiative transfer processes and thus have high
accuracy to utilize the observed leaf spectra to accurately predict traits with strong absorption
features, such as pigments. For instance, this study demonstrated the high accuracy of
PROSPECT-COSINE to estimate Chl (r = 0.94) in maize. Compared to pigments, protein has
relatively weaker absorption features in shortwave infrared and RTM showed moderate accuracy
to estimate Nmass (Fig. 4). Data-driven methods such as PLSR have the advantage of exploiting
spectral signatures to link reflectance with in-situ measurements to accurately predict traits such
as Nmass (r=0.96). However, the development of PLSR models requires collecting a large data set
of foliar traits for model training, and models may not be applicable outside the conditions of in-
situ collections. In practical applications, the pre-trained gPLSR models, which can be
implemented without field measured traits, have high flexibility and accuracy to predict traits such

as Nmass (I' = 085)

Regarding Vmax prediction, the spectra-based PLSR model in this study achieved the highest
accuracy (r = 0.81). The trait-based PLSR model achieved slightly worse but still reasonably good
performance (r = 0.72). The integration of Chl and Nmass can also achieve good predictive
performance (r = 0.71). For leaf scale applications, the spectra based models show great potential.
However, such leaf spectra models have challenges to be directly applied to the canopy scale, as

spectra vary significantly across leaf and canopy scales. The upscaling of reflectance from leaf to
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canopy is also highly nonlinear, due to light scattering throughout the canopy profile, sensor
viewing angles, solar radiation angles, fraction of sunlit and shaded leaves (Verhoef, 1984). The
upscaling of Vmax from leaf to canopy is also highly nonlinear, but the process is influenced by
nitrogen allocation throughout the canopy profile and within leaves (Wright and Hammer, 1994;
Evans and Clarke, 2019). Thus, the leaf scale spectra-Vmax relationship could be hardly used to
the canopy spectra, as different mechanisms involved in the upscaling of spectra and Vmax from

leaf to canopy.

To predict Vmax across leaf, canopy, regional, or global scales, the trait-based Vmax model has more
flexibility (Houborg et al., 2013; Luo et al., 2019). For instance, Houborg et al. (2013) showed that
using the leaf Chl-Vmax relationship along with satellite-derived chlorophyll content, the
community land model achieved an improved estimation of canopy GPP. Similarly, Luo et al.
(2019) applied such leaf Chl-Vmax relationship to the global scale to derive terrestrial
photosynthesis. In these studies, leaf traits were retrieved from the canopy reflectance through
RTMs (Jacquemoud et al., 2009) and then the trait-Vmax relationship were applied to derive
photosynthetic capacity.

4.3 Foliar nitrogen allocation and photosynthetic capacity prediction

Photosynthesis requires a large number of proteins, e.g., Rubisco and light-harvesting complex,
which account for 69-75% of the nitrogen in leaves (Makino and Osmond, 1991; Onoda et al.,
2017). Around 25-31% nitrogen is allocated to the non-photosynthetic components such as cell
walls, mitochondria, peroxisomes, and the cytosol, as shown in Fig. 9 (Mu et al., 2016; Evans and
Clarke, 2019). The nitrogen allocation to Rubisco and other components show strong variability
depending on species, growth stages and environmental conditions (Evans and Clarke, 2019). For
instance, Onoda et al. (2017) found that when leaves increased leaf dry mass per area, the fraction
of leaf nitrogen allocated to Rubisco declined to compensate for the increased allocation to the cell
wall materials. Due to the greater photosynthetic rate per unit leaf nitrogen in young leaves, Vmax
showed strong variations with leaf ages (Albert et al., 2018; Wu et al., 2019). The proportion of
photosynthetic proteins in maize showed large variations with treatments of nitrogen fertilizers

(Mu et al., 2016). Understanding leaf nitrogen allocation is important for Vmax prediction.
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The proposed approach in this study (Fig. 9), which estimates Chl and total nitrogen through the
visible and shortwave infrared spectra respectively, can integrate Chl and nitrogen information to
infer nitrogen allocation to predict Vmax. Compared to the remote sensing approaches utilizing
either Chl or total nitrogen to approximate Vmax (Houborg et al., 2013; Dechant et al., 2017), this
proposed approach has greater potential for Vmax retrieval. For instance, chlorophyll deficit
tobaccos have a much lower Chl-to-Vmax ratio than normal species (Meacham-Hensold et al.,
2019). Using a universal Chl and Vmax relationship may underestimate Vmax in such species.
However, with additional nitrogen information, the prediction of Vmax could be improved.
Likewise, use of total nitrogen to predict Vmax may result in low correlations for species such as
soybean (Koester et al., 2016) due to excessive nitrogen storage. The additional information of
Chl could thus be vital to improving the prediction of soybean Vmax. Moreover, the sensing
techniques provide estimates of the pool sizes for leaf nitrogen components, e.g., Chl or total
nitrogen. To further constrain Vmax prediction, the optimality theories on plant resource allocation
(Smith et al., 2019) can be leveraged to combine with the retrieved nitrogen components from
sensing techniques. For natural ecosystems or nitrogen deficit crops, plants tend to maximize
carbon gains with improving nitrogen allocation among leaf nitrogen pools (Quebbeman and
Ramirez, 2016). With such information about nitrogen allocation, the prediction of Vmax could be
further improved. Towards operational prediction of Vmax from hyperspectral reflectance with less
dependency on model training, the integration of RTM derived Chl and gPLSR derived Nmass to

develop the generalized model for Vmax prediction shows great potential.

5. Conclusion

The accurate, fast, nondestructive, and cost-effective approaches to estimate photosynthetic traits,
such as COgz-saturated photosynthesis rate (Vmax), chlorophyll, and nitrogen, are highly needed for
crop monitoring. This study comprehensively evaluated radiative transfer models (RTMs), partial
least-squares regression (PLSR), and generalized PLSR (gPLSR) to retrieve photosynthetic traits
from leaf-clip reflectance collected in diverse maize plots with different genotypes, growth stages,
treatments of nitrogen fertilizers and ozone pollution in three growing seasons. This study led to
the following conclusions: (i) Both pre-trained RTM and gPLSR methods have great potential to
estimate photosynthetic traits. RTMs can achieve a high performance to retrieve foliar pigments

such as chlorophyll content (r = 0.95). gPLSR can be used to estimate foliar nitrogen concentration
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(r=0.85). (i1) With model training, PLSR methods can exploit leaf reflectance in conjunction with
field samples to achieve high accuracy to predict traits. The PLSR models based on spectra (r =
0.81) or the spectra retrieved traits (r = 0.72) can provide good predictions of Vmax. In particular,
the trait-based Vmax model has the ability to be applied across spatial scales, i.e. using either leaf
or canopy level data. (iii) We found that leaf chlorophyll content and nitrogen concentration
showed complementary contributions to the prediction of Vmax. The integration of leaf chlorophyll
and total nitrogen information, which indicates leaf chlorophyll nitrogen and total nitrogen pool
sizes respectively, can significantly improve Vmax prediction (r = 0.71) than that using only
chlorophyll or nitrogen. The information on nitrogen allocation among nitrogen pools is vital for

Vmax predictions.

This study provided new insights into improving Vmax prediction by sensing both chlorophyll and
nitrogen for maize. Such approaches could also be applied to other crops, e.g. perennial bioenergy
C4 grasses. Further, applying estimated photosynthetic traits from such approaches into the
terrestrial ecosystem models could significantly improve the ability to predict crop yields and
carbon cycles. Leveraging the advanced imaging spectroscopy approaches on towers, unmanned
or manned airborne systems, or satellites such as PRISMA (launched in 2019), HISUI (launched
in 2019), EnMAP (expected launch in 2021), and NASA SBG and ESA CHIME (expected
launches in late 2020s), we can extend the leaf retrieval to the canopy and regional scale for high-

throughput and large-scale agricultural monitoring to improve food and bioenergy production.

Supplementary data

Supplementary data are available at JXB online.

Fig. S1. Overview of the study site.

Fig. S2. Fitted Vmax temperature correction curve for Maize.

Fig. §3. Retrieved distribution of the PRO-COSINE and PRODyN-COSINE parameters from the
measured 470 maize leaf reflectance.

Fig. S4. Scatterplots of predicting (a-c) leaf chlorophyll content and (d-f) nitrogen concentration

from leaf-clip reflectance.
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Fig. S5. Scatterplots of predicting Vmax from leaf spectra or spectra based traits.

Dataset S1. Measured leaf traits, measured reflectance, and generated spectra-trait PLSR models.
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800 Table
801

802 Table 1 Model parameters and their typical ranges for PROSPECT-D, PROSPECT-DyN and
803  COSINE leaf radiative transfer models.

Model Parameter Description and unit Typical
range
N Leaf structure parameter [unitless] 0-5
Chl Chlorophyll content [pg cm™] 0-100
Car Carotenoids content [ug cm™] 0-60
PROSPECT-D Ant Anthocyanin content [pug cm™] 0-5
Cs Senescent (brown) materials [unitless] 0-5
Cw Leaf water thickness [cm] 0-0.1
Cdm Dry matter content [g cm™] 0-0.02
PROSPECT- Cp Protein content [g cm™] 0-0.02
DyN Cecl Cellulose and lignin content [g cm™] 0-0.02
0s Sensor view angle [°] 0-180
COSINE 01 Light incident angle [°]' o 0-90
B Specular term to account for the bidirectional 0906

reflectance factor [unitless]

804
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807  Fig. 1. Comparison of approaches to estimate leaf chlorophyll, nitrogen, and Vmax27. PLSR:
808  partial-least-squares regression; gPLSR: generalized PLSR; RTM: radiative transfer model; LR:
809 linear regression. Chl: leaf chlorophyll content; Vmax27: leaf maximum carboxylation rate
810 standardized to 27 °C; N: leaf thickness parameter; Car: carotenoids; Ant: anthocyanins; Cs:
811  senescent material fraction; Cw: leaf water content; Cdm: leaf dry matter content; B: the parameter
812  to account for the leaf bidirectional reflectance; Ccl: leaf cellulose and lignin content; The dashed
813 line indicates that methods require model training, while the solid lines are calibration-free
814  approaches. This study compared three approaches to retrieve leaf chlorophyll and total nitrogen
815  content, and four approaches to retrieve leaf Vmax,27. This figure is available in colour at JXB online.
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818  Fig. 2. Mean, maximum, minimum, standard deviation, and coefficient of variation (CV) of the
819  measured leaf reflectance for maize. This figure is available in colour at JXB online.
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Fig. 3. Correlation matrix for measured leaf photosynthetic traits. Vmax27: the carboxylation rate

at 27 °C (umol ms"); Chl: leaf chlorophyll content (ug/cm?); Nmass: leaf nitrogen per mass (%);

Narea: leaf nitrogen per area (mg/cm?). The statistics in plots refer to the Pearson correlation

coefficients.
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Fig. 4. Taylor diagram to present the performance of estimating leaf chlorophyll, nitrogen and
Vmax. The pentagrams represent PLSR and LR (linear regression) methods. The diamonds are the
RTM approaches, which refer to the PROSPECT-COSINE and PROSPECT-DyN-COSINE. The
squares indicate the gPLSR method. The markers with the green color represent chlorophyll
related predictions. The markers with the blue color are nitrogen related predictions. The markers
with the red edge indicate Vmax related predictions. The radial coordinate represents the normalized
standard deviation, which is equal to 1 for the observations. The angular coordinate indicates the
correlation coefficient, which refers to 1 for the observations. The concentric green dashed semi-
circles represent the normalized unbiased RMSD. In the Taylor diagram, the closer points to the

observation point refer to higher predictive ability for the models. This figure is available in colour

at JXB online.
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840
841  Fig. 5. Global sensitivity analysis of radiative transfer models. (a) PROSPECT-COSINE (b)

842  PROSPECT-DyN-COSINE. In the legend, the variables N, Chl, Car, Ant, Cs, Cw, Cdm, Cp, Ccl,
843 B and Interactions refer to leaf thickness structure parameter, chlorophyll, carotenoids,
844  anthocyanin, senescent materials, water content, dry matter content, protein, cellulose and lignin,
845 leaf bidirectional reflectance factors, and interactions for the parameter sensitivities, respectively.
846  This figure is available in colour at JXB online.
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Fig. 6. (a) VIP scores, (b) loading and (c) coefficients of the spectra based PLSR model for Vmax 27,
chlorophyll, and nitrogen predictions. The orange curve shows leaf Vmax27 predictions. The green
curve refers to the leaf chlorophyll content prediction. The blue curve represents leaf nitrogen per
mass predictions. The shaded grey region indicates the key wavelengths for Vmax27 predictions.

This figure is available in colour at JXB online.
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Fig. 7. (a) VIP scores and (b) loading components 1 and 2 of the trait-based PLSR model for the
Vmax,27 prediction. The traits N, Chl, Car, Ant, Cs, Cw, Cdm, B, Nmass and Ccl refer to leaf thickness

structure parameter, chlorophyll, carotenoids, anthocyanin, senescent materials, water content, dry

matter content, leaf bidirectional reflectance factor, nitrogen per mass, and cellulose and lignin

content, respectively. These foliar traits are from calibration-free approaches. The estimated Nmass

is from gPLSR, due to its high accuracy. Other traits are from RTMs.
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Fig. 8. Analysis of the performance of spectra-Vmax27 model by (a) leaf condition, (b)

environmental stressor, (¢) experiment year, and (d) genotype.
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Fig. 9. Methodology to integrate the visible and infrared hyperspectral reflectance to quantify
nitrogen allocation to estimate Vmax. The inner and outer circles refer to the typical nitrogen
allocation in C3 leaves and Cs leaves, respectively. The data of nitrogen allocation for C3 and Cs
leaves are from Evans and Clarke (2019) and Mu et al. (2016), respectively. Notably, the allocation
rates vary with environmental conditions, species and growth stages. LHC refers to nitrogen in the
light-harvesting complex. Rubisco represents nitrogen in the Rubisco protein. Other stands for
nitrogen in other photosynthetic proteins. NP means non-photosynthetic proteins, e.g. cell wall,

mitochondria, and cytosol. This figure is available in colour at JXB online.
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