

1 **Unique contributions of chlorophyll and nitrogen to predict crop photosynthetic capacity**
2 **from leaf spectroscopy**

3

4 Sheng Wang^{1,2*}, Kaiyu Guan^{1,2,3*}, Zhihui Wang⁴, Elizabeth A. Ainsworth^{1,2,5,6}, Ting Zheng⁴,
5 Philip A. Townsend⁴, Kaiyuan Li^{1,2}, Christopher Moller⁵, Genghong Wu^{1,2}, Chongya Jiang^{1,2}

6 1. College of Agricultural, Consumer and Environmental Sciences, University of Illinois at
7 Urbana Champaign, Urbana, IL 61801, USA

8 2. Center for Advanced Bioenergy and Bioproducts Innovation, Institute for Sustainability,
9 Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
10 USA

11 3. National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign,
12 Urbana, IL 61801, USA

13 4. Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden
14 Drive, Madison, WI 53706, USA

15 5. Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
16 USA

17 6. USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL 61801, USA

18

19 *Corresponding author: shengwang12@gmail.com; kaiyug@illinois.edu Tel: +1-2174197661

20

21 **Author Email ID:**

22 Sheng Wang: shengwang12@gmail.com, Kaiyu Guan: kaiyug@illinois.edu, Zhihui Wang
23 zwang896@wisc.edu, Elizabeth A. Ainsworth: lisa.ainsworth@usda.gov, Ting Zheng
24 tzheng39@wisc.edu, Philip A. Townsend ptownsend@wisc.edu, Kaiyuan Li
25 kaiyuan9@illinois.edu, Christopher Moller: moller3@illinois.edu, Genghong Wu:
26 gw8@illinois.edu, Chongya Jiang: chongya@illinois.edu

27

28

29

30

31

32 **Highlights:**
33 Leaf chlorophyll content (visible spectra) and nitrogen concentration (infrared signals) have key
34 and unique contributions to predict maize photosynthetic capacity. RTM accurately predicts
35 chlorophyll, while generalized PLSR estimates nitrogen better.
36

37 **Abstract:**
38 The photosynthetic capacity or CO₂-saturated photosynthetic rate (V_{max}), chlorophyll, and nitrogen
39 are closely linked leaf traits that determine C₄ crop photosynthesis and yield. Accurate, timely,
40 rapid, and nondestructive approaches to predict leaf photosynthetic traits from hyperspectral
41 reflectance are urgently needed for high-throughput crop monitoring to ensure food and bioenergy
42 security. Therefore, this study thoroughly evaluated the state-of-the-art physically-based radiative
43 transfer models (RTMs), data-driven partial-least-squares regression (PLSR), and generalized
44 PLSR (gPLSR) models to estimate leaf traits from leaf-clip hyperspectral reflectance, which was
45 collected from maize (*Zea mays L.*) bioenergy plots with diverse genotypes, growth stages,
46 treatments of nitrogen fertilizers and ozone stresses in three growing seasons. Results show that
47 leaf RTMs considering bidirectional effects can give accurate estimates of chlorophyll content
48 (Pearson correlation r = 0.95), while gPLSR enabled retrieval of leaf nitrogen concentration (r =
49 0.85). Using PLSR with field measurements for training, the cross-validation indicates that V_{max}
50 can be well predicted from spectra (r = 0.81). The integration of chlorophyll content (strongly
51 related to visible spectra) and nitrogen concentration (linked to shortwave infrared signals) can
52 provide better predictions of V_{max} (r = 0.71) than only using either chlorophyll or nitrogen
53 individually. This study highlights leaf chlorophyll content and nitrogen concentration have key
54 and unique contributions to V_{max} prediction.

55
56 **Keywords:** Hyperspectral leaf reflectance; the CO₂ saturated photosynthetic rate; chlorophyll;
57 nitrogen; partial-least-squares regression; radiative transfer model; maize; bioenergy crop
58

59 **1. Introduction**

60 Photosynthesis captures and converts solar radiation into chemical energy to drive CO₂ fixation
61 into carbohydrates that ultimately power ecosystems and feed humanity (Ainsworth, 2018). The
62 conservation of photosynthetic proteins and enzymes has aided the mathematical modeling of
63 photosynthetic processes (Farquhar *et al.*, 1980; Caemmerer and Furbank, 1999). In C₄
64 photosynthesis models, carbon assimilation is limited by PEP carboxylation in mesophyll and
65 Rubisco carboxylation of bundle sheath cells (Von Caemmerer, 2000; Sage & Kubien, 2007). With
66 the ability to concentrate CO₂ around Rubisco, the photosynthesis of C₄ crops (e.g. *Zea mays*,
67 *Miscanthus sinensis*, and *Panicum virgatum*) in current atmospheric conditions is often limited by
68 the CO₂ saturated photosynthesis rate V_{max} , which corresponds to the maximal Rubisco
69 carboxylation rate (Leakey *et al.*, 2019). However, due to limited *in-situ* measurements and
70 knowledge of V_{max} , most crop and terrestrial ecosystem models ignore such variability and specify
71 a fixed value of V_{max} for each plant functional type (Kattge *et al.*, 2009). Inaccurate temporal and
72 spatial representation of V_{max} can cause significant uncertainties in photosynthesis models and
73 crop yield predictions (Hu *et al.*, 2014). Thus, accurate, timely, rapid, nondestructive, and cost-
74 effective approaches to estimate V_{max} are highly needed for yield forecasting, bioenergy
75 production, and agricultural management.

76

77 V_{max} is sensitive to leaf nitrogen, temperature, ozone, and pathogens, and shows spatial, temporal
78 and developmental variability (Bernacchi *et al.*, 2001; Ainsworth *et al.*, 2014; Kucharik *et al.*,
79 2016). Leaf nitrogen is often cited as the primary mechanism controlling V_{max} , as multiple studies
80 have shown that V_{max} standardized to a certain temperature shows a strong relationship with leaf
81 total nitrogen content or concentration (Walker *et al.*, 2014; Dechant *et al.*, 2017; Yendrek *et al.*,
82 2017). Other studies, however, reveal that the V_{max} and nitrogen relationships are complicated. For
83 instance, plants in soils with low nitrogen availability can achieve high V_{max} per leaf nitrogen
84 (Ainsworth and Rogers, 2007). Miner and Bauerle (2019) found nitrogen content and the Rubisco
85 carboxylation rate were not correlated for Sunflower. The Rubisco activity of soybean did not
86 significantly correlate to leaf nitrogen due to the excessive nitrogen storage in leaves (Koester *et*
87 *al.*, 2016). For tree species aspen, maple and ash, Croft *et al.* (2017) found that Rubisco
88 carboxylation rates were more sensitive to Chl than leaf nitrogen content. The high correlation
89 between Chl and V_{max} could be explained by the nitrogen resource optimality allocation (Dewar,

90 1996; Evans and Clarke, 2019; Smith et al., 2019). As light and dark reactions should be well
91 coordinated to maximize leaf photosynthesis, nitrogen investment in light harvesting Chl and
92 Rubisco should be optimized. Although these studies imply strong connections among nitrogen,
93 Chl and V_{max} , it is still debated whether the use of Chl (Houborg et al., 2015; Croft et al., 2017),
94 nitrogen content/concentration (Yendrek et al., 2017; Dechant et al., 2017), or their derivatives
95 (e.g. Chl*carotenoids, Chou et al., 2020) as the proxy for V_{max} .

96

97 Traditional methods to estimate leaf V_{max} by A/Ci (net photosynthesis / intercellular CO_2
98 concentration) curves from leaf gas exchange experiments (Von Caemmerer, 2013) provide
99 accurate measurements, but are time-consuming and not suitable for high-throughput crop
100 monitoring in the context of field phenotyping and precision agriculture. Sensing techniques such
101 as optical reflectance, solar-induced fluorescence, or thermal infrared data are rapid, non-
102 destructive, and cost-effective ways to quantify crop traits (Houborg et al., 2013; Serbin et al.,
103 2015; Guan et al., 2017). Particularly, spectroscopy can exploit spectral information of the entire
104 optical range (400 - 2500 nm) through either physically-based radiative transfer models (RTMs,
105 e.g. Jacquemoud and Baret, 1990; Vilfan et al., 2019) or data-driven methods (Serbin et al., 2012;
106 e.g. Ainsworth et al., 2014; Yendrek et al., 2017) to estimate traits. These estimates include
107 photosynthetic traits (Chl, nitrogen and V_{max}), structural parameters, chemical composition, and
108 photo-protective pigments (Townsend et al., 2003; Weber et al., 2012; Singh et al., 2015). The
109 information of diverse traits from spectroscopy provides opportunities to interpret the linkage of
110 leaf traits and V_{max} to evaluate using Chl, nitrogen, or other traits as the proxy of V_{max} .

111

112 The RTM approaches, for instance the pre-calibrated generalized plate-based turbid medium
113 PROSPECT (Jacquemoud and Baret, 1990) or PROSPECT-DyN (Wang et al., 2015, 2018b)
114 models, have merits to operationally predict foliar traits such as Chl, nitrogen and water content
115 across species, growth stages, and environmental conditions. However, the accuracy and number
116 of predictable traits from RTMs are limited (Verrelst et al., 2019). For instance, due to the weak
117 absorption features of Rubisco protein, existing RTMs do not include the spectral absorption
118 coefficients of Rubisco protein to directly predict V_{max} . The prediction of V_{max} through RTMs
119 often relies on statistical regression with RTM based traits (Houborg et al., 2013; Croft et al., 2017;
120 Dechant et al., 2017) or detecting photosynthetic functioning (Vilfan et al., 2019; Zheng and Chen,

121 2017; Bayat *et al.*, 2018). Additionally, leaf RTMs are developed with hemispherical reflectance
122 measured with integrating spheres. These reflectance measurements are different from conical
123 reflectance (Schaepman-Strub *et al.*, 2006) collected by the leaf-clip, which is the high-throughput
124 approach for spectra collection in fields. To solve the above issues, the close-range spectral
125 imaging of leaves model (COSINE, Jay *et al.*, 2016), which accounts for bi-directional reflectance
126 factors, needs to be combined with PROSPECT to simulate leaf conical reflectance. Conversely,
127 data-driven approaches, e.g. partial-least-squares regression (PLSR), can flexibly fit leaf spectra
128 with diverse measured traits with high predictive performance. For instance, a few studies have
129 demonstrated that V_{max} can be accurately estimated from leaf spectra (Serbin *et al.*, 2012; Yendrek
130 *et al.*, 2017; Wu *et al.*, 2019). However, the performance of PLSR models can vary significantly
131 depending on species, plant growth stages, and sensor configurations (Wang *et al.*, 2019). In
132 addition, PLSR requires sufficient samples of measured traits for model training, which is less
133 operational compared with RTMs. The pre-trained generalized PLSR (gPLSR) models, which
134 were developed from a large database of *in-situ* observations, can be promising for applications
135 lacking measured trait data for modeling training (Wang *et al.*, 2020). The traits Chl, nitrogen, and
136 V_{max} can be retrieved from leaf spectra through RTMs, PLSR, or gPLSR, but it remains uncertain
137 for the performance comparison of these approaches. A comprehensive evaluation of these
138 approaches to quantify Chl, nitrogen, and V_{max} for high-throughput crop monitoring is highly
139 needed.

140

141 Maize (*Zea mays L.*) is one of the major nitrogen-deficient staple and bioenergy crops, which
142 represents a model for species with the C₄ photosynthesis pathway. Due to environmental factors
143 or management strategies (e.g. shortage of nitrogen fertilizers), maize V_{max} is often suppressed and
144 the average yield reaches only 64% of maximum potential globally (Neumann *et al.*, 2010). In this
145 study, we collected leaf gas exchange measurements, leaf-level hyperspectral reflectance, nitrogen
146 and chlorophyll data from maize experimental plots with various genotypes, growth stages,
147 treatments of nitrogen fertilizers and ozone stress during three growing seasons. The objective was
148 to develop and evaluate spectroscopy approaches for estimating photosynthetic traits from leaf-
149 clip spectra and to understand the relationship among Chl, nitrogen, and V_{max} . Two key questions
150 were addressed: (1) Among RTMs, PLSR, and gPLSR approaches, which method performs best
151 to estimate Chl and nitrogen from the leaf-clip reflectance? (2) Can we utilize leaf spectra or

152 spectra-based traits to accurately estimate V_{max} ? If so, what are the key spectra or traits for V_{max}
153 prediction? By answering these questions, this study aimed to identify the operational approaches
154 to predict photosynthetic traits using leaf hyperspectral reflectance and understand the linkage
155 among Chl, nitrogen, and V_{max} prediction.

156 **2. Materials and methods**

157 **2.1 Leaf spectra and photosynthetic trait measurements**

158 The maize experimental plots of diverse genotypes were treated with nitrogen fertilizers (maize
159 nitrogen plots, Fig. S1) and ozone (SoyFACE, Fig. S1) in Champaign, Illinois, and measured
160 during the growing seasons of 2014, 2015 and 2019. The ozone experiment was previously
161 described by Yendrek et al. (2017), along with hyperspectral reflectance, gas exchange, and
162 biochemical data from the ozone experiments. The nitrogen experiment was designed with
163 management practices of different nitrogen fertilization amounts (0, 50, 100, 150, 200 and 250
164 pounds per acre), time (planting, V6, and V10 stages) and approaches (middle-row injection and
165 in-row dribble). The ozone and nitrogen fertilization experiments provided test cases to evaluate
166 the approaches to retrieve photosynthetic traits from leaf-clip spectra, and further to identify the
167 relationship among leaf V_{max} , nitrogen, and Chl.

168

169 Leaf reflectance spectra (500 - 2400 nm) were acquired from the central section of the leaf adaxial
170 surface using ASD FieldSpec 4 Standard Res full-range spectroradiometers (Analytical Spectral
171 Devices Inc., Colorado, the USA) equipped with an illuminated leaf-clip contact probe. A/Ci
172 curves were measured with LI-COR 6400 and 6800 portable photosynthesis systems (LI-COR Inc.,
173 Nebraska, the USA) after measurements of leaf-clip reflectance. The A/Ci measurements were
174 conducted with the leaf positioned in the chamber with air humidity of 55% and leaf temperature
175 close to the ambient conditions (25-32 °C). The leaf adaxial side was placed facing the light source
176 with an intensity of 2000 $\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$. For each A/Ci curve, the ambient CO₂ concentrations were
177 set to the sequences of 400, 50, 100, 150, 250, 350, 500, 700, 900, and 1200 ppm. To ensure the
178 accuracy of measured V_{max} from gas-exchange measurements, we have tested the reproducibility
179 of LiCOR machines in our experiments. This study followed the Yendrek et al. (2017) protocol to
180 use the horizontal asymptote of a four-parameter non-rectangular hyperbolic function to process
181 the measured A/Ci curves to estimate V_{max} . Furthermore, we collected V_{max} measurements of the

182 same leaves with different leaf temperatures to quantify the V_{max} temperature response curve using
183 the Q10 formula and temperature inhibition curves (Leuning, 2002). By using the fitted
184 temperature response curve of maize, V_{max} measurements of this study were standardized to the
185 reference temperature. 25°C is a commonly used reference temperature to normalize the
186 temperature impacts on V_{max} . However, this study selected 27 °C as the reference temperature due
187 to the following reasons. 60% of the field V_{max} measurements were collected at 27 °C and using
188 $V_{max,27}$ could reduce uncertainties of temperature normalization. Furthermore, as 27 °C is close to
189 ambient temperature in the peak growing season of our study site, using $V_{max,27}$ agrees with our
190 desire to estimate biochemical limitations to photosynthesis close to growth temperature.
191 Additionally, with the measured temperature correction curve of Fig. S3, all $V_{max,27}$ relationships
192 of this study can be converted to $V_{max,25}$ ($V_{max,25} = 0.875V_{max,27}$).

193

194 After A/Ci measurements, leaf tissues were sampled using a cork borer and stored in liquid
195 nitrogen. The wet laboratory experiments were conducted to measure Chl content and nitrogen
196 concentration of leaf samples. For Chl, one leaf disc (approximately 1.4 cm²) was incubated in 96%
197 (v/v) ethanol to determine Chl content using the equations of Lichtenthaler and Wellburn (1983).
198 Three leaf discs were dried in an oven (60 °C) for three weeks to determine leaf dry mass. An
199 analytical balance (ME204TE/00, Mettler Toledo Inc., Ohio, the USA) was used to measure the
200 dry matter weight per area (Cdm, g cm⁻²) of leaf samples. The dried leaf tissues were ground to a
201 fine powder and combusted with oxygen in an elemental analyzer (Costech 4010, Costech
202 Analytical Technologies Inc., California, the USA). The nitrogen per mass (N_{mass}, %) was
203 determined by comparing experimental samples with an acetanilide standard curve. In total, we
204 collected 460 leaf spectra, 297 leaf V_{max} measurements, 177 leaf Chl measurements, 350 leaf N_{mass}
205 and Cdm measurements. Raw data and experiment sources of these measurements can be found in
206 the supplementary Dataset S1. A correlation matrix among the measured photosynthetic traits of
207 $V_{max,27}$, Chl, N_{mass}, and nitrogen per area (N_{area}, N_{mass} × Cdm, mg cm⁻²), was calculated to
208 characterize their relationships.

209

210 2.2 Models to predict traits from leaf spectra

211 2.2.1 Radiative transfer modeling

212 The PROSPECT models (Jacquemoud and Baret, 1990) were employed in this study to simulate
213 leaf hemispherical reflectance over the optical domain from 400 to 2500 nm to retrieve the
214 photosynthetic traits Chl and nitrogen. PROSPECT-D can utilize leaf reflectance to estimate
215 multiple traits, e.g. leaf structure parameter (N), leaf Chl content (Chl, $\mu\text{g}/\text{cm}^2$), equivalent water
216 thickness (Cw, cm), leaf mass per area (Cdm, g/cm^2), and the senescent (brown) materials (Féret
217 *et al.*, 2017). The PROSPECT-DyN model was utilized to incorporate protein, cellulose, and lignin
218 by recalibrating spectral absorption coefficients (Wang *et al.*, 2015, 2018b). As leaf protein
219 strongly linearly correlates with nitrogen (Yeoh and Wee, 1994), estimated protein content was
220 converted to the nitrogen content. PROSPECT was developed to simulate the hemispherical
221 reflectance of leaves, but the leaf-clip reflectance collected in this study was conical. To convert
222 the conical reflectance to the hemispherical, the COSINE model (Jay *et al.*, 2016) was
223 implemented with PROSPECT models. Detailed information about the parameters of these three
224 models can be found in Table 1.

225

226 The retrieval of foliar traits was conducted through a numerical inversion of RTMs by minimizing
227 the root mean square deviation (RMSD) between the measured leaf-clip and simulated reflectance.
228 The numerical optimization procedure used the same constrained Powell's line-search method as
229 Féret *et al.* (2017). As nitrogen is sensitive to the shortwave infrared, a two-step retrieval following
230 Wang *et al.* (2015) was performed. The first step was to use the entire optical domain 500-2400
231 nm to invert the leaf structural parameter (N) and Chl content (Chl). Then we applied the shortwave
232 infrared domain 2100-2300 nm to invert PROSPECT-DyN to estimate the protein content (Cp),
233 which was further converted to nitrogen content using the ratio of 4.43 (Wang *et al.*, 2018b).

234

235 2.2.2 Partial Least Squares Regression (PLSR)

236 The PLSR approach has been widely applied to process hyperspectral reflectance with high
237 collinearity. PLSR can minimize predictor variables to a few orthogonal latent components (Geladi
238 and Kowalski, 1986; Wold *et al.*, 2001). In this study, we selected PLSR to develop models to
239 predict photosynthetic traits (i.e. Chl, nitrogen, and V_{\max}) from the measured leaf spectra. We
240 conducted four-fold cross-validation to split the collected spectra and traits into training and testing.
241 In each training data set, the model between leaf spectra and traits was developed. Then this model
242 was tested using the independent testing data set. The uncertainty analysis of the PLSR models

243 was conducted by splitting the training dataset via 100 permutations and generating the new model
244 coefficients following Meerdink *et al.* (2016). Then we used the ensemble mean of PLSR models
245 to predict the photosynthetic traits. By doing so, we obtained both predictive values and
246 uncertainties for traits. Notably, the leaf reflectance from 500 to 2400 nm was utilized to develop
247 the PLSR models between spectra and V_{max} or Chl. However, as nitrogen is well known to be
248 linked to the shortwave infrared (Curran, 1988; Serbin *et al.*, 2014; Yendrek *et al.*, 2017), we used
249 leaf reflectance of 1500-2400 nm to generate PLSR models to predict nitrogen. To avoid
250 overfitting between spectra and foliar traits, we optimized the number of PLSR components by
251 minimizing the prediction residual sum of squares (PRESS) statistic (e.g. Meerdink *et al.*, 2016).
252 PRESS of successive model components was calculated through a cross-validation analysis. We
253 selected model components corresponding to the minimum PRESS statistic until successive PLSR
254 components did not significantly increase the model predictive accuracy (Serbin *et al.*, 2014).

255

256 2.2.3 Generalized Partial Least Squares Regression (gPLSR)

257 The generation of PLSR models requires sufficient measured traits to be collected for modeling
258 training, which could limit the applicability of PLSR in a fast and operational manner. To deal
259 with such limitations, we tested the pre-trained gPLSR models (Wang *et al.*, 2020) to predict leaf
260 Chl and nitrogen. The gPLSR models were generated from a database of leaf spectra and traits of
261 40 species (including maize) across NEON field sites in the Eastern U.S (data available from
262 doi:10.21232/e2jt-5209 and model code at ecosml.org). The pre-trained gPLSR model has
263 advantages of free calibration and only requires leaf spectra data to predict foliar traits. In this
264 study, we tested whether such gPLSR models can be applied to agricultural sites with different
265 environmental conditions and sampling time.

266

267 **2.3 Model application and evaluation**

268 Our workflow to compare the predictive ability of RTMs, PLSR, and gPLSR to estimate leaf Chl,
269 nitrogen, and V_{max} is illustrated in Fig. 1. We evaluated the performance of the PLSR, gPLSR, and
270 RTMs to estimate leaf Chl and nitrogen. Then we conducted a comparison of various approaches
271 to estimate V_{max} . The first approach utilized the leaf Chl or nitrogen to develop the linear regression
272 models to estimate V_{max} . We conducted four-fold cross-validation to evaluate the performance of
273 these linear regression models. Then we tested the accuracy of using the leaf reflectance data to

274 develop a PLSR model to estimate V_{max} . We also applied RTMs and gPLSR to estimate various
275 leaf traits. Then through these estimated ten traits (N, Chl, Car, Ant, Cs, Cw, Cdm, B, N_{mass} and
276 Ccl), we developed the trait-based PLSR model to predict V_{max} . Furthermore, as Chl and N_{mass} are
277 two commonly used variables to proxy V_{max} , we also compared the performance of using only Chl,
278 N_{mass} , and their multiplication to predict V_{max} . We used the comparison of spectra-based and trait-
279 based PLSR models to identify the accurate and robust approaches to estimate V_{max} .

280

281 To comprehensively evaluate the estimated crop traits from leaf spectra, the Taylor diagram
282 (Taylor, 2001) was used to present these three complementary statistics with a triangle-cosine-law
283 relationship: the Pearson correlation coefficient (r), normalized standard deviation (NSTD, as Eq.
284 1), and normalized unbiased root-mean-square deviation (NubRMSD, Eq. 2). The radial distance
285 stands for the NSTD and the angle in the polar plot represents r . The reference point on the X-axis
286 with $r=1$, NSTD=1 and NubRMSD=0 refers to the observation. The distance from the simulation
287 point to the reference point represents NubRMSD of simulations and stands for the integrated
288 performance for the simulation. The closer distance from simulation points to the reference point
289 indicates better simulation performance.

290 $NSTD_{sim} = STD_{sim}/STD_{obs}$ Eq. (1)

291 $NubRMSD_{obs,sim}^2 = NSTD_{obs}^2 + NSTD_{sim}^2 - 2NSTD_{obs}NSTD_{sim} \cos r_{obs,sim}$ Eq. (2)

292 Where sim and obs represent the simulation results and the observations, respectively. N is the
293 total number, with the subscript i representing the number i of simulations or observations. $r_{obs,sim}$
294 refers to the correlation coefficient between simulations and observations and NSTD is the
295 normalized standard deviation.

296 **2.4 Analysis of spectral signatures on predicting traits**

297 To identify the contribution of spectral wavelengths to the prediction of Chl, nitrogen and V_{max} ,
298 both physical model and statistical method based sensitivity approach were applied. Through the
299 comparison of these two approaches, this study can get a comprehensive understanding of the
300 relationship between spectra wavelengths and the prediction of leaf traits.

301

302 In the physical model based approach, we conducted a global sensitivity analysis of the
303 PROSPECT-DyN-COSINE using the Sobol method (Sobol, 2001; Saltelli *et al.*, 2004), which is
304 based on analysis of variance decomposition to calculate the sensitivity of coupled inputs. The
305 Sobol analysis can quantify the contribution of model parameters (leaf traits) to the wavelengths
306 of leaf reflectance. The first order Sobol sensitivity quantifies the independent contribution from
307 each input to the output variables, while the second-order sensitivity quantifies interactions
308 between every two inputs to the output variable. The Sobol analysis is sensitive to the configuration
309 of the model parameter range and distribution. As this study focused on the maize photosynthetic
310 traits, we utilized the collected 460 leaf spectra to invert RTMs to obtain the parameter distribution.
311 Then, the kernel density sampling method was applied to generate the input data for sensitivity
312 analysis. The kernel density sampling method has the advantage of resembling the distribution of
313 the sampled dataset (Wang *et al.*, 2018a). According to the kernel density distribution of model
314 parameters, 20,000 samples were generated to assess the sensitivity of simulated leaf spectra to
315 traits. Additionally, to our best knowledge, this study is the first one to integrate PROSPECT-DyN
316 and COSINE for the retrieval of foliar traits. Such sensitivity analysis can also give insights into
317 evaluating the impacts of incorporating COSINE for reflectance simulation.

318

319 In the statistical approaches, the PLSR loading, coefficients, and Variable Influence on the
320 Projection (VIP) scores (Wold *et al.*, 2001) were computed. The wavelengths with high absolute
321 values of loading, coefficients, and VIP scores indicate a high contribution to the leaf trait
322 prediction. The similarity and difference of the model loadings, coefficients and VIP scores of the
323 PLSR models to predict Chl, N_{mass}, and V_{max} were compared to explore the spectral linkage among
324 these key photosynthetic traits. Notably, this study did not employ RTMs to directly predict V_{max}.
325 The sensitivity of spectral wavelength to V_{max} prediction focused on the PLSR approach. In
326 addition, we also analyzed the PLSR loading of using these estimated ten traits (N, Chl, Car, Ant,
327 Cs, Cw, Cdm, B, N_{mass} and Ccl) to predict V_{max}. The VIP scores and loading analysis can show the
328 linkages of these ten traits to V_{max}.

329 **3. Results**

330 **3.1 Measured leaf spectra and photosynthetic traits**

331 The measured leaf spectra (Fig. 2a) followed a general pattern of low reflectance in the visible
332 region (500-700 nm), high reflectance in the near-infrared region (700-1300 nm) and two water
333 absorption features in the shortwave infrared region (1300-2400 nm). The coefficient of variation
334 (CV) of the spectral data (Fig. 2b) indicated that the visible, red edge (700-750 nm), and shortwave
335 infrared regions, which are strongly linked to leaf pigments and biochemical traits, have greater
336 variability compared to the near-infrared, which reflects the structural parameters of leaves (e.g.
337 leaf thickness and dry matter content).

338

339 After V_{max} was standardized to 27 °C using the fitting temperature response curve in Fig S2 ($V_{max,25} = 0.875V_{max,27}$), the measured leaf biochemical and photosynthetic traits, Chl, N_{mass} , N_{area} , and
340 $V_{max,27}$, were all highly correlated (Fig. 3). Nonetheless, there were differences in the strength of
341 trait correlations. Among all pairs, Chl and N_{area} had the highest linear correlation ($r = 0.89$), and
342 this high correlation indicated that maize tended to allocate leaf total nitrogen to Chl at a relatively
343 constant rate. Both Chl and N_{mass} were highly correlated with $V_{max,27}$ ($r = 0.77$ and 0.75,
344 respectively), confirming previous findings that $V_{max,27}$ of maize is highly correlated with Chl
345 (Houborg *et al.*, 2013; Croft *et al.*, 2017) and N_{mass} (Yendrek *et al.*, 2017). The large variabilities
346 of measured photosynthetic traits can serve a robust dataset for testing the model performance to
347 predict traits.

349

350 **3.2 Predicted photosynthetic traits from leaf spectra**

351 The results of comparing RTM, PLSR and gPLSR (Fig. 1) to estimate leaf photosynthetic traits
352 are shown in the Taylor Diagram (Fig. 4). For leaf Chl, PLSR achieved the highest r of around
353 0.95, lowest NubRMSD of about 0.33, and NSTD close to 1. The RTM approach also achieved
354 high performance with r around 0.95 and NubRMSD around 0.45. The gPLSR approach can obtain
355 good performance with r of 0.88 and NubRMSD of 0.48. For N_{mass} , the PLSR method showed the
356 highest r of around 0.96 and NubRMSD of 0.28. The gPLSR approach can also obtain a relatively
357 good prediction of nitrogen with r of about 0.85 and NubRMSD of 0.56. The predictive power of
358 the RTM (PROSPECT-DyN-COSINE) was weaker with r of around 0.60. Detailed scatterplots of
359 predicting Chl and N_{mass} are illustrated in Fig. S4.

360

361 For $V_{max,27}$ predictions, the best performance was achieved by the spectra based PLSR model with
362 r of 0.81, NubRMSD of around 0.61, and NSTD close to 1. The trait-based PLSR model utilizing
363 ten spectra based traits (N, Chl, Car, Ant, Cs, Cw, Cdm, B, N_{mass} and Ccl) to predict $V_{max,27}$ also
364 demonstrated a good predictive skill with r of about 0.72 and NubRMSD of 0.70. These two PLSR
365 models showed better performance than the linear regression models based on either Chl or N_{mass} .
366 The linear regression models based on Chl or N_{mass} achieved similar and moderate prediction
367 performance with r of around 0.6. However, the predictive performance of the linear model
368 significantly improved by using Chl* N_{mass} . The linear regression model between Chl* N_{mass} and
369 V_{max} can achieve r of around 0.71 and NubRMSD of 0.70, which is close to the performance of
370 the trait-based model (Fig. S5). This result indicates that Chl and N_{mass} play a major role in the
371 prediction of $V_{max,27}$ in the trait-based PLSR model.

372

373 **3.3 Contribution of spectral signatures on predicting traits**

374 In the RTM based spectra contribution analysis, this study retrieved parameter distribution (Fig.
375 S3) from the collected 460 leaf spectra. Then, the global sensitivity analysis results of PROSPECT-
376 COSINE and PROSPECT-DyN-COSINE for the case of simulating maize leaf-clip reflectance
377 were conducted as Fig. 5. In the visible region, pigments including Chl, Car, Ant, and Cs
378 contributed to the reflectance variation (Fig. 5a), with red edge and green wavelengths (500-750
379 nm) influenced primarily by Chl. The leaf structural parameter N, which indicates the leaf
380 thickness, and dry matter content (protein, cellulose and lignin in PROSPECT-DyN, Fig. 5b)
381 contributed to the variability of reflectance in near-infrared and shortwave infrared regions that
382 was not explained by B. In particular, the shortwave infrared 1500-1900 nm and 2000-2400 nm
383 are the main wavelengths exhibiting the nitrogen signal (Cp on Fig. 5b). The parameter B
384 representing the bidirectional reflectance factor of leaves showed a significant contribution to the
385 spectral variability across visible, near-infrared and shortwave infrared, especially in blue and red
386 wavelengths and the water absorption feature around 1900 nm. This high contribution indicated
387 the importance of considering the bidirectional effects of leaf reflectance collected from a handheld
388 leaf-clip spectroradiometer (Li *et al.*, 2019). In general, from the model-based contribution
389 analysis, the visible information (500-750 nm) has strong implications for Chl estimation, while
390 the shortwave infrared bands (1500-1900 and 2000-2400 nm) are important for nitrogen prediction.

391

392 In the statistical analysis, the VIP scores, loading, and coefficients of the spectra based PLSR
393 models were compared to analyze the similarity and difference of using spectra to predict $V_{max,27}$,
394 Chl and N_{mass} (Fig. 6 a-c). In general, the visible wavelengths associated with green reflectance
395 and red absorption (550 and 710 nm) contributed most significantly to the prediction of Chl, while
396 the SWIR wavelengths in the 1700-1900 nm and 2100-2200 nm SWIR regions were most
397 important to the prediction of nitrogen. These findings also agree with the model-based sensitivity
398 analysis (Fig. 5) and confirm the robust performance of RTMs. The shaded grey regions in Fig. 6
399 correspond to the high absolute values of VIP scores for predicting $V_{max,27}$. In the visible part of
400 the spectrum (500 - 750 nm), the VIP scores, loadings, and coefficients of $V_{max,27}$ and Chl were
401 very similar. Specifically, the green and red edge (550 and 710 nm) largely contributed to the
402 prediction of $V_{max,27}$. In the shortwave infrared region, the patterns of VIP scores, loadings, and
403 coefficients for $V_{max,27}$ were close to those for N_{mass} . The PLSR models of $V_{max,27}$ and N_{mass} shared
404 key wavelengths such as 1590, 1830, 1910, 2030 and 2110 nm. These results indicate that the
405 spectra signals of Chl and N_{mass} have complementary contributions to the prediction of $V_{max,27}$.
406 However, notably, there are also unique wavelengths such as 1500 nm, 2200 nm, and 2300 nm
407 contributing to the prediction of $V_{max,27}$ that are not strongly related to Chl or N_{mass} .

408

409 Similar to the analysis of spectra-based PLSR models, the VIP scores and loading of the trait-
410 based PLSR model also supported the findings on the large contribution of Chl and N_{mass} to $V_{max,27}$
411 predictions. In the VIP scores of trait-based PLSR model (Fig. 7a), Chl and N_{mass} were the two
412 strongest contributors to the prediction of $V_{max,27}$. The analysis of the components 1 and 2 of PLSR
413 loading (Fig. 7b) showed that Chl largely contributed to the first component of PLSR loading.
414 N_{mass} had a contribution to the first component but also provided unique information in the second
415 component. This analysis indicated that Chl and N_{mass} had shared but also unique contributions to
416 the prediction of $V_{max,27}$. In the VIP scores for the trait-based PLSR model, Car and Cw showed a
417 high contribution to the model prediction following Chl and N_{mass} . This contribution was likely
418 due to the high correlation between Chl and Car (Kopsell *et al.*, 2004). Under drought conditions,
419 low water availability can alter nitrogen uptake and thus results in a high correlation between leaf
420 water content and V_{max} (Camino *et al.*, 2019).

421 **4. Discussion**

422 We provided a comprehensive evaluation of spectroscopy methods to retrieve Chl, N_{mass}, and V_{max}.
423 These analyses could be helpful for the model selection to estimate leaf photosynthetic traits in
424 high-throughput crop monitoring. First, for pre-trained approaches, the PROSPECT-D coupled
425 with the COSINE model showed a strong ability to predict Chl, while gPLSR predicted leaf
426 nitrogen better. With field measurements for model training, PLSR showed the best performance
427 to predict foliar traits. Second, the spectra-based or trait-based PLSR models can provide accurate
428 and effective means to predict V_{max}. We also found that Chl and N_{mass}, which are strongly linked
429 to visible and shortwave infrared signals respectively, showed shared and unique contributions to
430 the prediction of V_{max}. Measurement and model uncertainties, implications on RTM and PLSR
431 model selection, and mechanisms of controlling V_{max} based on these results are further discussed.
432

433 **4.1 Uncertainty for photosynthetic capacity prediction**

434 Compared with Chl and N_{mass} prediction, achieving high accuracy to predict V_{max} through
435 spectroscopy has more challenges. These challenges are partially due to the limited amount and
436 weak absorption features of Rubisco enzyme. Furthermore, uncertainties in field V_{max}
437 measurements and models may also contribute to the performance of V_{max} prediction.
438

439 This study used commercial gas exchange systems to obtain the A/Ci curves to fit the horizontal
440 asymptote of a four-parameter non-rectangular hyperbolic function (Yendrek et al., 2017) to
441 quantify V_{max}. However, gas leakage, chamber edge effects, and lateral flux through leaf air space
442 could bring uncertainties for A/Ci curves, when operating systems in fields (Long and Bernacchi,
443 2003). In addition, the Rubisco capacity V_{max} derived from gas-exchange measurements is not
444 always equal to the amount of Rubisco protein present (Crafts-Brandner & Salvucci, 2000).
445 However, this study carefully screened all A/Ci curves to exclude the bad fitting of measurement
446 curves as Kauwe et al. (2016). As multiple machines were employed, we have also tested the
447 reproducibility of machines to ensure similar A-Ci curves obtained from different machines for
448 the same leaf. Furthermore, our V_{max} measurements are comparable to estimates reported in
449 previous studies (Houborg et al., 2013; Yendrek et al., 2017; Miner and Bauerle et al., 2019). All
450 these strategies ensure the high accuracy of the measured V_{max} data for this study.
451

452 To diagnose the performance of spectra- $V_{max,27}$ model, we further analyzed the relationships
453 between model prediction residuals with leaf conditions, environmental stressors, experiment year,
454 and genotypes (Fig. 8). The comparison between model residuals and leaf $V_{max,27}$ (Fig. 8a) show
455 model overestimation of $V_{max,27}$ when leaf $V_{max,27}$ is low, while the model underestimates $V_{max,27}$
456 when leaves have high $V_{max,27}$. We also found the model residuals exhibit dependence on O_3
457 treatment (Fig. 8b), which indicates that O_3 can alter the leaf spectra and traits relationship
458 (Yendrek et al., 2017). Similarly, the spectra-trait model also shows a large difference when
459 applying to different genotypes (Fig. 8d). However, we did not find a significant difference for
460 model performances in different year data (Fig. 8c), which demonstrates the transferability of
461 PLSR models for plants across growth stages (Wang et al., 2019).

462

463 **4.2 Selection of physically-based and data-driven approaches**

464 RTMs are developed based on physically based radiative transfer processes and thus have high
465 accuracy to utilize the observed leaf spectra to accurately predict traits with strong absorption
466 features, such as pigments. For instance, this study demonstrated the high accuracy of
467 PROSPECT-COSINE to estimate Chl ($r = 0.94$) in maize. Compared to pigments, protein has
468 relatively weaker absorption features in shortwave infrared and RTM showed moderate accuracy
469 to estimate N_{mass} (Fig. 4). Data-driven methods such as PLSR have the advantage of exploiting
470 spectral signatures to link reflectance with *in-situ* measurements to accurately predict traits such
471 as N_{mass} ($r = 0.96$). However, the development of PLSR models requires collecting a large data set
472 of foliar traits for model training, and models may not be applicable outside the conditions of *in-*
473 *situ* collections. In practical applications, the pre-trained gPLSR models, which can be
474 implemented without field measured traits, have high flexibility and accuracy to predict traits such
475 as N_{mass} ($r = 0.85$).

476

477 Regarding V_{max} prediction, the spectra-based PLSR model in this study achieved the highest
478 accuracy ($r = 0.81$). The trait-based PLSR model achieved slightly worse but still reasonably good
479 performance ($r = 0.72$). The integration of Chl and N_{mass} can also achieve good predictive
480 performance ($r = 0.71$). For leaf scale applications, the spectra based models show great potential.
481 However, such leaf spectra models have challenges to be directly applied to the canopy scale, as
482 spectra vary significantly across leaf and canopy scales. The upscaling of reflectance from leaf to

483 canopy is also highly nonlinear, due to light scattering throughout the canopy profile, sensor
484 viewing angles, solar radiation angles, fraction of sunlit and shaded leaves (Verhoef, 1984). The
485 upscaling of V_{max} from leaf to canopy is also highly nonlinear, but the process is influenced by
486 nitrogen allocation throughout the canopy profile and within leaves (Wright and Hammer, 1994;
487 Evans and Clarke, 2019). Thus, the leaf scale spectra- V_{max} relationship could be hardly used to
488 the canopy spectra, as different mechanisms involved in the upscaling of spectra and V_{max} from
489 leaf to canopy.

490

491 To predict V_{max} across leaf, canopy, regional, or global scales, the trait-based V_{max} model has more
492 flexibility (Houborg et al., 2013; Luo et al., 2019). For instance, Houborg et al. (2013) showed that
493 using the leaf Chl- V_{max} relationship along with satellite-derived chlorophyll content, the
494 community land model achieved an improved estimation of canopy GPP. Similarly, Luo et al.
495 (2019) applied such leaf Chl- V_{max} relationship to the global scale to derive terrestrial
496 photosynthesis. In these studies, leaf traits were retrieved from the canopy reflectance through
497 RTMs (Jacquemoud *et al.*, 2009) and then the trait- V_{max} relationship were applied to derive
498 photosynthetic capacity.

499

500 **4.3 Foliar nitrogen allocation and photosynthetic capacity prediction**

501 Photosynthesis requires a large number of proteins, e.g., Rubisco and light-harvesting complex,
502 which account for 69-75% of the nitrogen in leaves (Makino and Osmond, 1991; Onoda *et al.*,
503 2017). Around 25-31% nitrogen is allocated to the non-photosynthetic components such as cell
504 walls, mitochondria, peroxisomes, and the cytosol, as shown in Fig. 9 (Mu *et al.*, 2016; Evans and
505 Clarke, 2019). The nitrogen allocation to Rubisco and other components show strong variability
506 depending on species, growth stages and environmental conditions (Evans and Clarke, 2019). For
507 instance, Onoda et al. (2017) found that when leaves increased leaf dry mass per area, the fraction
508 of leaf nitrogen allocated to Rubisco declined to compensate for the increased allocation to the cell
509 wall materials. Due to the greater photosynthetic rate per unit leaf nitrogen in young leaves, V_{max}
510 showed strong variations with leaf ages (Albert *et al.*, 2018; Wu *et al.*, 2019). The proportion of
511 photosynthetic proteins in maize showed large variations with treatments of nitrogen fertilizers
512 (Mu *et al.*, 2016). Understanding leaf nitrogen allocation is important for V_{max} prediction.

513

514 The proposed approach in this study (Fig. 9), which estimates Chl and total nitrogen through the
515 visible and shortwave infrared spectra respectively, can integrate Chl and nitrogen information to
516 infer nitrogen allocation to predict V_{max} . Compared to the remote sensing approaches utilizing
517 either Chl or total nitrogen to approximate V_{max} (Houborg *et al.*, 2013; Dechant *et al.*, 2017), this
518 proposed approach has greater potential for V_{max} retrieval. For instance, chlorophyll deficit
519 tobaccos have a much lower Chl-to- V_{max} ratio than normal species (Meacham-Hensold *et al.*,
520 2019). Using a universal Chl and V_{max} relationship may underestimate V_{max} in such species.
521 However, with additional nitrogen information, the prediction of V_{max} could be improved.
522 Likewise, use of total nitrogen to predict V_{max} may result in low correlations for species such as
523 soybean (Koester *et al.*, 2016) due to excessive nitrogen storage. The additional information of
524 Chl could thus be vital to improving the prediction of soybean V_{max} . Moreover, the sensing
525 techniques provide estimates of the pool sizes for leaf nitrogen components, e.g., Chl or total
526 nitrogen. To further constrain V_{max} prediction, the optimality theories on plant resource allocation
527 (Smith *et al.*, 2019) can be leveraged to combine with the retrieved nitrogen components from
528 sensing techniques. For natural ecosystems or nitrogen deficit crops, plants tend to maximize
529 carbon gains with improving nitrogen allocation among leaf nitrogen pools (Quebbeman and
530 Ramirez, 2016). With such information about nitrogen allocation, the prediction of V_{max} could be
531 further improved. Towards operational prediction of V_{max} from hyperspectral reflectance with less
532 dependency on model training, the integration of RTM derived Chl and gPLSR derived N_{mass} to
533 develop the generalized model for V_{max} prediction shows great potential.

534 5. Conclusion

535 The accurate, fast, nondestructive, and cost-effective approaches to estimate photosynthetic traits,
536 such as CO_2 -saturated photosynthesis rate (V_{max}), chlorophyll, and nitrogen, are highly needed for
537 crop monitoring. This study comprehensively evaluated radiative transfer models (RTMs), partial
538 least-squares regression (PLSR), and generalized PLSR (gPLSR) to retrieve photosynthetic traits
539 from leaf-clip reflectance collected in diverse maize plots with different genotypes, growth stages,
540 treatments of nitrogen fertilizers and ozone pollution in three growing seasons. This study led to
541 the following conclusions: (i) Both pre-trained RTM and gPLSR methods have great potential to
542 estimate photosynthetic traits. RTMs can achieve a high performance to retrieve foliar pigments
543 such as chlorophyll content ($r = 0.95$). gPLSR can be used to estimate foliar nitrogen concentration

544 (r = 0.85). (ii) With model training, PLSR methods can exploit leaf reflectance in conjunction with
545 field samples to achieve high accuracy to predict traits. The PLSR models based on spectra (r =
546 0.81) or the spectra retrieved traits (r = 0.72) can provide good predictions of V_{max} . In particular,
547 the trait-based V_{max} model has the ability to be applied across spatial scales, i.e. using either leaf
548 or canopy level data. (iii) We found that leaf chlorophyll content and nitrogen concentration
549 showed complementary contributions to the prediction of V_{max} . The integration of leaf chlorophyll
550 and total nitrogen information, which indicates leaf chlorophyll nitrogen and total nitrogen pool
551 sizes respectively, can significantly improve V_{max} prediction (r = 0.71) than that using only
552 chlorophyll or nitrogen. The information on nitrogen allocation among nitrogen pools is vital for
553 V_{max} predictions.

554

555 This study provided new insights into improving V_{max} prediction by sensing both chlorophyll and
556 nitrogen for maize. Such approaches could also be applied to other crops, e.g. perennial bioenergy
557 C₄ grasses. Further, applying estimated photosynthetic traits from such approaches into the
558 terrestrial ecosystem models could significantly improve the ability to predict crop yields and
559 carbon cycles. Leveraging the advanced imaging spectroscopy approaches on towers, unmanned
560 or manned airborne systems, or satellites such as PRISMA (launched in 2019), HISUI (launched
561 in 2019), EnMAP (expected launch in 2021), and NASA SBG and ESA CHIME (expected
562 launches in late 2020s), we can extend the leaf retrieval to the canopy and regional scale for high-
563 throughput and large-scale agricultural monitoring to improve food and bioenergy production.

564

565 **Supplementary data**

566 Supplementary data are available at JXB online.

567

568 *Fig. S1.* Overview of the study site.

569 *Fig. S2.* Fitted V_{max} temperature correction curve for Maize.

570 *Fig. S3.* Retrieved distribution of the PRO-COSINE and PRODyN-COSINE parameters from the
571 measured 470 maize leaf reflectance.

572 *Fig. S4.* Scatterplots of predicting (a-c) leaf chlorophyll content and (d-f) nitrogen concentration
573 from leaf-clip reflectance.

574 *Fig. S5.* Scatterplots of predicting V_{max} from leaf spectra or spectra based traits.
575 *Dataset S1.* Measured leaf traits, measured reflectance, and generated spectra-trait PLSR models.
576

577 **Acknowledgment**

578 This work was supported by the DOE Center for Advanced Bioenergy and Bioproducts Innovation
579 (U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research
580 under Award Number DE-SC0018420). Any opinions, findings, and conclusions or
581 recommendations expressed in this publication are those of the author(s) and do not necessarily
582 reflect the views of the U.S. Department of Energy. We would also like to thank the support from
583 the seed funding from the Center for Digital Agriculture, National Center for Supercomputing
584 Applications, University of Illinois at Urbana-Champaign. K.G. is funded by NASA New
585 Investigator Award and Carbon Monitoring System program (NNX16AI56G and
586 80NSSC18K0170) managed by the NASA Terrestrial Ecology Program, and USDA National
587 Institute of Food and Agriculture (NIFA) Foundational Program award (2017-67013-26253, 2017-
588 68002-26789, 2017-67003-28703). Z.W., T.Z. and P.T. received support through NASA Jet
589 Propulsion Laboratory award 1638464, NSF Macrosystems Biology grant 1638720 and USDA
590 Hatch award WIS01874. We would also like to thank the editor Dr. Tracy Lawson and two
591 anonymous referees for suggestions and comments that improved the paper.
592

593 **Data Availability**

594 All data supporting the findings of this study are available within the paper and within its
595 supplementary materials published online.
596

597 **Author contributions**

598 S.W., K.G., Z.W., E.A.A. and P.T. conceived the project. K.G., E.A.A. and P.T. contributed to
599 funding acquisition. S.W., Z.W., T.Z., K.L., C.M. and G.W. performed the experiments and data
600 collection. S.W. conducted data processing and analysis. S.W., K.G., Z.W., E.A.A., P.T. and C.J.

601 contributed to data interpretation and discussion. S.W. wrote the original draft of the manuscript.
602 All authors have revised and approved the final manuscript.

603

604 **Conflict of interest**

605 The authors declare that they have no conflicts of interest.

606

607 **Reference**

608 **Ainsworth EA.** 2018. Agroclimatology: Linking Agriculture to Climate. 1–23.

609 **Ainsworth EA, Rogers A.** 2007. The response of photosynthesis and stomatal conductance to
610 rising [CO₂]: Mechanisms and environmental interactions. *Plant, Cell and Environment* **30**, 258–
611 270.

612 **Ainsworth EA, Serbin SP, Skoneczka JA, Townsend PA.** 2014. Using leaf optical properties
613 to detect ozone effects on foliar biochemistry. *Photosynthesis Research* **119**, 65–76.

614 **Albert LP, Wu J, Prohaska N, et al.** 2018. Age-dependent leaf physiology and consequences
615 for crown-scale carbon uptake during the dry season in an Amazon evergreen forest. *New
616 Phytologist* **219**, 870-884.

617 **Bayat B, van der Tol C, Verhoef W.** 2018. Integrating satellite optical and thermal infrared
618 observations for improving daily ecosystem functioning estimations during a drought episode.
619 *Remote Sensing of Environment* **209**, 375-394.

620 **Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR, Long SP.** 2001. Improved temperature
621 response functions for models of Rubisco-limited photosynthesis. *Plant, Cell and Environment*
622 **24**, 253-259.

623 **Caemmerer S von, Furbank RT.** 1999. Modeling C4 Photosynthesis. *C4 Plant Biology*.

624 **Von Caemmerer S.** 2013. Steady-state models of photosynthesis. *Plant, Cell and Environment*
625 **36**, 1617-1630.

626 **Camino C, Gonzalez-Dugo V, Hernandez P, Zarco-Tejada PJ.** 2019. Radiative transfer
627 Vcmax estimation from hyperspectral imagery and SIF retrievals to assess photosynthetic
628 performance in rainfed and irrigated plant phenotyping trials. *Remote Sensing of Environment*
629 **231**, 111186.

630 **Chou S, Chen B, Chen J, Wang M, Wang S, Croft H, Shi Q.** 2020. Estimation of leaf
631 photosynthetic capacity from the photochemical reflectance index and leaf pigments. *Ecological
632 Indicators*, **110**, 10, 58-67.

633 **Crafts-Brandner SJ, Salvucci ME.** 2000. Rubisco activase constrains the photosynthetic
634 potential of leaves at high temperature and CO₂. *Proceedings of the National Academy of
635 Sciences*, **97**, 13430-13435.

636 **Croft H, Chen JM, Luo X, Bartlett P, Chen B, Staebler RM.** 2017. Leaf chlorophyll content
637 as a proxy for leaf photosynthetic capacity. *Global Change Biology* **23**, 3513-3524.

638 **Curran PJ.** 1988. The semivariogram in remote sensing: An introduction. *Remote Sensing of
639 Environment* **24**, 493–507.

640 **Dechant B, Cuntz M, Vohland M, Schulz E, Doktor D.** 2017. Estimation of photosynthesis
641 traits from leaf reflectance spectra: Correlation to nitrogen content as the dominant mechanism.

642 Remote Sensing of Environment **196**, 279–292.

643 **Evans JR, Clarke VC.** 2019. The nitrogen cost of photosynthesis. Journal of Experimental
644 Botany **70**, 7-15.

645 **Farquhar GD, von Caemmerer S, Berry JA.** 1980. A biochemical model of photosynthetic
646 CO₂ assimilation in leaves of C3 species. *Planta* **149**, 78–90.

647 **Féret JB, Gitelson AA, Noble SD, Jacquemoud S.** 2017. PROSPECT-D: Towards modeling
648 leaf optical properties through a complete lifecycle. *Remote Sensing of Environment* **193**, 204–
649 215.

650 **Geladi P, Kowalski BR.** 1986. Partial least-squares regression: a tutorial. *Analytica chimica acta*
651 **185**, 1-17.

652 **Guan K, Wu J, Anderson MC, Kimball J, Frolking S, Li B, Lobell D.** 2017. The shared and
653 unique value of optical, fluorescence, thermal and microwave satellite data for estimating large-
654 scale crop yields. *Remote Sensing of Environment* **199**, 333–349.

655 **Hammer GL, Wright GC.** 1994. A theoretical analysis of nitrogen and radiation effects on
656 radiation use efficiency in peanut. *Australian Journal of Agricultural Research* **45**, 575-589.

657 **Houborg R, Cescatti A, Migliavacca M, Kustas WP.** 2013. Satellite retrievals of leaf
658 chlorophyll and photosynthetic capacity for improved modeling of GPP. *Agricultural and Forest
659 Meteorology* **117**, 10–23.

660 **Houborg R, McCabe MF, Cescatti A, Gitelson AA.** 2015. Leaf chlorophyll constraint on
661 model simulated gross primary productivity in agricultural systems. *International Journal of
662 Applied Earth Observation and Geoinformation* **43**, 160-176.

663 **Hu S, Mo X, Lin Z.** 2014. Optimizing the photosynthetic parameter V_{cmax} by assimilating
664 MODIS-fPAR and MODIS-NDVI with a process-based ecosystem model. *Agricultural and
665 Forest Meteorology* **198**, 320–334.

666 **Jacquemoud S, Baret F.** 1990. PROSPECT: A model of leaf optical properties spectra. *Remote
667 Sensing of Environment* **34**, 75–91.

668 **Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada PJ, Asner GP, François C,
669 Ustin SL.** 2009. PROSPECT + SAIL models: A review of use for vegetation characterization.
670 *Remote Sensing of Environment* **113**, S56–S66.

671 **Jay S, Bendoula R, Hadoux X, Féret JB, Gorretta N.** 2016. A physically-based model for
672 retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy.
673 *Remote Sensing of Environment* **177**, 220-236.

674 **Kattge J, Knorr W, Raddatz T, Wirth C.** 2009. Quantifying photosynthetic capacity and its
675 relationship to leaf nitrogen content for global-scale terrestrial biosphere models. *Global Change
676 Biology* **15**, 976-991.

677 **Kauwe D, Martin G, Lin Y, Wright I, Belinda EM, Kristine YC, David SE, Maire V.** 2016.
678 A test of the ‘one-point method’ for estimating maximum carboxylation capacity from field-
679 measured, light-saturated photosynthesis. *New Phytologist* **210**, 1130-1144.

680 **Koester RP, Nohl BM, Diers BW, Ainsworth EA.** 2016. Has photosynthetic capacity increased
681 with 80years of soybean breeding? An examination of historical soybean cultivars. *Plant Cell
682 and Environment* **39**, 1058–1067.

683 **Kopsell DA, Kopsell DE, Lefsrud MG, Curran-Celentano J, Dukach LE.** 2004. Variation in
684 lutein, β -carotene, and chlorophyll concentrations among *Brassica oleracea* cultigens and
685 seasons. *HortScience* **39**, 361-364.

686 **Kucharik CJ, Mork AC, Meehan TD, Serbin SP, Singh A, Townsend PA, Whitney KS,
687 Gratton C.** 2016. Evidence for compensatory photosynthetic and yield response of soybeans to

688 aphid herbivory. *Journal of Economic Entomology* **109**, 1177-1187.

689 **Leakey ADB, Ferguson JN, Pignon CP, Wu A, Jin Z, Hammer GL, Lobell DB.** 2019. Water
690 Use Efficiency as a Constraint and Target for Improving the Resilience and Productivity of C3
691 and C4 Crops . *Annual Review of Plant Biology* **70**, 781-808.

692 **Leuning R.** 2002. Temperature dependence of two parameters in a photosynthesis model. *Plant,*
693 *Cell and Environment* **25**, 1205-1210.

694 **Li D, Tian L, Wan Z, Jia M, Yao X, Tian Y, Zhu Y, Cao W, Cheng T.** 2019. Assessment of
695 unified models for estimating leaf chlorophyll content across directional-hemispherical
696 reflectance and bidirectional reflectance spectra. *Remote Sensing of Environment* **231**, 111240.

697 **Lichtenthaler HK, Wellburn AR.** 1983. Determinations of total carotenoids and chlorophylls a
698 and b of leaf extracts in different solvents. *Biochemical Society Transactions* **11**, 591-592.

699 **Long SP, Bernacchi CJ.** 2003. Gas exchange measurements, what can they tell us about the
700 underlying limitations to photosynthesis? *Procedures and sources of error. Journal of*
701 *experimental botany* **54**, 2393-2401.

702 **Luo X, Croft H, Chen JM, He L, Keenan TF.** 2019. Improved estimates of global terrestrial
703 photosynthesis using information on leaf chlorophyll content. *Global change biology* **25**, 2499-
704 2514.

705 **Makino A, Osmond B.** 1991. Solubilization of ribulose-1,5-bisphosphate carboxylase from the
706 membrane fraction of pea leaves. *Photosynthesis Research* **29**, 79-85.

707 **Meacham-Hensold K, Montes CM, Wu J, et al.** 2019. High-throughput field phenotyping
708 using hyperspectral reflectance and partial least squares regression (PLSR) reveals genetic
709 modifications to photosynthetic capacity. *Remote Sensing of Environment* **231**, 111176.

710 **Meerdink SK, Roberts DA, King JY, Roth KL, Dennison PE, Amaral CH, Hook SJ.** 2016.
711 Linking seasonal foliar traits to VSWIR-TIR spectroscopy across California ecosystems. *Remote*
712 *Sensing of Environment* **186**, 322-338.

713 **Miner GL, Bauerle WL.** 2019. Seasonal responses of photosynthetic parameters in maize and
714 sunflower and their relationship with leaf functional traits. *Plant, cell & environment*, **42**, 1561-
715 1574

716 **Mu X, Chen Q, Chen F, Yuan L, Mi G.** 2016. Within-leaf nitrogen allocation in adaptation to
717 low nitrogen supply in maize during grain-filling stage. *Frontiers in plant science* **7**, 699.

718 **Neumann K, Verburg PH, Stehfest E, Müller C.** 2010. The yield gap of global grain
719 production: A spatial analysis. *Agricultural Systems*, **103**, 316-326.

720 **Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinemets Ü, Poorter H, Tosenes
721 T, Westoby M.** 2017. Physiological and structural tradeoffs underlying the leaf economics
722 spectrum. *New Phytologist* **214**, 1447-1463.

723 **Quebbeman JA, Ramirez JA.** 2016. Optimal allocation of leaf-level nitrogen: Implications for
724 covariation of V_{cmax} and J_{max} and photosynthetic downregulation. *Journal of Geophysical*
725 *Research: Biogeosciences*, **12**, 2464-2475.

726 **Saltelli A, Tarantola S, Campolongo F, Ratto M.** 2004. *Sensitivity Analysis in practice: a
727 guide to assessing scientific models* (Vol. 1). New York: Wiley.

728 **Schaepman-Strub G, Schaepman ME, Painter TH, Dangel S, Martonchik J V.** 2006.
729 Reflectance quantities in optical remote sensing-definitions and case studies. *Remote Sensing of*
730 *Environment* **103**, 27-42.

731 **Serbin SP, Dillaway DN, Kruger EL, Townsend PA.** 2012. Leaf optical properties reflect
732 variation in photosynthetic metabolism and its sensitivity to temperature. *Journal of*
733 *Experimental Botany* **63**, 489-502.

734 **Serbin SP, Singh A, Desai AR, Dubois SG, Jablonski AD, Kingdon CC, Kruger EL, Townsend PA.** 2015. Remotely estimating photosynthetic capacity, and its response to
735 temperature, in vegetation canopies using imaging spectroscopy. *Remote Sensing of Environment* **167**, 78–87.

736

737

738 **Serbin SP, Singh A, McNeil BE, Kingdon CC, Townsend PA.** 2014. Spectroscopic
739 determination of leaf morphological and biochemical traits for northern temperate and boreal tree
740 species. *Ecological Applications* **24**, 1651–1669.

741 **Smith NG, Keenan TF, Colin Prentice I, et al.** 2019. Global photosynthetic capacity is
742 optimized to the environment. *Ecology Letters* **22**, 506–517.

743 **Singh A, Serbin SP, McNeil BE, Kingdon CC, Townsend PA.** 2015. Imaging spectroscopy
744 algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties.
745 *Ecological Applications* **25**, 2180–2197.

746 **Sobol IM.** 2001. Global sensitivity indices for nonlinear mathematical models and their Monte
747 Carlo estimates. *Mathematics and Computers in Simulation*.

748 **Taylor KE.** 2001. Summarizing multiple aspects of model performance in a single diagram.
749 *Journal of Geophysical Research Atmospheres* **106**, 7183–7192

750 **Townsend PA, Foster JR, Chastain RA, Currie WS.** 2003. Application of imaging
751 spectroscopy to mapping canopy nitrogen in the forest of the central Appalachian mountains
752 using Hyperion and AVIRIS. *IEEE Transactions on Geoscience and Remote Sensing* **41**, 1347–
753 1354.

754 **Verrelst J, Malenovský Z, Van der Tol C, Camps-Valls G, Gastellu-Etchegorry JP, Lewis
755 P, North P, Moreno J.** 2019. Quantifying Vegetation Biophysical Variables from Imaging
756 Spectroscopy Data: A Review on Retrieval Methods. *Surveys in Geophysics* **40**, 589–629.

757 **Vilfan N, van der Tol C, Verhoef W.** 2019. Estimating photosynthetic capacity from leaf
758 reflectance and Chl fluorescence by coupling radiative transfer to a model for photosynthesis.
759 *New Phytologist* **223**, 487–500.

760 **Walker AP, Beckerman AP, Gu L, Kattge J, Cernusak LA, Domingues TF, Scales JC,
761 Wohlfahrt G, Wullschleger SD, Woodward FI.** 2014. The relationship of leaf photosynthetic
762 traits - Vcmax and Jmax - to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-
763 analysis and modeling study. *Ecology and Evolution* **4**, 3218–3235.

764 **Wang S, Ibrom A, Bauer-Gottwein P, Garcia M.** 2018a. Incorporating diffuse radiation into a
765 light use efficiency and evapotranspiration model: An 11-year study in a high latitude deciduous
766 forest. *Agricultural and Forest Meteorology* **248**, 479–493.

767 **Wang Z, Chlus A, Geygan R, Ye Z, Zheng T, Singh A, Couture J, Cavender-Bares J,
768 Kruger EL, Townsend PA.** 2020. Foliar functional traits from imaging spectroscopy across
769 biomes in eastern North America. *New Phytologist*.

770 **Wang Z, Skidmore AK, Darvishzadeh R, Wang T.** 2018b. Mapping forest canopy nitrogen
771 content by inversion of coupled leaf-canopy radiative transfer models from airborne
772 hyperspectral imagery. *Agricultural and Forest Meteorology* **253**, 247–260.

773 **Wang Z, Skidmore AK, Wang T, Darvishzadeh R, Hearne J.** 2015. Applicability of the
774 PROSPECT model for estimating protein and cellulose+ lignin in fresh leaves. *Remote sensing
775 of environment* **168**, 205–218.

776 **Wang Z, Townsend PA, Schweiger AK, Couture JJ, Singh A, Hobbie SE, Cavender-Bares
777 J.** 2019. Mapping foliar functional traits and their uncertainties across three years in a grassland
778 experiment. *Remote Sensing of Environment* **221**, 405–416.

779 **Weber VS, Araus JL, Cairns JE, Sanchez C, Melchinger AE, Orsini E.** 2012. Prediction of

780 grain yield using reflectance spectra of canopy and leaves in maize plants grown under different
781 water regimes. *Field Crops Research* **128**, 82-90.

782 **Verhoef W.** 1984. Light scattering by leaf layers with application to canopy reflectance
783 modeling: The SAIL model. *Remote sensing of environment*, **16**, 125-141.

784 **Wold S, Sjöström M, Eriksson L.** 2001. PLS-regression: A basic tool of chemometrics.
785 *Chemometrics and Intelligent Laboratory Systems*.

786 **Wu J, Rogers A, Albert LP, Ely K, Prohaska N, Wolfe BT, Oliveira RC, Saleska SR,**
787 **Serbin SP.** 2019. Leaf reflectance spectroscopy captures variation in carboxylation capacity
788 across species, canopy environment and leaf age in lowland moist tropical forests. *New*
789 *Phytologist* **224**, 663-674.

790 **Yendrek CR, Tomaz T, Montes CM, Cao Y, Morse AM, Brown PJ, McIntyre LM, Leakey**
791 **ADB, Ainsworth EA.** 2017. High-throughput phenotyping of maize leaf physiological and
792 biochemical traits using hyperspectral reflectance. *Plant Physiology* **173**, 614-626.

793 **Yeoh HH, Wee YC.** 1994. Leaf protein contents and nitrogen-to-protein conversion factors for
794 90 plant species. *Food Chemistry* **49**, 245-250.

795 **Zheng T, Chen JM.** 2017. Photochemical reflectance ratio for tracking light use efficiency for
796 sunlit leaves in two forest types. *ISPRS Journal of Photogrammetry and Remote Sensing* **123**,
797 47–61.

798

799

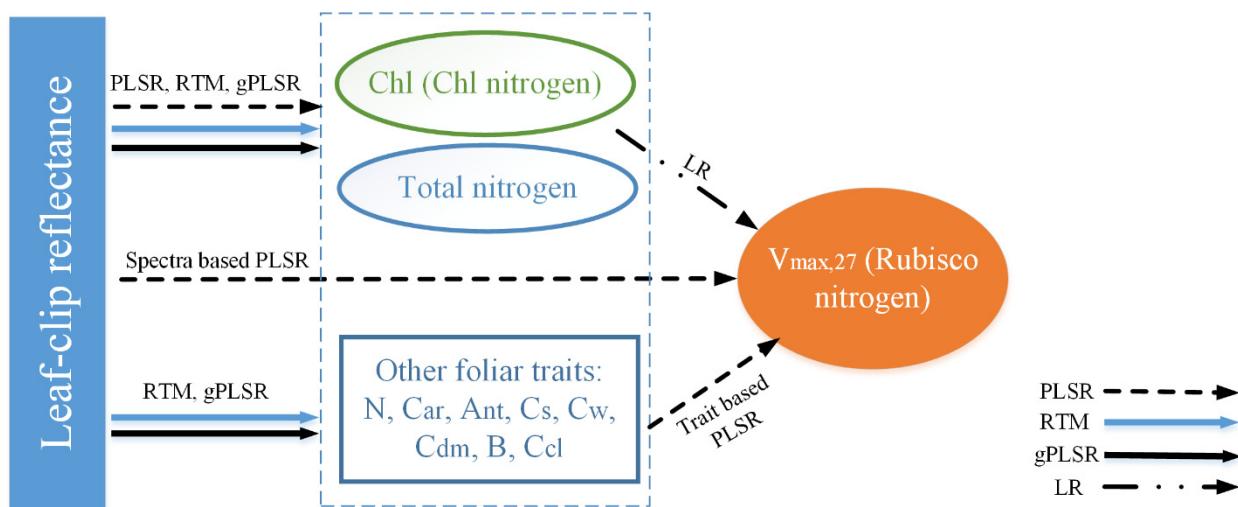
800 **Table**

801

802 **Table 1** Model parameters and their typical ranges for PROSPECT-D, PROSPECT-DyN and
803 COSINE leaf radiative transfer models.

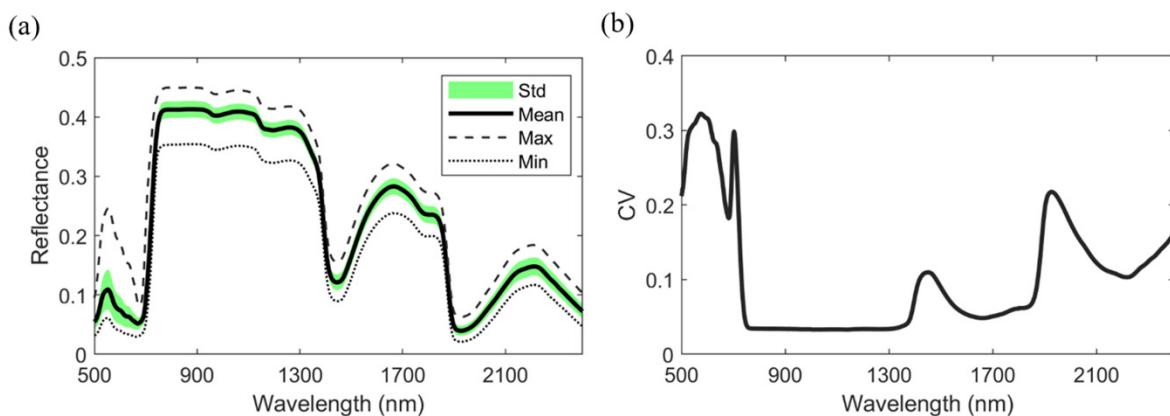
Model	Parameter	Description and unit	Typical range
PROSPECT-D	N	Leaf structure parameter [unitless]	0 – 5
	Chl	Chlorophyll content [$\mu\text{g cm}^{-2}$]	0 – 100
	Car	Carotenoids content [$\mu\text{g cm}^{-2}$]	0 – 60
	Ant	Anthocyanin content [$\mu\text{g cm}^{-2}$]	0 – 5
	Cs	Senescent (brown) materials [unitless]	0 – 5
	Cw	Leaf water thickness [cm]	0 – 0.1
	Cdm	Dry matter content [g cm^{-2}]	0 – 0.02
PROSPECT- DyN	Cp	Protein content [g cm^{-2}]	0 – 0.02
	Ccl	Cellulose and lignin content [g cm^{-2}]	0 – 0.02
COSINE	θ_s	Sensor view angle [$^\circ$]	0 – 180
	θ_i	Light incident angle [$^\circ$]	0 – 90
	B	Specular term to account for the bidirectional reflectance factor [unitless]	-0.2 – 0.6

804

805 **Figure legends**

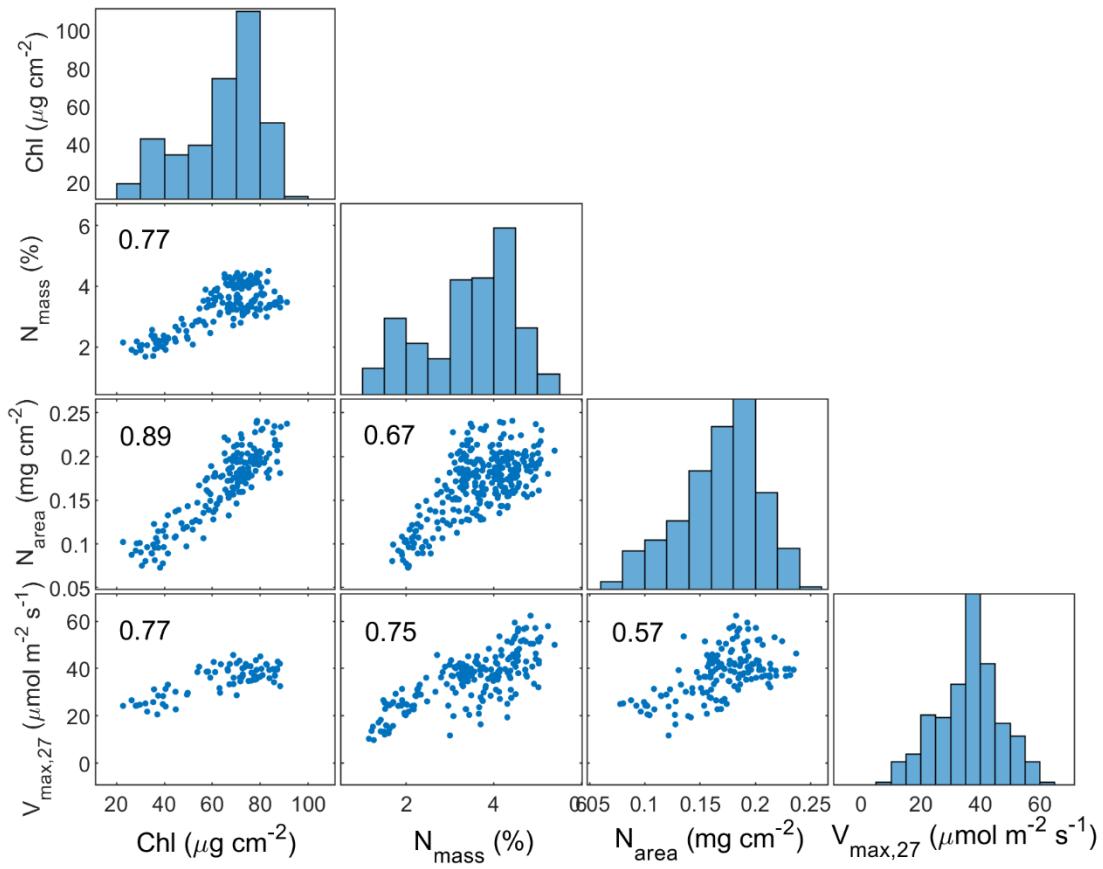
806

807 **Fig. 1.** Comparison of approaches to estimate leaf chlorophyll, nitrogen, and $V_{\max,27}$. PLSR:
 808 partial-least-squares regression; gPLSR: generalized PLSR; RTM: radiative transfer model; LR:
 809 linear regression. Chl: leaf chlorophyll content; $V_{\max,27}$: leaf maximum carboxylation rate
 810 standardized to 27 °C; N: leaf thickness parameter; Car: carotenoids; Ant: anthocyanins; Cs:
 811 senescent material fraction; Cw: leaf water content; Cdm: leaf dry matter content; B: the parameter
 812 to account for the leaf bidirectional reflectance; Ccl: leaf cellulose and lignin content; The dashed
 813 line indicates that methods require model training, while the solid lines are calibration-free
 814 approaches. This study compared three approaches to retrieve leaf chlorophyll and total nitrogen
 815 content, and four approaches to retrieve leaf $V_{\max,27}$. This figure is available in colour at *JXB* online.
 816



817

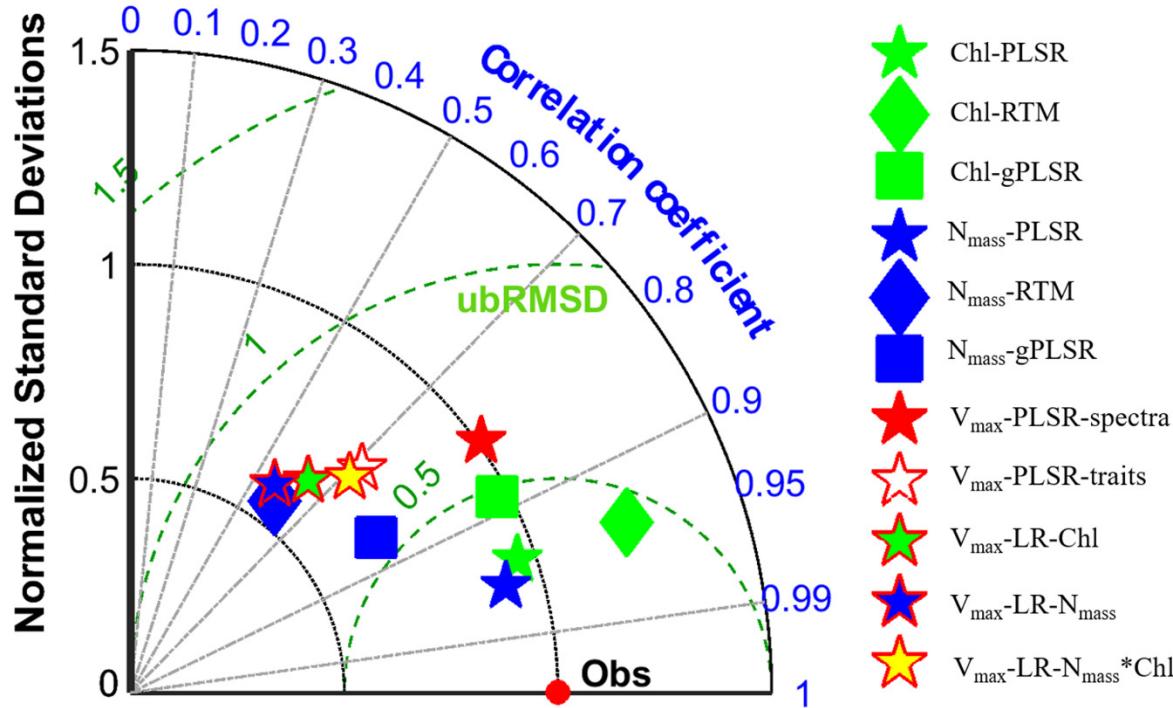
818 **Fig. 2.** Mean, maximum, minimum, standard deviation, and coefficient of variation (CV) of the
 819 measured leaf reflectance for maize. This figure is available in colour at *JXB* online.
 820



821

822 **Fig. 3.** Correlation matrix for measured leaf photosynthetic traits. $V_{\text{max},27}$: the carboxylation rate
 823 at 27 °C ($\mu\text{mol m}^{-2}\text{s}^{-1}$); Chl: leaf chlorophyll content ($\mu\text{g}/\text{cm}^2$); N_{mass}: leaf nitrogen per mass (%);
 824 N_{area}: leaf nitrogen per area (mg/cm^2). The statistics in plots refer to the Pearson correlation
 825 coefficients.

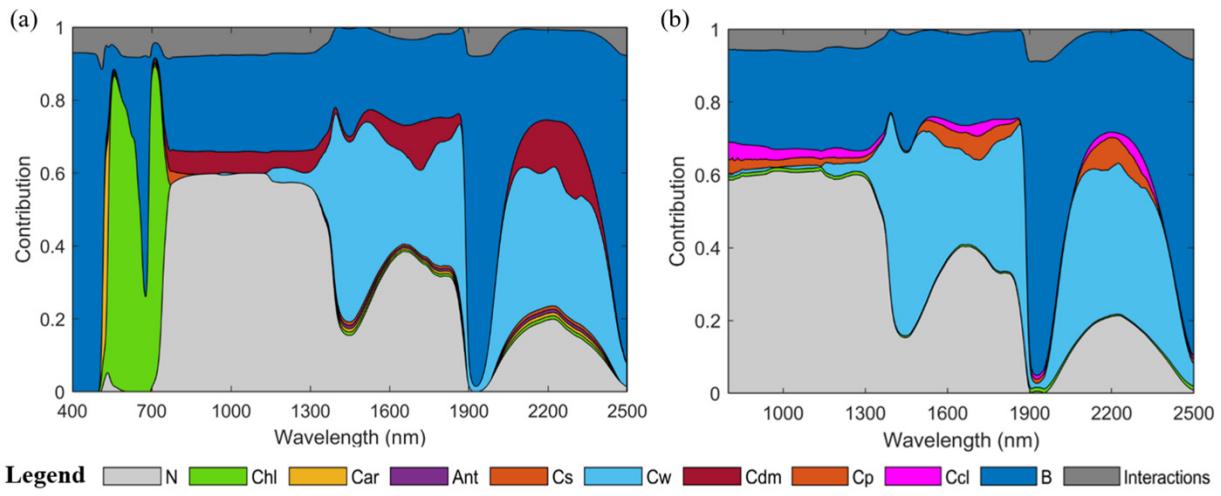
826



827

828 **Fig. 4.** Taylor diagram to present the performance of estimating leaf chlorophyll, nitrogen and
 829 V_{max}. The pentagrams represent PLSR and LR (linear regression) methods. The diamonds are the
 830 RTM approaches, which refer to the PROSPECT-COSINE and PROSPECT-DyN-COSINE. The
 831 squares indicate the gPLSR method. The markers with the green color represent chlorophyll
 832 related predictions. The markers with the blue color are nitrogen related predictions. The markers
 833 with the red edge indicate V_{max} related predictions. The radial coordinate represents the normalized
 834 standard deviation, which is equal to 1 for the observations. The angular coordinate indicates the
 835 correlation coefficient, which refers to 1 for the observations. The concentric green dashed semi-
 836 circles represent the normalized unbiased RMSD. In the Taylor diagram, the closer points to the
 837 observation point refer to higher predictive ability for the models. This figure is available in colour
 838 at *JXB* online.

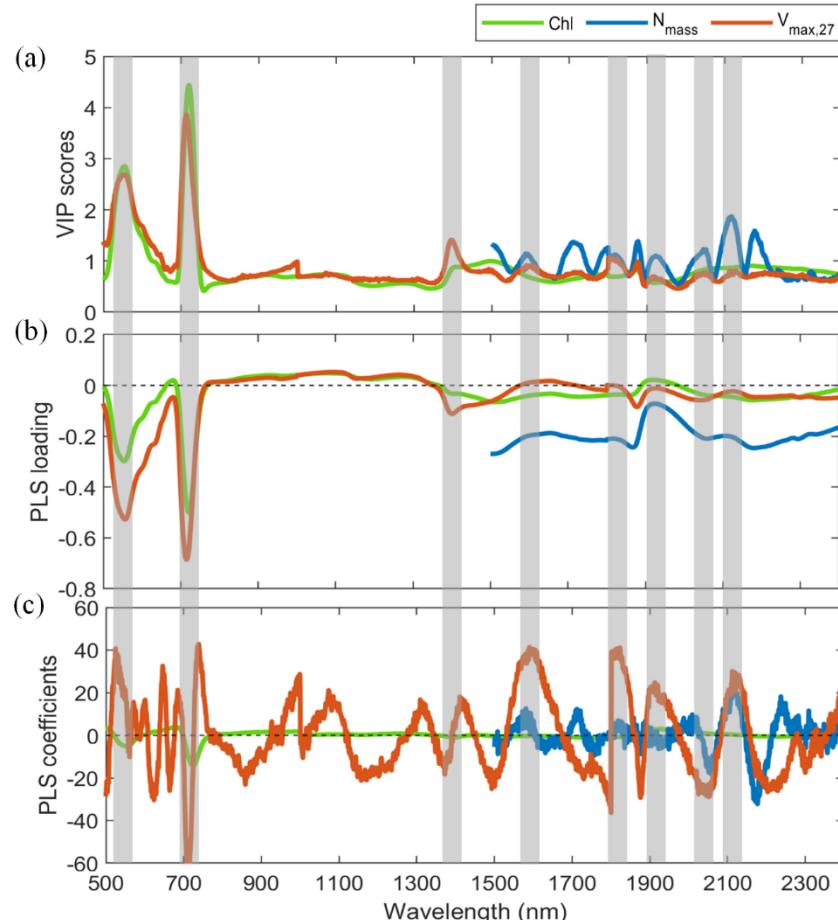
839



840

841 **Fig. 5.** Global sensitivity analysis of radiative transfer models. (a) PROSPECT-COSINE (b)
 842 PROSPECT-DyN-COSINE. In the legend, the variables N, Chl, Car, Ant, Cs, Cw, Cdm, Cp, Ccl,
 843 B and Interactions refer to leaf thickness structure parameter, chlorophyll, carotenoids,
 844 anthocyanin, senescent materials, water content, dry matter content, protein, cellulose and lignin,
 845 leaf bidirectional reflectance factors, and interactions for the parameter sensitivities, respectively.
 846 This figure is available in colour at *JXB* online.

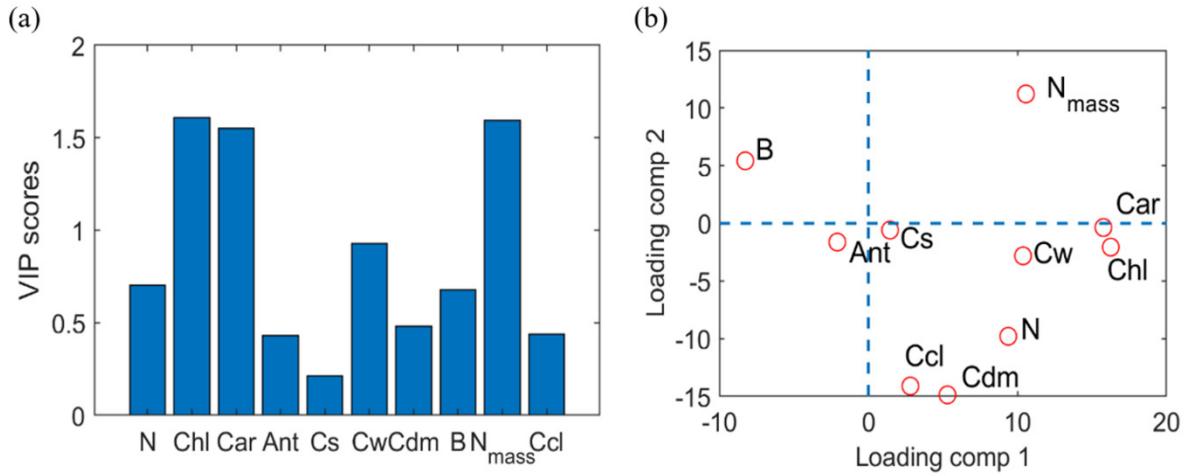
847



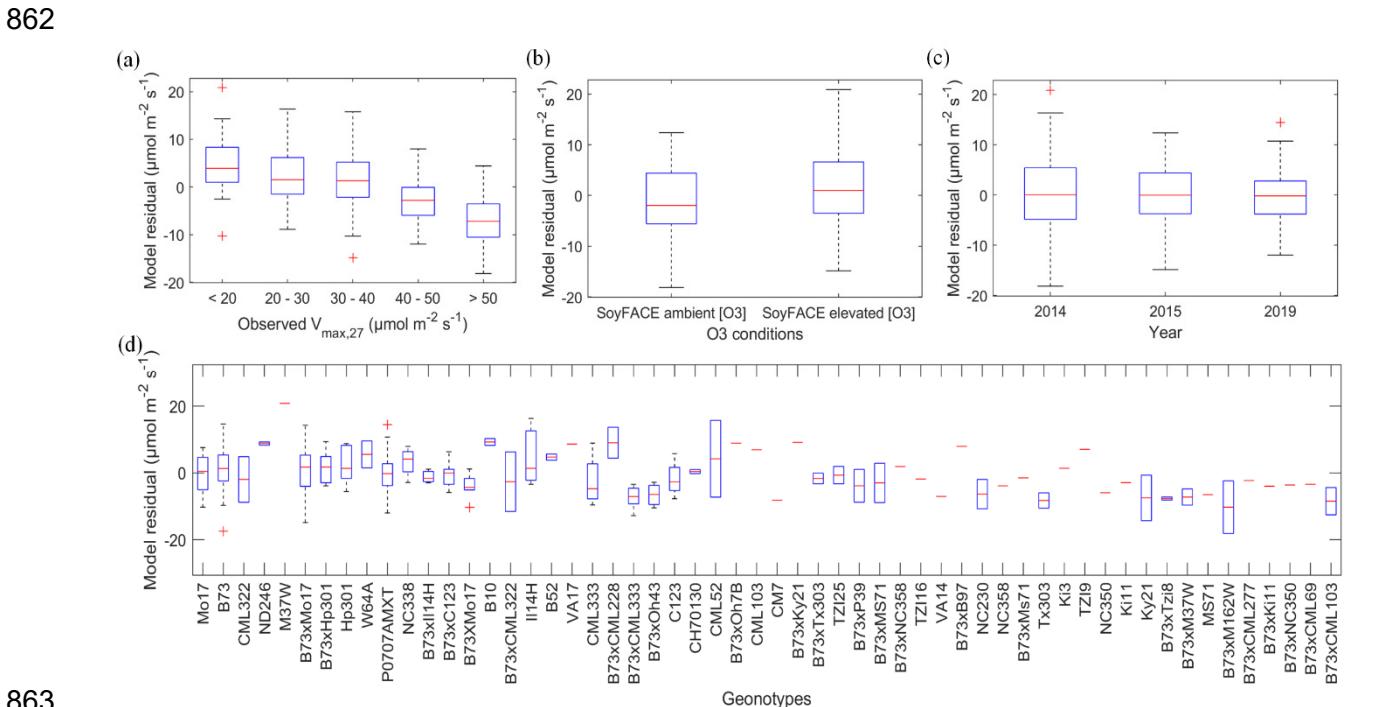
848

849 **Fig. 6.** (a) VIP scores, (b) loading and (c) coefficients of the spectra based PLSR model for V_{max,27},
 850 chlorophyll, and nitrogen predictions. The orange curve shows leaf V_{max,27} predictions. The green
 851 curve refers to the leaf chlorophyll content prediction. The blue curve represents leaf nitrogen per
 852 mass predictions. The shaded grey region indicates the key wavelengths for V_{max,27} predictions.
 853 This figure is available in colour at *JXB* online.

854

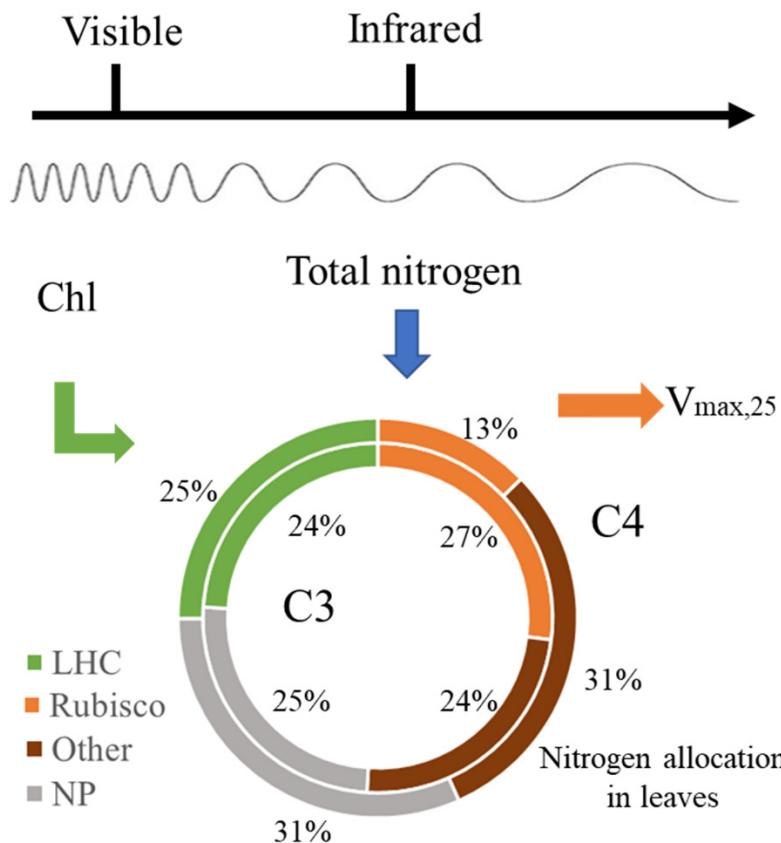


855
856 **Fig. 7.** (a) VIP scores and (b) loading components 1 and 2 of the trait-based PLSR model for the
857 $V_{max,27}$ prediction. The traits N, Chl, Car, Ant, Cs, Cw, Cdm, B, N_{mass} and Ccl refer to leaf thickness
858 structure parameter, chlorophyll, carotenoids, anthocyanin, senescent materials, water content, dry
859 matter content, leaf bidirectional reflectance factor, nitrogen per mass, and cellulose and lignin
860 content, respectively. These foliar traits are from calibration-free approaches. The estimated N_{mass}
861 is from gPLSR, due to its high accuracy. Other traits are from RTMs.



863
864 **Fig. 8.** Analysis of the performance of spectra-V_{max,27} model by (a) leaf condition, (b)
865 environmental stressor, (c) experiment year, and (d) genotype.

866



867

868 **Fig. 9.** Methodology to integrate the visible and infrared hyperspectral reflectance to quantify
 869 nitrogen allocation to estimate V_{max} . The inner and outer circles refer to the typical nitrogen
 870 allocation in C₃ leaves and C₄ leaves, respectively. The data of nitrogen allocation for C₃ and C₄
 871 leaves are from Evans and Clarke (2019) and Mu et al. (2016), respectively. Notably, the allocation
 872 rates vary with environmental conditions, species and growth stages. LHC refers to nitrogen in the
 873 light-harvesting complex. Rubisco represents nitrogen in the Rubisco protein. Other stands for
 874 nitrogen in other photosynthetic proteins. NP means non-photosynthetic proteins, e.g. cell wall,
 875 mitochondria, and cytosol. This figure is available in colour at *JXB* online.