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Highlights: 32 

Leaf chlorophyll content (visible spectra) and nitrogen concentration (infrared signals) have key 33 

and unique contributions to predict maize photosynthetic capacity. RTM accurately predicts 34 

chlorophyll, while generalized PLSR estimates nitrogen better.  35 

  36 
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Abstract: 37 

The photosynthetic capacity or CO2-saturated photosynthetic rate (Vmax), chlorophyll, and nitrogen 38 

are closely linked leaf traits that determine C4 crop photosynthesis and yield. Accurate, timely, 39 

rapid, and nondestructive approaches to predict leaf photosynthetic traits from hyperspectral 40 

reflectance are urgently needed for high-throughput crop monitoring to ensure food and bioenergy 41 

security. Therefore, this study thoroughly evaluated the state-of-the-art physically-based radiative 42 

transfer models (RTMs), data-driven partial-least-squares regression (PLSR), and generalized 43 

PLSR (gPLSR) models to estimate leaf traits from leaf-clip hyperspectral reflectance, which was 44 

collected from maize (Zea mays L.) bioenergy plots with diverse genotypes, growth stages, 45 

treatments of nitrogen fertilizers and ozone stresses in three growing seasons. Results show that 46 

leaf RTMs considering bidirectional effects can give accurate estimates of chlorophyll content 47 

(Pearson correlation r = 0.95), while gPLSR enabled retrieval of leaf nitrogen concentration (r = 48 

0.85). Using PLSR with field measurements for training, the cross-validation indicates that Vmax 49 

can be well predicted from spectra (r = 0.81). The integration of chlorophyll content (strongly 50 

related to visible spectra) and nitrogen concentration (linked to shortwave infrared signals) can 51 

provide better predictions of Vmax (r = 0.71) than only using either chlorophyll or nitrogen 52 

individually. This study highlights leaf chlorophyll content and nitrogen concentration have key 53 

and unique contributions to Vmax prediction. 54 

 55 

Keywords: Hyperspectral leaf reflectance; the CO2 saturated photosynthetic rate; chlorophyll; 56 

nitrogen; partial-least-squares regression; radiative transfer model; maize; bioenergy crop  57 

  58 
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1. Introduction 59 

Photosynthesis captures and converts solar radiation into chemical energy to drive CO2 fixation 60 

into carbohydrates that ultimately power ecosystems and feed humanity (Ainsworth, 2018). The 61 

conservation of photosynthetic proteins and enzymes has aided the mathematical modeling of 62 

photosynthetic processes (Farquhar et al., 1980; Caemmerer and Furbank, 1999). In C4 63 

photosynthesis models, carbon assimilation is limited by PEP carboxylation in mesophyll and 64 

Rubisco carboxylation of bundle sheath cells (Von Caemmerer, 2000; Sage & Kubien, 2007). With 65 

the ability to concentrate CO2 around Rubisco, the photosynthesis of C4 crops (e.g. Zea mays, 66 

Miscanthus sinensis, and Panicum virgatum) in current atmospheric conditions is often limited by 67 

the CO2 saturated photosynthesis rate Vmax, which corresponds to the maximal Rubisco 68 

carboxylation rate (Leakey et al., 2019). However, due to limited in-situ measurements and 69 

knowledge of Vmax, most crop and terrestrial ecosystem models ignore such variability and specify 70 

a fixed value of Vmax for each plant functional type (Kattge et al., 2009). Inaccurate temporal and 71 

spatial representation of Vmax can cause significant uncertainties in photosynthesis models and 72 

crop yield predictions (Hu et al., 2014). Thus, accurate, timely, rapid, nondestructive, and cost-73 

effective approaches to estimate Vmax are highly needed for yield forecasting, bioenergy 74 

production, and agricultural management.  75 

 76 

Vmax is sensitive to leaf nitrogen, temperature, ozone, and pathogens, and shows spatial, temporal 77 

and developmental variability (Bernacchi et al., 2001; Ainsworth et al., 2014; Kucharik et al., 78 

2016). Leaf nitrogen is often cited as the primary mechanism controlling Vmax, as multiple studies 79 

have shown that Vmax standardized to a certain temperature shows a strong relationship with leaf 80 

total nitrogen content or concentration (Walker et al., 2014; Dechant et al., 2017; Yendrek et al., 81 

2017). Other studies, however, reveal that the Vmax and nitrogen relationships are complicated. For 82 

instance, plants in soils with low nitrogen availability can achieve high Vmax per leaf nitrogen 83 

(Ainsworth and Rogers, 2007). Miner and Bauerle (2019) found nitrogen content and the Rubisco 84 

carboxylation rate were not correlated for Sunflower. The Rubisco activity of soybean did not 85 

significantly correlate to leaf nitrogen due to the excessive nitrogen storage in leaves (Koester et 86 

al., 2016). For tree species aspen, maple and ash, Croft et al. (2017) found that Rubisco 87 

carboxylation rates were more sensitive to Chl than leaf nitrogen content. The high correlation 88 

between Chl and Vmax could be explained by the nitrogen resource optimality allocation (Dewar, 89 
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1996; Evans and Clarke, 2019; Smith et al., 2019). As light and dark reactions should be well 90 

coordinated to maximize leaf photosynthesis, nitrogen investment in light harvesting Chl and 91 

Rubisco should be optimized. Although these studies imply strong connections among nitrogen, 92 

Chl and Vmax, it is still debated whether the use of Chl (Houborg et al., 2015; Croft et al., 2017), 93 

nitrogen content/concentration (Yendrek et al., 2017; Dechant et al., 2017), or their derivatives 94 

(e.g. Chl*carotenoids, Chou et al., 2020) as the proxy for Vmax. 95 

 96 

Traditional methods to estimate leaf Vmax by A/Ci (net photosynthesis / intercellular CO2 97 

concentration) curves from leaf gas exchange experiments (Von Caemmerer, 2013) provide 98 

accurate measurements, but are time-consuming and not suitable for high-throughput crop 99 

monitoring in the context of field phenotyping and precision agriculture. Sensing techniques such 100 

as optical reflectance, solar-induced fluorescence, or thermal infrared data are rapid, non-101 

destructive, and cost-effective ways to quantify crop traits (Houborg et al., 2013; Serbin et al., 102 

2015; Guan et al., 2017). Particularly, spectroscopy can exploit spectral information of the entire 103 

optical range (400 - 2500 nm) through either physically-based radiative transfer models (RTMs, 104 

e.g. Jacquemoud and Baret, 1990; Vilfan et al., 2019) or data-driven methods (Serbin et al., 2012; 105 

e.g. Ainsworth et al., 2014; Yendrek et al., 2017) to estimate traits. These estimates include 106 

photosynthetic traits (Chl, nitrogen and Vmax), structural parameters, chemical composition, and 107 

photo-protective pigments (Townsend et al., 2003; Weber et al., 2012; Singh et al., 2015). The 108 

information of diverse traits from spectroscopy provides opportunities to interpret the linkage of 109 

leaf traits and Vmax to evaluate using Chl, nitrogen, or other traits as the proxy of Vmax.  110 

 111 

The RTM approaches, for instance the pre-calibrated generalized plate-based turbid medium 112 

PROSPECT (Jacquemoud and Baret, 1990) or PROSPECT-DyN (Wang et al., 2015, 2018b) 113 

models, have merits to operationally predict foliar traits such as Chl, nitrogen and water content 114 

across species, growth stages, and environmental conditions. However, the accuracy and number 115 

of predictable traits from RTMs are limited (Verrelst et al., 2019). For instance, due to the weak 116 

absorption features of Rubisco protein, existing RTMs do not include the spectral absorption 117 

coefficients of Rubisco protein to directly predict Vmax. The prediction of Vmax through RTMs 118 

often relies on statistical regression with RTM based traits (Houborg et al., 2013; Croft et al., 2017; 119 

Dechant et al., 2017) or detecting photosynthetic functioning (Vilfan et al., 2019; Zheng and Chen, 120 
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2017; Bayat et al., 2018). Additionally, leaf RTMs are developed with hemispherical reflectance 121 

measured with integrating spheres. These reflectance measurements are different from conical 122 

reflectance (Schaepman-Strub et al., 2006) collected by the leaf-clip, which is the high-throughput 123 

approach for spectra collection in fields. To solve the above issues, the close-range spectral 124 

imaging of leaves model (COSINE, Jay et al., 2016), which accounts for bi-directional reflectance 125 

factors, needs to be combined with PROSPECT to simulate leaf conical reflectance. Conversely, 126 

data-driven approaches, e.g. partial-least-squares regression (PLSR), can flexibly fit leaf spectra 127 

with diverse measured traits with high predictive performance. For instance, a few studies have 128 

demonstrated that Vmax can be accurately estimated from leaf spectra (Serbin et al., 2012; Yendrek 129 

et al., 2017; Wu et al., 2019). However, the performance of PLSR models can vary significantly 130 

depending on species, plant growth stages, and sensor configurations (Wang et al., 2019). In 131 

addition, PLSR requires sufficient samples of measured traits for model training, which is less 132 

operational compared with RTMs. The pre-trained generalized PLSR (gPLSR) models, which 133 

were developed from a large database of in-situ observations, can be promising for applications 134 

lacking measured trait data for modeling training (Wang et al., 2020). The traits Chl, nitrogen, and 135 

Vmax can be retrieved from leaf spectra through RTMs, PLSR, or gPLSR, but it remains uncertain 136 

for the performance comparison of these approaches. A comprehensive evaluation of these 137 

approaches to quantify Chl, nitrogen, and Vmax for high-throughput crop monitoring is highly 138 

needed. 139 

 140 

Maize (Zea mays L.) is one of the major nitrogen-deficient staple and bioenergy crops, which 141 

represents a model for species with the C4 photosynthesis pathway. Due to environmental factors 142 

or management strategies (e.g. shortage of nitrogen fertilizers), maize Vmax is often suppressed and 143 

the average yield reaches only 64% of maximum potential globally (Neumann et al., 2010). In this 144 

study, we collected leaf gas exchange measurements, leaf-level hyperspectral reflectance, nitrogen 145 

and chlorophyll data from maize experimental plots with various genotypes, growth stages, 146 

treatments of nitrogen fertilizers and ozone stress during three growing seasons. The objective was 147 

to develop and evaluate spectroscopy approaches for estimating photosynthetic traits from leaf-148 

clip spectra and to understand the relationship among Chl, nitrogen, and Vmax. Two key questions 149 

were addressed: (1) Among RTMs, PLSR, and gPLSR approaches, which method performs best 150 

to estimate Chl and nitrogen from the leaf-clip reflectance? (2) Can we utilize leaf spectra or 151 
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spectra-based traits to accurately estimate Vmax? If so, what are the key spectra or traits for Vmax 152 

prediction? By answering these questions, this study aimed to identify the operational approaches 153 

to predict photosynthetic traits using leaf hyperspectral reflectance and understand the linkage 154 

among Chl, nitrogen, and Vmax prediction. 155 

2.   Materials and methods 156 

2.1 Leaf spectra and photosynthetic trait measurements 157 

The maize experimental plots of diverse genotypes were treated with nitrogen fertilizers (maize 158 

nitrogen plots, Fig. S1) and ozone (SoyFACE, Fig. S1) in Champaign, Illinois, and measured 159 

during the growing seasons of 2014, 2015 and 2019. The ozone experiment was previously 160 

described by Yendrek et al. (2017), along with hyperspectral reflectance, gas exchange, and 161 

biochemical data from the ozone experiments. The nitrogen experiment was designed with 162 

management practices of different nitrogen fertilization amounts (0, 50, 100, 150, 200 and 250 163 

pounds per acre), time (planting, V6, and V10 stages) and approaches (middle-row injection and 164 

in-row dribble). The ozone and nitrogen fertilization experiments provided test cases to evaluate 165 

the approaches to retrieve photosynthetic traits from leaf-clip spectra, and further to identify the 166 

relationship among leaf Vmax, nitrogen, and Chl. 167 

 168 

Leaf reflectance spectra (500 - 2400 nm) were acquired from the central section of the leaf adaxial 169 

surface using ASD FieldSpec 4 Standard Res full-range spectroradiometers (Analytical Spectral 170 

Devices Inc., Colorado, the USA) equipped with an illuminated leaf-clip contact probe. A/Ci 171 

curves were measured with LI-COR 6400 and 6800 portable photosynthesis systems (LI-COR Inc., 172 

Nebraska, the USA) after measurements of leaf-clip reflectance. The A/Ci measurements were 173 

conducted with the leaf positioned in the chamber with air humidity of 55% and leaf temperature 174 

close to the ambient conditions (25-32 °C). The leaf adaxial side was placed facing the light source 175 

with an intensity of 2000 µmolꞏm-2ꞏs-1. For each A/Ci curve, the ambient CO2 concentrations were 176 

set to the sequences of 400, 50, 100, 150, 250, 350, 500, 700, 900, and 1200 ppm. To ensure the 177 

accuracy of measured Vmax from gas-exchange measurements, we have tested the reproducibility 178 

of LiCOR machines in our experiments. This study followed the Yendrek et al. (2017) protocol to 179 

use the horizontal asymptote of a four-parameter non-rectangular hyperbolic function to process 180 

the measured A/Ci curves to estimate Vmax. Furthermore, we collected Vmax measurements of the 181 
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same leaves with different leaf temperatures to quantify the Vmax temperature response curve using 182 

the Q10 formula and temperature inhibition curves (Leuning, 2002). By using the fitted 183 

temperature response curve of maize, Vmax measurements of this study were standardized to the 184 

reference temperature. 25°C is a commonly used reference temperature to normalize the 185 

temperature impacts on Vmax. However, this study selected 27 °C as the reference temperature due 186 

to the following reasons. 60% of the field Vmax measurements were collected at 27 °C and using 187 

Vmax,27 could reduce uncertainties of temperature normalization. Furthermore, as 27 °C is close to 188 

ambient temperature in the peak growing season of our study site, using Vmax,27 agrees with our 189 

desire to estimate biochemical limitations to photosynthesis close to growth temperature. 190 

Additionally, with the measured temperature correction curve of Fig. S3, all Vmax,27 relationships 191 

of this study can be converted to Vmax,25 (Vmax,25 = 0.875Vmax,27).  192 

 193 

After A/Ci measurements, leaf tissues were sampled using a cork borer and stored in liquid 194 

nitrogen. The wet laboratory experiments were conducted to measure Chl content and nitrogen 195 

concentration of leaf samples. For Chl, one leaf disc (approximately 1.4 cm2) was incubated in 96% 196 

(v/v) ethanol to determine Chl content using the equations of Lichtenthaler and Wellburn (1983). 197 

Three leaf discs were dried in an oven (60 °C) for three weeks to determine leaf dry mass. An 198 

analytical balance (ME204TE/00, Mettler Toledo Inc., Ohio, the USA) was used to measure the 199 

dry matter weight per area (Cdm, g cm-2) of leaf samples. The dried leaf tissues were ground to a 200 

fine powder and combusted with oxygen in an elemental analyzer (Costech 4010, Costech 201 

Analytical Technologies Inc., California, the USA). The nitrogen per mass (Nmass, %) was 202 

determined by comparing experimental samples with an acetanilide standard curve. In total, we 203 

collected 460 leaf spectra, 297 leaf Vmax measurements, 177 leaf Chl measurements, 350 leaf Nmass 204 

and Cdm measurements. Raw data and experiment sources of these measurements can be found in 205 

the supplementary Dataset S1. A correlation matrix among the measured photosynthetic traits of 206 

Vmax,27, Chl, Nmass, and nitrogen per area (Narea, Nmass× Cdm, mg cm-2), was calculated to 207 

characterize their relationships. 208 

 209 

2.2 Models to predict traits from leaf spectra 210 

2.2.1 Radiative transfer modeling 211 



9 

The PROSPECT models (Jacquemoud and Baret, 1990) were employed in this study to simulate 212 

leaf hemispherical reflectance over the optical domain from 400 to 2500 nm to retrieve the 213 

photosynthetic traits Chl and nitrogen. PROSPECT-D can utilize leaf reflectance to estimate 214 

multiple traits, e.g. leaf structure parameter (N), leaf Chl content (Chl, µg/cm2), equivalent water 215 

thickness (Cw, cm), leaf mass per area (Cdm, g/cm2), and the senescent (brown) materials (Féret 216 

et al., 2017). The PROSPECT-DyN model was utilized to incorporate protein, cellulose, and lignin 217 

by recalibrating spectral absorption coefficients (Wang et al., 2015, 2018b). As leaf protein 218 

strongly linearly correlates with nitrogen (Yeoh and Wee, 1994), estimated protein content was 219 

converted to the nitrogen content. PROSPECT was developed to simulate the hemispherical 220 

reflectance of leaves, but the leaf-clip reflectance collected in this study was conical. To convert 221 

the conical reflectance to the hemispherical, the COSINE model (Jay et al., 2016) was 222 

implemented with PROSPECT models. Detailed information about the parameters of these three 223 

models can be found in Table 1. 224 

 225 

The retrieval of foliar traits was conducted through a numerical inversion of RTMs by minimizing 226 

the root mean square deviation (RMSD) between the measured leaf-clip and simulated reflectance. 227 

The numerical optimization procedure used the same constrained Powell's line-search method as 228 

Féret et al. (2017). As nitrogen is sensitive to the shortwave infrared, a two-step retrieval following 229 

Wang et al. (2015) was performed. The first step was to use the entire optical domain 500-2400 230 

nm to invert the leaf structural parameter (N) and Chl content (Chl). Then we applied the shortwave 231 

infrared domain 2100-2300 nm to invert PROSPECT-DyN to estimate the protein content (Cp), 232 

which was further converted to nitrogen content using the ratio of 4.43 (Wang et al., 2018b). 233 

 234 

2.2.2 Partial Least Squares Regression (PLSR) 235 

The PLSR approach has been widely applied to process hyperspectral reflectance with high 236 

collinearity. PLSR can minimize predictor variables to a few orthogonal latent components (Geladi 237 

and Kowalski, 1986; Wold et al., 2001). In this study, we selected PLSR to develop models to 238 

predict photosynthetic traits (i.e. Chl, nitrogen, and Vmax) from the measured leaf spectra. We 239 

conducted four-fold cross-validation to split the collected spectra and traits into training and testing. 240 

In each training data set, the model between leaf spectra and traits was developed. Then this model 241 

was tested using the independent testing data set. The uncertainty analysis of the PLSR models 242 
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was conducted by splitting the training dataset via 100 permutations and generating the new model 243 

coefficients following Meerdink et al. (2016). Then we used the ensemble mean of PLSR models 244 

to predict the photosynthetic traits. By doing so, we obtained both predictive values and 245 

uncertainties for traits. Notably, the leaf reflectance from 500 to 2400 nm was utilized to develop 246 

the PLSR models between spectra and Vmax or Chl. However, as nitrogen is well known to be 247 

linked to the shortwave infrared (Curran, 1988; Serbin et al., 2014; Yendrek et al., 2017), we used 248 

leaf reflectance of 1500-2400 nm to generate PLSR models to predict nitrogen. To avoid 249 

overfitting between spectra and foliar traits, we optimized the number of PLSR components by 250 

minimizing the prediction residual sum of squares (PRESS) statistic (e.g. Meerdink et al., 2016). 251 

PRESS of successive model components was calculated through a cross-validation analysis. We 252 

selected model components corresponding to the minimum PRESS statistic until successive PLSR 253 

components did not significantly increase the model predictive accuracy (Serbin et al., 2014).  254 

 255 

2.2.3 Generalized Partial Least Squares Regression (gPLSR) 256 

The generation of PLSR models requires sufficient measured traits to be collected for modeling 257 

training, which could limit the applicability of PLSR in a fast and operational manner. To deal 258 

with such limitations, we tested the pre-trained gPLSR models (Wang et al., 2020) to predict leaf 259 

Chl and nitrogen. The gPLSR models were generated from a database of leaf spectra and traits of 260 

40 species (including maize) across NEON field sites in the Eastern U.S (data available from 261 

doi:10.21232/e2jt-5209 and model code at ecosml.org). The pre-trained gPLSR model has 262 

advantages of free calibration and only requires leaf spectra data to predict foliar traits. In this 263 

study, we tested whether such gPLSR models can be applied to agricultural sites with different 264 

environmental conditions and sampling time.  265 

 266 

2.3 Model application and evaluation 267 

Our workflow to compare the predictive ability of RTMs, PLSR, and gPLSR to estimate leaf Chl, 268 

nitrogen, and Vmax is illustrated in Fig. 1. We evaluated the performance of the PLSR, gPLSR, and 269 

RTMs to estimate leaf Chl and nitrogen. Then we conducted a comparison of various approaches 270 

to estimate Vmax. The first approach utilized the leaf Chl or nitrogen to develop the linear regression 271 

models to estimate Vmax. We conducted four-fold cross-validation to evaluate the performance of 272 

these linear regression models. Then we tested the accuracy of using the leaf reflectance data to 273 
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develop a PLSR model to estimate Vmax. We also applied RTMs and gPLSR to estimate various 274 

leaf traits. Then through these estimated ten traits (N, Chl, Car, Ant, Cs, Cw, Cdm, B, Nmass and 275 

Ccl), we developed the trait-based PLSR model to predict Vmax. Furthermore, as Chl and Nmass are 276 

two commonly used variables to proxy Vmax, we also compared the performance of using only Chl, 277 

Nmass, and their multiplication to predict Vmax. We used the comparison of spectra-based and trait-278 

based PLSR models to identify the accurate and robust approaches to estimate Vmax.  279 

 280 

To comprehensively evaluate the estimated crop traits from leaf spectra, the Taylor diagram 281 

(Taylor, 2001) was used to present these three complementary statistics with a triangle-cosine-law 282 

relationship: the Pearson correlation coefficient (r), normalized standard deviation (NSTD, as Eq. 283 

1), and normalized unbiased root-mean-square deviation (NubRMSD, Eq. 2). The radial distance 284 

stands for the NSTD and the angle in the polar plot represents r. The reference point on the X-axis 285 

with r=1, NSTD=1 and NubRMSD=0 refers to the observation. The distance from the simulation 286 

point to the reference point represents NubRMSD of simulations and stands for the integrated 287 

performance for the simulation. The closer distance from simulation points to the reference point 288 

indicates better simulation performance. 289 

௦௜௠ܦܶܵܰ ൌ  ௢௕௦                                                                                                 Eq. (1) 290ܦܶܵ/௦௜௠ܦܶܵ

௢௕௦,௦௜௠ܦܵܯܴܾݑܰ
ଶ ൌ ௢௕௦ܦܶܵܰ

ଶ ൅ ௦௜௠ܦܶܵܰ
ଶ െ ௦௜௠ܦ௢௕௦ܰܵܶܦ2ܰܵܶ ݏ݋ܿ  ௢௕௦,௦௜௠                  Eq. (2) 291ݎ

Where sim and obs represent the simulation results and the observations, respectively. N is the 292 

total number, with the subscript i representing the number i of simulations or observations. ݎ௢௕௦,௦௜௠ 293 

refers to the correlation coefficient between simulations and observations and NSTD is the 294 

normalized standard deviation. 295 

2.4 Analysis of spectral signatures on predicting traits 296 

To identify the contribution of spectral wavelengths to the prediction of Chl, nitrogen and Vmax, 297 

both physical model and statistical method based sensitivity approach were applied. Through the 298 

comparison of these two approaches, this study can get a comprehensive understanding of the 299 

relationship between spectra wavelengths and the prediction of leaf traits. 300 

 301 
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In the physical model based approach, we conducted a global sensitivity analysis of the 302 

PROSPECT-DyN-COSINE using the Sobol method (Sobol, 2001; Saltelli et al., 2004), which is 303 

based on analysis of variance decomposition to calculate the sensitivity of coupled inputs. The 304 

Sobol analysis can quantify the contribution of model parameters (leaf traits) to the wavelengths 305 

of leaf reflectance. The first order Sobol sensitivity quantifies the independent contribution from 306 

each input to the output variables, while the second-order sensitivity quantifies interactions 307 

between every two inputs to the output variable. The Sobol analysis is sensitive to the configuration 308 

of the model parameter range and distribution. As this study focused on the maize photosynthetic 309 

traits, we utilized the collected 460 leaf spectra to invert RTMs to obtain the parameter distribution. 310 

Then, the kernel density sampling method was applied to generate the input data for sensitivity 311 

analysis. The kernel density sampling method has the advantage of resembling the distribution of 312 

the sampled dataset (Wang et al., 2018a). According to the kernel density distribution of model 313 

parameters, 20,000 samples were generated to assess the sensitivity of simulated leaf spectra to 314 

traits. Additionally, to our best knowledge, this study is the first one to integrate PROSPECT-DyN 315 

and COSINE for the retrieval of foliar traits. Such sensitivity analysis can also give insights into 316 

evaluating the impacts of incorporating COSINE for reflectance simulation.  317 

 318 

In the statistical approaches, the PLSR loading, coefficients, and Variable Influence on the 319 

Projection (VIP) scores (Wold et al., 2001) were computed. The wavelengths with high absolute 320 

values of loading, coefficients, and VIP scores indicate a high contribution to the leaf trait 321 

prediction. The similarity and difference of the model loadings, coefficients and VIP scores of the 322 

PLSR models to predict Chl, Nmass, and Vmax were compared to explore the spectral linkage among 323 

these key photosynthetic traits. Notably, this study did not employ RTMs to directly predict Vmax. 324 

The sensitivity of spectral wavelength to Vmax prediction focused on the PLSR approach. In 325 

addition, we also analyzed the PLSR loading of using these estimated ten traits (N, Chl, Car, Ant, 326 

Cs, Cw, Cdm, B, Nmass and Ccl) to predict Vmax. The VIP scores and loading analysis can show the 327 

linkages of these ten traits to Vmax. 328 
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3.   Results 329 

3.1 Measured leaf spectra and photosynthetic traits 330 

The measured leaf spectra (Fig. 2a) followed a general pattern of low reflectance in the visible 331 

region (500-700 nm), high reflectance in the near-infrared region (700-1300 nm) and two water 332 

absorption features in the shortwave infrared region (1300-2400 nm). The coefficient of variation 333 

(CV) of the spectral data (Fig. 2b) indicated that the visible, red edge (700-750 nm), and shortwave 334 

infrared regions, which are strongly linked to leaf pigments and biochemical traits, have greater 335 

variability compared to the near-infrared, which reflects the structural parameters of leaves (e.g. 336 

leaf thickness and dry matter content).  337 

 338 

After Vmax was standardized to 27 °C using the fitting temperature response curve in Fig S2 (Vmax,25 339 

= 0.875Vmax,27), the measured leaf biochemical and photosynthetic traits, Chl, Nmass, Narea, and 340 

Vmax,27, were all highly correlated (Fig. 3). Nonetheless, there were differences in the strength of 341 

trait correlations. Among all pairs, Chl and Narea had the highest linear correlation (r = 0.89), and 342 

this high correlation indicated that maize tended to allocate leaf total nitrogen to Chl at a relatively 343 

constant rate. Both Chl and Nmass were highly correlated with Vmax,27 (r = 0.77 and 0.75, 344 

respectively), confirming previous findings that Vmax,27 of maize is highly correlated with Chl 345 

(Houborg et al., 2013; Croft et al., 2017) and Nmass (Yendrek et al., 2017). The large variabilities 346 

of measured photosynthetic traits can serve a robust dataset for testing the model performance to 347 

predict traits. 348 

 349 

3.2 Predicted photosynthetic traits from leaf spectra 350 

The results of comparing RTM, PLSR and gPLSR (Fig. 1) to estimate leaf photosynthetic traits 351 

are shown in the Taylor Diagram (Fig. 4). For leaf Chl, PLSR achieved the highest r of around 352 

0.95, lowest NubRMSD of about 0.33, and NSTD close to 1. The RTM approach also achieved 353 

high performance with r around 0.95 and NubRMSD around 0.45. The gPLSR approach can obtain 354 

good performance with r of 0.88 and NubRMSD of 0.48. For Nmass, the PLSR method showed the 355 

highest r of around 0.96 and NubRMSD of 0.28. The gPLSR approach can also obtain a relatively 356 

good prediction of nitrogen with r of about 0.85 and NubRMSD of 0.56. The predictive power of 357 

the RTM (PROSPECT-DyN-COSINE) was weaker with r of around 0.60. Detailed scatterplots of 358 

predicting Chl and Nmass are illustrated in Fig. S4.  359 
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 360 

For Vmax,27 predictions, the best performance was achieved by the spectra based PLSR model with 361 

r of 0.81, NubRMSD of around 0.61, and NSTD close to 1. The trait-based PLSR model utilizing 362 

ten spectra based traits (N, Chl, Car, Ant, Cs, Cw, Cdm, B, Nmass and Ccl) to predict Vmax,27 also 363 

demonstrated a good predictive skill with r of about 0.72 and NubRMSD of 0.70. These two PLSR 364 

models showed better performance than the linear regression models based on either Chl or Nmass. 365 

The linear regression models based on Chl or Nmass achieved similar and moderate prediction 366 

performance with r of around 0.6. However, the predictive performance of the linear model 367 

significantly improved by using Chl*Nmass. The linear regression model between Chl*Nmass and 368 

Vmax can achieve r of around 0.71 and NubRMSD of 0.70, which is close to the performance of 369 

the trait-based model (Fig. S5). This result indicates that Chl and Nmass play a major role in the 370 

prediction of Vmax,27 in the trait-based PLSR model.  371 

 372 

3.3 Contribution of spectral signatures on predicting traits 373 

In the RTM based spectra contribution analysis, this study retrieved parameter distribution (Fig. 374 

S3) from the collected 460 leaf spectra. Then, the global sensitivity analysis results of PROSPECT-375 

COSINE and PROSPECT-DyN-COSINE for the case of simulating maize leaf-clip reflectance 376 

were conducted as Fig. 5. In the visible region, pigments including Chl, Car, Ant, and Cs 377 

contributed to the reflectance variation (Fig. 5a), with red edge and green wavelengths (500-750 378 

nm) influenced primarily by Chl. The leaf structural parameter N, which indicates the leaf 379 

thickness, and dry matter content (protein, cellulose and lignin in PROSPECT-DyN, Fig. 5b) 380 

contributed to the variability of reflectance in near-infrared and shortwave infrared regions that 381 

was not explained by B. In particular, the shortwave infrared 1500-1900 nm and 2000-2400 nm 382 

are the main wavelengths exhibiting the nitrogen signal (Cp on Fig. 5b). The parameter B 383 

representing the bidirectional reflectance factor of leaves showed a significant contribution to the 384 

spectral variability across visible, near-infrared and shortwave infrared, especially in blue and red 385 

wavelengths and the water absorption feature around 1900 nm. This high contribution indicated 386 

the importance of considering the bidirectional effects of leaf reflectance collected from a handheld 387 

leaf-clip spectroradiometer (Li et al., 2019). In general, from the model-based contribution 388 

analysis, the visible information (500-750 nm) has strong implications for Chl estimation, while 389 

the shortwave infrared bands (1500-1900 and 2000-2400 nm) are important for nitrogen prediction.  390 
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 391 

In the statistical analysis, the VIP scores, loading, and coefficients of the spectra based PLSR 392 

models were compared to analyze the similarity and difference of using spectra to predict Vmax,27, 393 

Chl and Nmass (Fig. 6 a-c). In general, the visible wavelengths associated with green reflectance 394 

and red absorption (550 and 710 nm) contributed most significantly to the prediction of Chl, while 395 

the SWIR wavelengths in the 1700-1900 nm and 2100-2200 nm SWIR regions were most 396 

important to the prediction of nitrogen. These findings also agree with the model-based sensitivity 397 

analysis (Fig. 5) and confirm the robust performance of RTMs. The shaded grey regions in Fig. 6 398 

correspond to the high absolute values of VIP scores for predicting Vmax,27. In the visible part of 399 

the spectrum (500 - 750 nm), the VIP scores, loadings, and coefficients of Vmax,27 and Chl were 400 

very similar. Specifically, the green and red edge (550 and 710 nm) largely contributed to the 401 

prediction of Vmax,27. In the shortwave infrared region, the patterns of VIP scores, loadings, and 402 

coefficients for Vmax,27 were close to those for Nmass. The PLSR models of Vmax,27 and Nmass shared 403 

key wavelengths such as 1590, 1830, 1910, 2030 and 2110 nm. These results indicate that the 404 

spectra signals of Chl and Nmass have complementary contributions to the prediction of Vmax,27. 405 

However, notably, there are also unique wavelengths such as 1500 nm, 2200 nm, and 2300 nm 406 

contributing to the prediction of Vmax,27 that are not strongly related to Chl or Nmass.  407 

 408 

Similar to the analysis of spectra-based PLSR models, the VIP scores and loading of the trait-409 

based PLSR model also supported the findings on the large contribution of Chl and Nmass to Vmax,27 410 

predictions. In the VIP scores of trait-based PLSR model (Fig. 7a), Chl and Nmass were the two 411 

strongest contributors to the prediction of Vmax,27. The analysis of the components 1 and 2 of PLSR 412 

loading (Fig. 7b) showed that Chl largely contributed to the first component of PLSR loading. 413 

Nmass had a contribution to the first component but also provided unique information in the second 414 

component. This analysis indicated that Chl and Nmass had shared but also unique contributions to 415 

the prediction of Vmax,27. In the VIP scores for the trait-based PLSR model, Car and Cw showed a 416 

high contribution to the model prediction following Chl and Nmass. This contribution was likely 417 

due to the high correlation between Chl and Car (Kopsell et al., 2004). Under drought conditions, 418 

low water availability can alter nitrogen uptake and thus results in a high correlation between leaf 419 

water content and Vmax (Camino et al., 2019). 420 
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4.    Discussion 421 

We provided a comprehensive evaluation of spectroscopy methods to retrieve Chl, Nmass, and Vmax. 422 

These analyses could be helpful for the model selection to estimate leaf photosynthetic traits in 423 

high-throughput crop monitoring. First, for pre-trained approaches, the PROSPECT-D coupled 424 

with the COSINE model showed a strong ability to predict Chl, while gPLSR predicted leaf 425 

nitrogen better. With field measurements for model training, PLSR showed the best performance 426 

to predict foliar traits. Second, the spectra-based or trait-based PLSR models can provide accurate 427 

and effective means to predict Vmax. We also found that Chl and Nmass, which are strongly linked 428 

to visible and shortwave infrared signals respectively, showed shared and unique contributions to 429 

the prediction of Vmax. Measurement and model uncertainties, implications on RTM and PLSR 430 

model selection, and mechanisms of controlling Vmax based on these results are further discussed.  431 

 432 

4.1 Uncertainty for photosynthetic capacity prediction 433 

Compared with Chl and Nmass prediction, achieving high accuracy to predict Vmax through 434 

spectroscopy has more challenges. These challenges are partially due to the limited amount and 435 

weak absorption features of Rubisco enzyme. Furthermore, uncertainties in field Vmax 436 

measurements and models may also contribute to the performance of Vmax prediction.  437 

 438 

This study used commercial gas exchange systems to obtain the A/Ci curves to fit the horizontal 439 

asymptote of a four-parameter non-rectangular hyperbolic function (Yendrek et al., 2017) to 440 

quantify Vmax. However, gas leakage, chamber edge effects, and lateral flux through leaf air space 441 

could bring uncertainties for A/Ci curves, when operating systems in fields (Long and Bernacchi, 442 

2003). In addition, the Rubisco capacity Vmax derived from gas-exchange measurements is not 443 

always equal to the amount of Rubisco protein present (Crafts-Brandner & Salvucci, 2000). 444 

However, this study carefully screened all A/Ci curves to exclude the bad fitting of measurement 445 

curves as Kauwe et al. (2016). As multiple machines were employed, we have also tested the 446 

reproducibility of machines to ensure similar A-Ci curves obtained from different machines for 447 

the same leaf. Furthermore, our Vmax measurements are comparable to estimates reported in 448 

previous studies (Houborg et al., 2013; Yendrek et al., 2017; Miner and Bauerle et al., 2019). All 449 

these strategies ensure the high accuracy of the measured Vmax data for this study. 450 

 451 
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To diagnose the performance of spectra-Vmax,27 model, we further analyzed the relationships 452 

between model prediction residuals with leaf conditions, environmental stressors, experiment year, 453 

and genotypes (Fig. 8). The comparison between model residuals and leaf Vmax,27 (Fig. 8a) show 454 

model overestimation of Vmax,27 when leaf Vmax,27 is low, while the model underestimates Vmax,27 455 

when leaves have high Vmax,27. We also found the model residuals exhibit dependence on O3 456 

treatment (Fig. 8b), which indicates that O3 can alter the leaf spectra and traits relationship 457 

(Yendrek et al., 2017). Similarly, the spectra-trait model also shows a large difference when 458 

applying to different genotypes (Fig. 8d). However, we did not find a significant difference for 459 

model performances in different year data (Fig. 8c), which demonstrates the transferability of 460 

PLSR models for plants across growth stages (Wang et al., 2019).    461 

 462 

4.2 Selection of physically-based and data-driven approaches 463 

RTMs are developed based on physically based radiative transfer processes and thus have high 464 

accuracy to utilize the observed leaf spectra to accurately predict traits with strong absorption 465 

features, such as pigments. For instance, this study demonstrated the high accuracy of 466 

PROSPECT-COSINE to estimate Chl (r = 0.94) in maize. Compared to pigments, protein has 467 

relatively weaker absorption features in shortwave infrared and RTM showed moderate accuracy 468 

to estimate Nmass (Fig. 4). Data-driven methods such as PLSR have the advantage of exploiting 469 

spectral signatures to link reflectance with in-situ measurements to accurately predict traits such 470 

as Nmass (r = 0.96). However, the development of PLSR models requires collecting a large data set 471 

of foliar traits for model training, and models may not be applicable outside the conditions of in-472 

situ collections. In practical applications, the pre-trained gPLSR models, which can be 473 

implemented without field measured traits, have high flexibility and accuracy to predict traits such 474 

as Nmass (r  = 0.85). 475 

 476 

Regarding Vmax prediction, the spectra-based PLSR model in this study achieved the highest 477 

accuracy (r = 0.81). The trait-based PLSR model achieved slightly worse but still reasonably good 478 

performance (r = 0.72). The integration of Chl and Nmass can also achieve good predictive 479 

performance (r = 0.71). For leaf scale applications, the spectra based models show great potential. 480 

However, such leaf spectra models have challenges to be directly applied to the canopy scale, as 481 

spectra vary significantly across leaf and canopy scales. The upscaling of reflectance from leaf to 482 
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canopy is also highly nonlinear, due to light scattering throughout the canopy profile, sensor 483 

viewing angles, solar radiation angles, fraction of sunlit and shaded leaves (Verhoef, 1984). The 484 

upscaling of Vmax from leaf to canopy is also highly nonlinear, but the process is influenced by 485 

nitrogen allocation throughout the canopy profile and within leaves (Wright and Hammer, 1994; 486 

Evans and Clarke, 2019). Thus, the leaf scale spectra-Vmax relationship could be hardly used to 487 

the canopy spectra, as different mechanisms involved in the upscaling of spectra and Vmax from 488 

leaf to canopy.  489 

 490 

To predict Vmax across leaf, canopy, regional, or global scales, the trait-based Vmax model has more 491 

flexibility (Houborg et al., 2013; Luo et al., 2019). For instance, Houborg et al. (2013) showed that 492 

using the leaf Chl-Vmax relationship along with satellite-derived chlorophyll content, the 493 

community land model achieved an improved estimation of canopy GPP. Similarly, Luo et al. 494 

(2019) applied such leaf Chl-Vmax relationship to the global scale to derive terrestrial 495 

photosynthesis. In these studies, leaf traits were retrieved from the canopy reflectance through 496 

RTMs (Jacquemoud et al., 2009) and then the trait-Vmax relationship were applied to derive 497 

photosynthetic capacity.  498 

 499 

4.3 Foliar nitrogen allocation and photosynthetic capacity prediction 500 

Photosynthesis requires a large number of proteins, e.g., Rubisco and light-harvesting complex, 501 

which account for 69-75% of the nitrogen in leaves (Makino and Osmond, 1991; Onoda et al., 502 

2017). Around 25-31% nitrogen is allocated to the non-photosynthetic components such as cell 503 

walls, mitochondria, peroxisomes, and the cytosol, as shown in Fig. 9 (Mu et al., 2016; Evans and 504 

Clarke, 2019). The nitrogen allocation to Rubisco and other components show strong variability 505 

depending on species, growth stages and environmental conditions (Evans and Clarke, 2019). For 506 

instance, Onoda et al. (2017) found that when leaves increased leaf dry mass per area, the fraction 507 

of leaf nitrogen allocated to Rubisco declined to compensate for the increased allocation to the cell 508 

wall materials. Due to the greater photosynthetic rate per unit leaf nitrogen in young leaves, Vmax 509 

showed strong variations with leaf ages (Albert et al., 2018; Wu et al., 2019). The proportion of 510 

photosynthetic proteins in maize showed large variations with treatments of nitrogen fertilizers 511 

(Mu et al., 2016). Understanding leaf nitrogen allocation is important for Vmax prediction. 512 

 513 
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The proposed approach in this study (Fig. 9), which estimates Chl and total nitrogen through the 514 

visible and shortwave infrared spectra respectively, can integrate Chl and nitrogen information to 515 

infer nitrogen allocation to predict Vmax. Compared to the remote sensing approaches utilizing 516 

either Chl or total nitrogen to approximate Vmax (Houborg et al., 2013; Dechant et al., 2017), this 517 

proposed approach has greater potential for Vmax retrieval. For instance, chlorophyll deficit 518 

tobaccos have a much lower Chl-to-Vmax ratio than normal species (Meacham-Hensold et al., 519 

2019). Using a universal Chl and Vmax relationship may underestimate Vmax in such species. 520 

However, with additional nitrogen information, the prediction of Vmax could be improved. 521 

Likewise, use of total nitrogen to predict Vmax may result in low correlations for species such as 522 

soybean (Koester et al., 2016) due to excessive nitrogen storage. The additional information of 523 

Chl could thus be vital to improving the prediction of soybean Vmax. Moreover, the sensing 524 

techniques provide estimates of the pool sizes for leaf nitrogen components, e.g., Chl or total 525 

nitrogen. To further constrain Vmax prediction, the optimality theories on plant resource allocation 526 

(Smith et al., 2019) can be leveraged to combine with the retrieved nitrogen components from 527 

sensing techniques. For natural ecosystems or nitrogen deficit crops, plants tend to maximize 528 

carbon gains with improving nitrogen allocation among leaf nitrogen pools (Quebbeman and 529 

Ramirez, 2016). With such information about nitrogen allocation, the prediction of Vmax could be 530 

further improved. Towards operational prediction of Vmax from hyperspectral reflectance with less 531 

dependency on model training, the integration of RTM derived Chl and gPLSR derived Nmass to 532 

develop the generalized model for Vmax prediction shows great potential. 533 

5.    Conclusion 534 

The accurate, fast, nondestructive, and cost-effective approaches to estimate photosynthetic traits, 535 

such as CO2-saturated photosynthesis rate (Vmax), chlorophyll, and nitrogen, are highly needed for 536 

crop monitoring. This study comprehensively evaluated radiative transfer models (RTMs), partial 537 

least-squares regression (PLSR), and generalized PLSR (gPLSR) to retrieve photosynthetic traits 538 

from leaf-clip reflectance collected in diverse maize plots with different genotypes, growth stages, 539 

treatments of nitrogen fertilizers and ozone pollution in three growing seasons. This study led to 540 

the following conclusions: (i) Both pre-trained RTM and gPLSR methods have great potential to 541 

estimate photosynthetic traits. RTMs can achieve a high performance to retrieve foliar pigments 542 

such as chlorophyll content (r = 0.95). gPLSR can be used to estimate foliar nitrogen concentration 543 
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(r = 0.85). (ii) With model training, PLSR methods can exploit leaf reflectance in conjunction with 544 

field samples to achieve high accuracy to predict traits. The PLSR models based on spectra (r = 545 

0.81) or the spectra retrieved traits (r = 0.72) can provide good predictions of Vmax. In particular, 546 

the trait-based Vmax model has the ability to be applied across spatial scales, i.e. using either leaf 547 

or canopy level data. (iii) We found that leaf chlorophyll content and nitrogen concentration 548 

showed complementary contributions to the prediction of Vmax. The integration of leaf chlorophyll 549 

and total nitrogen information, which indicates leaf chlorophyll nitrogen and total nitrogen pool 550 

sizes respectively, can significantly improve Vmax prediction (r = 0.71) than that using only 551 

chlorophyll or nitrogen. The information on nitrogen allocation among nitrogen pools is vital for 552 

Vmax predictions.  553 

 554 

This study provided new insights into improving Vmax prediction by sensing both chlorophyll and 555 

nitrogen for maize. Such approaches could also be applied to other crops, e.g. perennial bioenergy 556 

C4 grasses. Further, applying estimated photosynthetic traits from such approaches into the 557 

terrestrial ecosystem models could significantly improve the ability to predict crop yields and 558 

carbon cycles. Leveraging the advanced imaging spectroscopy approaches on towers, unmanned 559 

or manned airborne systems, or satellites such as PRISMA (launched in 2019), HISUI (launched 560 

in 2019), EnMAP (expected launch in 2021), and NASA SBG and ESA CHIME (expected 561 

launches in late 2020s), we can extend the leaf retrieval to the canopy and regional scale for high-562 

throughput and large-scale agricultural monitoring to improve food and bioenergy production. 563 

 564 

Supplementary data 565 

Supplementary data are available at JXB online. 566 

 567 

Fig. S1. Overview of the study site.  568 

Fig. S2. Fitted Vmax temperature correction curve for Maize.  569 

Fig. S3. Retrieved distribution of the PRO-COSINE and PRODyN-COSINE parameters from the 570 

measured 470 maize leaf reflectance.  571 

Fig. S4. Scatterplots of predicting (a-c) leaf chlorophyll content and (d-f) nitrogen concentration 572 

from leaf-clip reflectance.  573 
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Fig. S5. Scatterplots of predicting Vmax from leaf spectra or spectra based traits.  574 

Dataset S1. Measured leaf traits, measured reflectance, and generated spectra-trait PLSR models. 575 
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Table 800 

 801 

Table 1 Model parameters and their typical ranges for PROSPECT-D, PROSPECT-DyN and 802 

COSINE leaf radiative transfer models.  803 

Model Parameter Description and unit 
Typical 
range 

PROSPECT-D 

N Leaf structure parameter [unitless] 0 – 5 

Chl Chlorophyll content [µg cm-2] 0 – 100 
Car Carotenoids content [µg cm-2] 0 – 60 

Ant Anthocyanin content [µg cm-2] 0 – 5 

Cs Senescent (brown) materials [unitless] 0 – 5 

Cw Leaf water thickness [cm] 0 – 0.1 

Cdm Dry matter content [g cm-2] 0 – 0.02 

PROSPECT-
DyN 

Cp Protein content [g cm-2] 0 – 0.02 
Ccl Cellulose and lignin content [g cm-2] 0 – 0.02 

COSINE 

θs Sensor view angle [°] 0 – 180 

θi Light incident angle [°] 0 – 90 

B 
Specular term to account for the bidirectional 

reflectance factor [unitless] 
-0.2 – 0.6 

  804 
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Figure legends 805 

 806 

Fig. 1. Comparison of approaches to estimate leaf chlorophyll, nitrogen, and Vmax,27. PLSR: 807 

partial-least-squares regression; gPLSR: generalized PLSR; RTM: radiative transfer model; LR: 808 

linear regression. Chl: leaf chlorophyll content; Vmax,27: leaf maximum carboxylation rate 809 

standardized to 27 °C; N: leaf thickness parameter; Car: carotenoids; Ant: anthocyanins; Cs: 810 

senescent material fraction; Cw: leaf water content; Cdm: leaf dry matter content; B: the parameter 811 

to account for the leaf bidirectional reflectance; Ccl: leaf cellulose and lignin content; The dashed 812 

line indicates that methods require model training, while the solid lines are calibration-free 813 

approaches. This study compared three approaches to retrieve leaf chlorophyll and total nitrogen 814 

content, and four approaches to retrieve leaf Vmax,27. This figure is available in colour at JXB online. 815 

 816 

 817 

Fig. 2. Mean, maximum, minimum, standard deviation, and coefficient of variation (CV) of the 818 

measured leaf reflectance for maize. This figure is available in colour at JXB online. 819 

 820 
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 821 

Fig. 3. Correlation matrix for measured leaf photosynthetic traits. Vmax,27: the carboxylation rate 822 

at 27 °C (µmol m-2s-1); Chl: leaf chlorophyll content (μg/cm2); Nmass: leaf nitrogen per mass (%); 823 

Narea: leaf nitrogen per area (mg/cm2). The statistics in plots refer to the Pearson correlation 824 

coefficients.  825 

 826 
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 827 

Fig. 4. Taylor diagram to present the performance of estimating leaf chlorophyll, nitrogen and 828 

Vmax. The pentagrams represent PLSR and LR (linear regression) methods. The diamonds are the 829 

RTM approaches, which refer to the PROSPECT-COSINE and PROSPECT-DyN-COSINE. The 830 

squares indicate the gPLSR method. The markers with the green color represent chlorophyll 831 

related predictions. The markers with the blue color are nitrogen related predictions. The markers 832 

with the red edge indicate Vmax related predictions. The radial coordinate represents the normalized 833 

standard deviation, which is equal to 1 for the observations. The angular coordinate indicates the 834 

correlation coefficient, which refers to 1 for the observations. The concentric green dashed semi-835 

circles represent the normalized unbiased RMSD. In the Taylor diagram, the closer points to the 836 

observation point refer to higher predictive ability for the models. This figure is available in colour 837 

at JXB online. 838 

 839 
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 840 

Fig. 5. Global sensitivity analysis of radiative transfer models. (a) PROSPECT-COSINE (b) 841 

PROSPECT-DyN-COSINE. In the legend, the variables N, Chl, Car, Ant, Cs, Cw, Cdm, Cp, Ccl, 842 

B and Interactions refer to leaf thickness structure parameter, chlorophyll, carotenoids, 843 

anthocyanin, senescent materials, water content, dry matter content, protein, cellulose and lignin, 844 

leaf bidirectional reflectance factors, and interactions for the parameter sensitivities, respectively. 845 

This figure is available in colour at JXB online. 846 
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 848 

Fig. 6. (a) VIP scores, (b) loading and (c) coefficients of the spectra based PLSR model for Vmax,27, 849 

chlorophyll, and nitrogen predictions. The orange curve shows leaf Vmax,27 predictions. The green 850 

curve refers to the leaf chlorophyll content prediction. The blue curve represents leaf nitrogen per 851 

mass predictions. The shaded grey region indicates the key wavelengths for Vmax,27 predictions. 852 

This figure is available in colour at JXB online. 853 

 854 
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 855 

Fig. 7. (a) VIP scores and (b) loading components 1 and 2 of the trait-based PLSR model for the 856 

Vmax,27 prediction. The traits N, Chl, Car, Ant, Cs, Cw, Cdm, B, Nmass and Ccl refer to leaf thickness 857 

structure parameter, chlorophyll, carotenoids, anthocyanin, senescent materials, water content, dry 858 

matter content, leaf bidirectional reflectance factor, nitrogen per mass, and cellulose and lignin 859 

content, respectively. These foliar traits are from calibration-free approaches. The estimated Nmass 860 

is from gPLSR, due to its high accuracy. Other traits are from RTMs. 861 

 862 

 863 
Fig. 8. Analysis of the performance of spectra-Vmax,27 model by (a) leaf condition, (b) 864 

environmental stressor, (c) experiment year, and (d) genotype. 865 

 866 
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 867 

Fig. 9. Methodology to integrate the visible and infrared hyperspectral reflectance to quantify 868 

nitrogen allocation to estimate Vmax. The inner and outer circles refer to the typical nitrogen 869 

allocation in C3 leaves and C4 leaves, respectively. The data of nitrogen allocation for C3 and C4 870 

leaves are from Evans and Clarke (2019) and Mu et al. (2016), respectively. Notably, the allocation 871 

rates vary with environmental conditions, species and growth stages. LHC refers to nitrogen in the 872 

light-harvesting complex. Rubisco represents nitrogen in the Rubisco protein. Other stands for 873 

nitrogen in other photosynthetic proteins. NP means non-photosynthetic proteins, e.g. cell wall, 874 

mitochondria, and cytosol. This figure is available in colour at JXB online. 875 


