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Background/Overview

Common Acronyms

MPA = Miniature Photovoltaic Array

CDU = Capacitive Discharge Unit

HV = High Voltage

LD = Diode Laser

FS = Firing Set
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Objective 

1. Control the HV output state of the CDU

2. Model the optically powered firing set (electrical, thermal, 
optical)

3. Minimize temperature of MPA and LD

4. Adjustment of HV output state
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Requirements

The system shall regulate the output voltage to a predetermined 
level of 1500 V with 3% regulation ripple (1525 V– 1475 V) and a 
rise time of less then 5 seconds.  

The system shall have the ability to adjust the output voltage 
level.

The system shall regulate for a minimum of 5 seconds and a 
maximum of 30 seconds.  

The system shall minimize thermal heating of the MPA during 
regulation.

The system shall minimize thermal heating of the 3 W fiber 
coupled laser diode during regulation. 

The number of electrical and mechanical components shall be 
minimized. 
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General Firing Set 

What is a firing set?

• Deliver high power signal to a 
detonator

• 3 Types 

1. Electrical

1. CDU

2. Cable Discharge

2. Optical 

1. Optically Coupled 

2. Laser Ignition 

3. Laser Initiation 

3. Explosive

1. Ferroelectric 

2. Slim loop Ferroelectric

3. Ferromagnetic

4. Compressed Magnetic Field

• Initiate detonator in a safe and 
reliable manner only when intended  
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Electrical Firing Sets with CDU 

Components

1. HV Voltage Converter

1. DC-to-DC

1. Flyback converters

2. Push-pull converters

2. AC-to-DC 

2. CDU

1. HV capacitor

2. Resistor

3. HV switch  

2

2

1
CVE 
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Optically Powered Firing Set

• Power source is the light   
energy from the diode laser

• High voltage converter is 
replace by the MPA. 

• Power source is electrically 
isolated from CDU

• Enhanced Safety

Iout
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CDU Components

Mass

MPA = 0.45g

Small Flyback

XFMR = 1.21g

Small Cap = 11.54g
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Optically Powered Firing Set 
Experimental Setup
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Electrical Modeling – Current Source

• ILX Lightwave LDX-3565 
Precision Current Source

• 0 – 6 A

• Modulation Transfer function 

• Transfer function accuracy ±10%

V

mA
600
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Electrical Modeling 
Semiconductor Physics

1. Background 

• Schrödinger’s equation describes the motion of a particle 

• Solving it we can find the wave functions and energy levels of the 
system. 

2. Each material has a distinct bandgap structure 

• When bonds between atoms are formed to make a semiconductor, the 
uppermost energy levels of atoms each broaden into bands of levels.   
These bands are a collection of different electron energy levels.  

• Bands in red dominate the

electrical properties of the

semiconductor 

t
iV

m 


 

 2
2

2

Conduction Band

Valance Band

Eg
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Electrical Modeling 
Semiconductor Physics

1. How are the bands filled? 

2. Semiconductor band structure 

• Valance band is almost completely filled 

• Conduction is almost empty 

• For analysis of practical laser operation we will assume single 
band for conduction and valance bands

Metals Semiconductor Insulator

Valance Band

Conduction Band
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Electrical Modeling
Semiconductor Physics

Electronic Transitions and interactions with light

1. Spontaneous Emission

2. Absorption 

3. Stimulated Emission
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Electrical Modeling 
Semiconductor Physics

1. Spontaneous Emission

• Recombination of electron-hole = emission of photon 

• LED

• Emission random in direction, phase, time 

• Need hole at E1 and electron at E2 simultaneously 

• Transition rate is product of electron density at E2 and E1 

• Simplified when emission happens in undoped active 
region

 ),(1)(),()( 1122 TEfEDTEfEADRsp 

Fermi Function –
probability that they are 

occupied by electrons

Density of 
electronic states

BNRsp
2 Bimolecular recombination 

coefficient
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Electrical Modeling 
Semiconductor Physics

2. Absorption 

• Photon absorbed in semiconductor material 

• Stimulates generation of an electron to the 

conduction band and leaving hole in valance band

• 3 particle process 

• Transition rate is product of three densities

  )(),()(),(1)( 11221212 wTEfEDTEfEDBR 

Density of non-occupied 
states in conduction band Density of photons
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Electrical Modeling 
Semiconductor Physics

3. Stimulated Emission

• Photon disturbs the system and stimulates the 
recombination of an electron and hole. 

• New photon is generated with same phase and 
direction of incident photon

• Net of 2 photons – called “optical amplification” 

• Transition rate product of three densities from 3 
particles

  )(),()(),(1)( 22112121 wTEfEDTEfEDBR 
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Electrical Modeling 
Semiconductor Physics

1. Non-radiative transitions

• Recombination at point defects, surfaces, and 
interfaces in active region

• Auger recombination: electron to hole 
recombination energy is transferred to an electron 
in the form of kinetic energy

• Total effect 

ANRnr 1

3
2 CNRnr 

3CNANRnr 
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Electrical Modeling – Diode Laser
General Info

• 3 Watt Jenoptik & Unique Mode 

• 808 nm

• Fiber coupled 

• 3 W at 4.3 A 

• Broad area edge-emitting
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Electrical Modeling – Diode Laser
Operation

Laser Diode Operation 

1. Forward bias → Emission of photons (Stimulated Emission)

2. Optical Waveguide and resonator 
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Electrical Modeling – Diode Laser
Rate Equation Beginnings

• Reservoir model will be 
used   

• Time variations in N and Np.

• N = carrier density 

• Np= photon density

• Arrows represent number of 
particles flowing per unit time

• Rate equations can be made 
by setting the time rate of 
change to equal rates going 
into minus rates leaving 
reservoir  

R
2
1
V

R
1

2
V
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Electrical Modeling – Diode Laser
Rate Equation

1. Carrier rate equation (single 
mode model)

• No carrier leakage (Rl)

• ηi = injection efficiency

• V = volume of carrier reservoir

• Approximations R
2

1
V

R
1

2
V

VRRVRR
q

I

dt

dN
V nrsp

ini )()( 1221 
















str

s
og

ini

NN

NN
gv

N

qV

I

dt

dN
ln





 


N
CNANBNRR nrsp  32)(

pg

pg

p

pg

p

p

NgvRR
Nv

RR

dt

dN

Nvdz

dN

N
g 


 )(

)(11
2121

1221

Carrier Decay 
Process 















str

s
o

NN

NN
gg ln



May 8, 2009

Electrical Modeling – Diode Laser
Rate Equation

2. Photon rate equation

• Divide out volumes 

• Approximations  
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Electrical Modeling – Diode Laser
Final Rate Equation

Total Model 
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Electrical Modeling – MPA
General Info

Miniature Photovoltaic Array

• Series connected silicon 
photovoltaic array 

• Built at Sandia National 
Laboratories’ Microelectronics 
Development Lab (MDL)

• Use Silicon-On-Insulator (SOI) 
technology

How does it work?  

• Current is generated when 
illuminated by light source

x 2400 

1 Cell
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Electrical Modeling – MPA
General Info

• Uses the principle of absorption to generate current

• Minority Carrier Device 

• Metal Grid structure is used to provide pathway for electrons
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Electrical Modeling – MPA
Operation

1. Device is illuminated

2. High current / Low 
voltage

3. Low current / High 
voltage
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Electrical Modeling – MPA
Characteristic Equation

1. Single Exponential Model of p-n

junction - single cell

• Shockley ideal diode equation 

• Output equation


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
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
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d
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Electrical Modeling – MPA
Characteristic Equation

2. Double Exponential Model of p-n

junction - single cell (backup) 

• Provides better current voltage 
characteristics of solar cells 

• Output Equation
21 DDLOUT IIII 
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Electrical Modeling – MPA
Characteristic Equation

• Series Connection of multiple cells

• 2400 individual cells on 5 mm device

• All connected in series 

• Assumptions 

– Identical diode junctions

– All cells are uniformly illuminated

– Single exponential model

• Output Equation 
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Electrical Modeling – MPA
Characteristic Equation & Temperature Effects

Increasing Tpv : 
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Electrical Modeling – HV CDU
General Info

• MPA provides Iout

• Capacitor stores 
energy 

• Resistors are for 
monitoring and 
bleeding

• Switch used to high 
energy to detonator  

Iout
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99.9M
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100k

R3

100M

R4

100M

R5

100M

Switch

Detonator

Trigger Signal

Vhv(1000:1) Vref
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Electrical Modeling – HV CDU
Transfer Function

• HV switch and detonator are not modeled

• Frequency domain – Laplace Transform 
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Thermal Modeling 
Heat Rate Equations

1. Heat transfer is flow of thermal energy (q) in a medium or 
between media when thermal difference is present

2. Three Modes 

1. Conduction 

2. Convection

3. Radiation
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Thermal Modeling 
Heat Rate Equations - Conduction

• Fourier’s Law for heat flux

• Heat rate (W)

dx

dT
kq x 

Thermal 
conductivity 

(W/m*K)
L

TT ss 1,2, 

A

q
q x

x   T
L

kA

dx

dT
kAqcond  2,1, ss TTT 
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Thermal Modeling 
Heat Rate Equations - Convection

• Newton’s law of cooling for heat flux

• Heat rate (W) 

)( ambs TThq 

)( ambsconv TThAq 

Convection heat 
transfer coefficient 

(W/m2*K) Ts > Tamb

h - coefficient 

• surface geometry 

• Fluid thermodynamic &     
transport properties 

• Fluid motion
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Thermal Modeling 
Heat Rate Equations - Radiation

• All objects radiate energy in the 
form of electromagnetic waves

• 0.1 to 100 um wavelength 
(Thermal radiation) relevant 

• Emitted or incident radiation

• Net rate

• Linearize  

)( 4
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4
2 TTTTq  

4
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emitted energy absorbed energy

)( 12 TTAhq rrad 

))(( 2
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2
212 TTTThr  
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Thermal Modeling 
Heat Rate Equations - Simplification

• Lump thermal properties together as thermal 
resistance/conductance A
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Thermal Modeling 
Heat Rate Equations – Nodal Analysis

• First Law of Thermodynamics 
(Law of Conservation of Energy)

 stEinE

outE

gE stE

goutinst EEEE  

• Energy storage rate due to temperature change

• Energy rate into control volume

• Energy rate out control volume

• Energy generation rate in control volume 
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Thermal Modeling – Diode Laser

Iin
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Thermal Modeling – Diode Laser

Nodal Analysis: 

q
co

n
v

q
co

n
d

q
ra

d,
op

tic
al

Assumptions:

1. Temperature at (t) in material 
is uniform 

2. 1-D heat transfer

3. Constant material properties 

4. T0 = T∞
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Thermal Modeling – Diode Laser: Node 1
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Thermal Modeling – Diode Laser: Node 2
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Thermal Modeling – Diode Laser: Final Equation
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Thermal Modeling – MPA

0.400” square
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Thermal Modeling – MPA

N
o
d
e

 2

Assumptions:

1. Temperature at (t) in 
material is uniform 

2. 1-D heat transfer

3. Constant material properties 

4. T0 = T∞

* Process is similar to diode laser 
thermal model 
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Thermal Modeling – MPA: Node-1
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Thermal Modeling – MPA: Node-2
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Thermal Modeling – MPA: Final Equation
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Model Verification Process

1. Calculate/estimate equation parameters

• based on previous work, educated guesses, calculations from 
experimental data

2. Solve ODE’s with MATLAB

• m-files were created for each component

• Check for basic output response characteristics

3. Create a block for each component in Simulink

• s-functions used

• Created subsystem for each component

• Created menu for component parameters

4. Simulate blocks and compare to experimental data 

• Adjust unknown parameters to fit experimental data 
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Model Verification Process – Creating Blocks in 
Simulink
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Electrical Model Verification – Diode Laser
Fundamental PI response 

• Experimental Data

• JOLD-3-BAFC-11 S/N#: 
EK-08211

• 53 input current levels

• Scientech AC 2501H 
Power Head  

• Simulated Data 

• 53 input current levels 

• Solver: Ode23s 

• 1 second for each 
simulation

• Results

• 97 mW at 2700 mA (5.6% 
error)
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Electrical Model Verification – Diode Laser
Ramp Input response
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• Experimental Data

• JOLD-3-BAFC-11 S/N#: 
EK-08211

• 800mA injected current

• det210 photodiode

• Simulated Data 

• Estimated input current 
from measured output 
current  

• Results

• Rise time match 
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Electrical Model Verification – MPA
Experimental Data 

1. Active optical alignment

• Entire semi-circular area 
of active cells need 
illumination 

• Provide maximum 
illumination current

2. Non-illuminated curve  

• Check for correct 
operation 

• Illuminated curve is just  
shifted
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Electrical Model Verification – MPA
Calculation and Estimation of Parameters

• Could develop equations from p-n 
junction physics for each 
parameter that is a function of 
semiconductor material constants 
and manufacturing variables  

• Most semiconductor constants 
vary with production spread 

• Curve fitting is therefore used to 
determine these parameters

Parameter Description
Initial 
value

Final Tuned 
Value

Final Tuned Value with 
Temperature included in 

model 
Units 

Io
Reverse 

Saturation 
Current

2.57E-11 1.59E-11 NA A

n
Diode Quality 

Factor
1.864 1.94 0.7 none

Rp
Parallel 

Resistance
7.85E+07 1.00E+09 1.00E+09 Ω
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Electrical Model Verification – MPA
Calculation and Estimation of Parameters

Illumination current 

• function of input optical 
power

• experimental data was 
taken at different 
illumination powers

• R2 = 0.9985

• It is dependant on 
uniformity of illumination 

• Variation of temperature not 
conducted 
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Electrical Model Verification – MPA
Simulated vs. Experimental Data

• Experimental Data

• Tektronix 370B curve 
tracer

• AC sweeping used

• Simulated Data

• Input ramp signal 0 to 
1800 V

• Model followed trend of 
experimental data
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* Further verification was 
conducted when connected to CDU
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Electrical Model Verification – CDU
Experimental Setup

• PWB was designed to hold 
MPA and bleeder resistors

• HV capacitor, HV switch, 
and detonator mounted on a 
strip line cable



May 8, 2009

Electrical Model Verification – CDU
Experimental Data

• Experimental Data of the 
HV CDU subsystem could 
not be obtained

• MPA was added as the 
current source

• 38 different levels of 
optical illumination were 
injected 
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Electrical Model Verification – CDU
Experimental vs. Simulated Data
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• Charge time is a function 
of illuminated input power, 
capacitance, and resistance

• At 2.96 W CDU will charge 
to 1560 V in 1.7 seconds

• At input optical power 
below 1.22 W will take more 
than 20 seconds to reach 
1500V 
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Electrical Model Verification – CDU
Experimental vs. Simulated Data
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Thermal Model Verification – Diode Laser
Experimental Setup
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Thermal Model Verification – Diode Laser
Experimental Data

• Experimental Data 

• 11 input current values 
for 200 seconds

• Temperature data was 
gathered at 1 second 
sampling rate
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Thermal Model Verification – Diode Laser
Calculation and Estimation of Parameters

• Cable resistance
• Measured on calibrated digital 

ohmmeter

0.134 Ω

• Thermal Conductance for 
Node 1

• Three additional parameters 
cannot be experimentally 
calculated – used initial values 
from [2]
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Parameter Description Initial value Final Tuned Value Units 

λ1,cond
thermal conductance between 

laser and substrate
0.292 0.36 W/K

λ2,cond

thermal conductance between 

substrate and heat sink 
0.192 0.34 W/K

Cld
thermal capacitance of laser 

[C] 
0.1396 0.3 J/K

Cs
thermal capacitance of 

substrate [C]
0.1819 0.5 J/K
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Thermal Model Verification – Diode Laser
Simulated vs. Experimental Data
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Thermal Model Verification – Diode Laser
Simulated vs. Experimental Data

• Results

• Diode Laser Temperature

– 1.8 K at 800 mA

• Substrate Temperature

– 0.9 K at 4300 mA

• Heating curve matches 
well

• Cooling curve 

– Possibly due to 
assumptions in thermal 
equation
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Thermal Model Verification – MPA
Experimental Setup

• 11 different optical power levels 
were used 

• Fine wire thermocouples were 
used

• Input levels above 2.75 W saw 
excessive heating

• At 2.96 W – MPA reached 435 K 
(324.41 F) after 100 seconds

Tpv

Tsub
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Thermal Model Verification – MPA
Experimental Data

• MPA was illuminated 
between 200 and 100 
seconds

• No steady state condition 
due to testing geometry 
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Thermal Model Verification – MPA
Calculation and Estimation of Parameters

Reflectivity Rmat(λ) of device

• Dependant on wavelength

• Cary spectrophotometer was used 
to measure reflectance

• 810 um – 30.92% reflection

• Parameter related to efficiency of 
device 

thermal
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Thermal Model Verification – MPA
Calculation and Estimation of Parameters

• Thermal Conductance for 
Node 1

• Three additional parameters 
cannot be experimentally 
calculated – used initial values 
from [2]
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Parameter Description Initial value Final Tuned Value Units 

λa,cond

thermal conductance between  

MPA die and metalized 

substrate

0.0571 0.058 W/K

λb,cond

thermal conductance between 

metalized substrate and 

package 

0.0471 0.029 W/K

Cpv
thermal capacitance of MPA 

die 
0.1396 0.11 J/K

Csub
thermal capacitance of 

substrate
0.1819 0.2 J/K
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Thermal Model Verification – MPA
Simulated vs. Experimental Data
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Thermal Model Verification – MPA
Simulated vs. Experimental Data
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Control Solution
Optical Powered Firing Set

• nonlinear ODE’s 
were not linearized
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Control Solution - Optical Powered FS 
Simulated open loop response 

• Experimental data 
showed that at 2100 mA 
injected to diode laser 
would provide an output 
of about 1510 V  

• Plant was simulated with 
3.5 V (2100 mA)

• Varied Rp and input 
voltage but requirements 
could not be met
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Control Solution
Closed loop feedback

• Keep output state 
at desired level 

• output voltage will 
be feedback signal

• PID controller was 
chosen 
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Control Solution
Proportional-plus-Integral-plus-Derivative (PID) 

Controller

• Chosen for easy 
implementation on a 
nonlinear plant

• Adjusts both 
transient and steady-
state response

• Three tunable 
parameters – Kp, Kd, 
Ki

sK
s

K
KsC d

i
p )(

Rise time Settling Time Overshoot

Kp Reduces Slight Increase Increase Reduces Degrade

Ki Slight Reduction Increase Increase Large Reduction Degrade

Kd Slight Reduction Reduces Reduces Very slight change Improve

Transient Response

In
creasin

g

Steady-State Error Stability 
PID 

Tuning

PID Transfer 
function



May 8, 2009

Control Solution
PID Implementation
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Control Solution
PID Implementation – Simulated Data

• PID parameters used to 
meet requirements

Kp = 2.1887

Ki = 0.7178

Kd = 0
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Final System 

Response

Rise Time 5 2.633 3.7

Settling Time NA 9.61 4.778

Max Regulation 

Votlage 
1525 1574* 1525

Min Regulation 

Voltage
1475 1485 1475

Max Diode Laser 

Temperature
Minimize 308.2 303.7

Max MPA 

Temperature
Minimize 333.2 304.8

Adjustable Output Desired No* Yes

* did not meet requirements
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Control Solution
PID Implementation – Simulated Data
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Control Solution
PID Implementation – Simulated Data
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Control Solution
Simulated Data w/ Disturbances

• Worse case with 0.5 V 
noise signal 

• Noise is usually 10’s mV
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Control Solution
On-Off Control – Experimental Setup

• one of the simplest controllers

• added hysteresis 

• embedded code controls GPIO 
connected to voltage controlled 
voltage source 

uprocessor board 

MC56F8322

voltage controlled 
voltage source

0
0

max

min
{ 

 eifu
eifuu

e

u

u(max) = 7.2 V

u(min) = 0 V
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Control Solution
On-Off Control – Experimental Data
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Control Solution
On-Off Control – Experimental Data
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Control Solution
On-Off Control – Simulation Data
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Conclusion & Recommendations

1. Develop accurate models 

2. Analyze and understand experimental data for model validation 

3. Create flexible models

4. Linearize non-linear systems

5. Add temperature effects to diode laser

6. Refine MPA model

7. Check effect of illumination wavelength and efficiency
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