
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Preparing for exascale computing: Software
technologies for more efficient utilization

of extreme­scale machines

Pacific Northwest National Laboratory
2009­04­28

Curtis Janssen
Sandia National Laboratories

Livermore, CA

SAND2009-2561P

The nature of computing hardware is changing

•Moore's Law continues to
apply: the transistor count is
doubling every two years

•Many have assumed a
corollary: that single processor
performance would improve
due to improvements in clock
rates and instruction level
parallelism.

•This is no longer true.

The performance of the world's fastest
machines doubles about every year

•Many problem domains will benefit from extreme levels of computing. Some
examples are:
–Materials: Understanding and rational design of nanomaterials with desired

chemical optical, mechanical, and electronic properties
–Climate: Multi­physics, high­fidelity (cloud resolving) earth model
–Biology: Modeling coupled genomic, proteomic, metabolomic networks

•Target is to have exascale computing available before 2018

–There are many obstacles to
continuing a straight line
trajectory, but work is underway
to overcome these obstacles.

– In any case, we can expect
dramatic gains in the amount of
available computing power

Exascale

Challenges for designers of high performance
applications will be particularly acute

•Applications must expose much more parallelism
–They must utilize a 3 order of magnitude increase in computing power

• Little if any of this gain will be due to faster cores—it will be through having more
cores

–Computing power gains will continue to outstrip latency and bandwidth gains
• Multiple hardware thread contexts are being implemented to hide memory latency.

–Result is that 4 to 5 additional orders of magnitude of parallelism will have to be
exposed.

•Can we assume the machine is homogeneous?
–Some cores might be throttled if they are running too hot, etc.

•Can we assume the machine is reliable?
–More components reduces MTBF
–Smaller feature sizes make chips more susceptible to failure
–Driving down power consumption increases failure rate
–MTBF is approaching the time to checkpoint a machine

•There are many projects that address elements of these problems, DARPA
HPCS, for example, but, ultimately, we will be forced to change the way we
use large scale machines, and we do not yet know how

• The Common Component Architecture (CCA) and its use in quantum
chemistry applications

• Exposing more parallelism in quantum chemistry applications:
Moving beyond the MPI and hybrid MPI/Multithreaded programming model

• SST/macro: a macroscale discrete event simulator for predicting application
performance on large­scale parallel machines

This talk will give an overview of work in three
areas that could help manage complex software

and hardware environments

The Common Component Architecture (CCA) and its
use in quantum chemistry applications

Steve Benson
Jason Sarich
Lois Curfman McInnes

David Bernholdt
Ricky Kendall

Yuri Alexeev
Manojkumar Krishnan
Elizabeth Jurrus
Carl Fahlstrom
Jarek Nieplocha

Joe Kenny
Curtis Janssen
Ida Nielsen
Rob Armstrong
Ben Allan

Theresa Windus
Sasha Sosonkina
Fang Peng
Meng-Shiou Wu
Alexander Geanko
Mark Gordon

Edward Valeev

Gary Kumfert

CCA/Chemistry team members and collaborators:

Scientists as programmers have issues

•Not known for sound software engineering practices
–Simplest approach often used, even if inefficient

• or some use the most efficient approach possible, even if unmaintainable

–Coding practices are often out­dated
• Poor style, little documentation, incomplete testing
• Difficult to convert to modern programming techniques

–Learning curve, poor training, and legacy code are issues.

–Common programming tools that helped make large­scale software efforts such
as GNU/Linux successful are not uniformly utilized:

• minimal use of software configuration management, build systems

•Diverse community of government/academic, noncommercial quantum
chemistry (QC) packages
–Many packages have fallen into the monolithic code trap

• Limits ability to leverage existing software: limits both the quality and capabilities of
what can be done.

– Interaction between QC and other fields even more difficult

•All this is in addition to the complexity to utilize extreme scale machines

How can programmers become more productive?

•Object­oriented methodologies? There are issues:
–Cannot leave out legacy codes
–Even with modern codes, design patterns may be similar but

implementation/language is not. Code bases incompatible at a low level.
–Not a complete solution

•Characteristics of a solution for improving code sharing:
–Must support multiple languages
–Must allow for mostly independent programming in packages using it
–Community must agree on a few well­defined or common elements in the design

that place minimal constraints on each software package
–The Common Component Architecture is designed to satisfy these

requirements.

Illustration of complications in QC:
Chromium hydroxides

•Accurate thermochemical knowledge needed to understand
contamination in industrial settings and pollution

•Experimental data is missing or inconsistent

•Six reactions used to obtain heat of formation for Cr(OH)
n
, n = 2–6 and

CrO(OH)
4
.

Cr(OH)
2
 + Cr → 2 CrOH

Cr(OH)
3
 + 2 Cr → 3 CrOH

Cr(OH)
4
 + 3 Cr → 4 CrOH

Cr(OH)
5
 + CrOH → CrOH

Cr(OH)
6
 → CrO

3
 + 3 H

2
O

CrO(OH)
4
 → CrO

3
 + 2 H

2
O

I'll come back to these two examples later.

High accuracy is hard

•Thousands of hours of CPU time and four quantum chemistry code
suites later ...

•Limited by abilities of each code
–Assumed additive contributions for different effects
–Choice of methods not always optimal

Table from: Nielsen, Allendorf, J. Phys. Chem. A, 110, p4093, 2006

What made this problem so hard?

•Different program suites have different strengths
–Some overlap, but important differences in supported methods
–Different numerical properties
–Different levels of support for various architectures
–Need better ways of interchanging program suites and sharing capabilities

between suites

•Gets even harder when quantum chemistry is a component of multi­
scale, multi­physics computations
–Building applications that rely on multiple application domains is even

more complex
–Need ability to export and import capabilities

Component architectures are
designed to address these problems

•Language neutral interface specification
–Different code teams focus only on the

common interface
–Use SIDL: Scientific Interface definition

language

•Provides a runtime environment
–Can dynamically compose an application

C

C++

f77

f90

Python

Java

Two applications of the
Common Component Architecture

•High­level components for geometry optimization

•Low­level components for integral evaluation

High level components and
their use in geometry optimization

Solver(TAO)
ui+1 = ui + αs …

Coordinate Model
perform transformations

f,g,Hsg,H

User Input

Ui+1

f,g,H

Build
options

Ui+1
(Visualization)

f energy

u cartesian coordinates

u internal coordinates

g gradient in cartesians

g gradient in internals

H Hessian in cartesians

H Hessian in internals

s update in internals

NWChem
Model Factory

GUI

MPQC
Model Factory

Model

Ui+1

Builder
Construct application using framework

builder services

Linear
Algebra

PETSc Linear
Algebra Factory

GA Linear
Algebra Factory

Chemistry Components

Mathematics Components

Infrastructure

SIDL Classes

Examination of the ModelInterface (give it a molecule
and get energies, gradients, etc.)

package Chemistry { package QC { interface ModelInterface {
 void set_molecule(in Chemistry.MoleculeInterface molecule);
 Chemistry.MoleculeInterface get_molecule();
 double get_energy();
 void set_energy_accuracy(in double acc);
 double get_energy_accuracy();
 void set_do_energy(in bool doit);
 array<double,1> get_gradient();
 void set_gradient_accuracy(in double acc);
 double get_gradient_accuracy();
 array<double,2> get_hessian();
 void set_hessian_accuracy(in double acc);
 double get_hessian_accuracy();
 array<double,2> get_guess_hessian();
 void set_guess_hessian_accuracy(in double acc);
 double get_guess_hessian_accuracy();
 int finalize();
 }; }; };

Enabled direct comparison of
various solvers for molecular structures

Number of energy/gradient evaluations required to determine minimum energy structure

Stand-alone
MPQC/NWChem

TAO Solver
Component

30/30—/—33/3330/3027/27Cholesterol (C27H46O)

51/5183/4243/4348/4854/54Acetylsalicylic Acid (C9H8O4)

67/67121/6179/7962/6285/85Phosphoserine (C3H8NO6P)

45/4589/4556/5643/4375/75Isoprene (C5H10)

19/1965/3333/3319/1926/26Glycine (C2H5NO2)

scaled unit0.5*unit0.5*unitscaled unitunitGuess Hessian

yesyesnoyesnoLine Search

TAO/LMVMBFGSBFGSTAO/LMVMBFGSAlgorithm

NWChemNWChemNWChemMPQCMPQCQC Package

+27%

+27%

-11%

+43%

+21%

Integration gave us insights into problems with our solvers ... and a new
solver

Low­level components to
extend capabilities of programs

• Integrals of many operators are at the core of quantum chemistry
programs:

• Integrals programs do not implement all integral types
•Ability to share integrals and combine packages will

–enable implementation of new methods
–permit selection of most efficient package for each machine

•Worst case overhead for using the CCA interface for two electron
integrals is about 5­8%

∫dr1r ∇
22 r 

∫dr1dr21r12r1
1
r12

3r 24r2

∫dr1dr 21r12r1r123r24r2

∫dr1dr 21r12r1[∇ 1
2 , r12]3r24 r2

i r =x i
a y i

b z i
c e−i r−R i

2

Using the integral components
to develop a new method

•Douglas­Kroll allows simple relativistic effect inclusion:

• r
12

 methods allow more rapid wfn convergence

Combination of these methods had not been done
–Even though ideal for high Z core correlation

h1
sf=c  p2c21/2−c2ApV A pB p p⋅V p B pF p p×V pY p p×V p F p

special integral types

MP2-R12
1 =dab

ij aij
abckl

ij R
kl aij

 

special integral type

Missing piece: component to
combine multiple integral packages

Architecture:

•This is an example of where significant functionality gets implemented
into component specific code

NWChem
Integral Evaluator

Factory

Libint
Integral Evaluator

Factory

p.Vp
Eval.

pxVp
Eval.

R12
Eval.

Integral Super
Factory

IntV3
Integral Evaluator

Factory

MPQC MPQC
MP2­R12

Applying this to the
chromium hydroxide example

•Opportunity to combine three corrections in to one:
δ[core] + δ[rel.] + δ[basis] → δ[core+rel.+basis]

(Σ = ­1.79) (Σ = 0.33)

Other work ongoing work with CCA/Chemistry

•Quantum mechanics/molecular mechanics interface & implementation
•Effective Fragment Potential
•General one body operator interfaces (solvation, for example)
•Python programming interface to MPQC/other CCA QC codes

– Implementing an ASE Calculator (currently comparing the CCA approach
to Boost.Python)

• The Common Component Architecture (CCA) and its use in quantum
chemistry applications

• Exposing more parallelism in quantum chemistry applications:
Moving beyond the MPI and hybrid MPI/Multithreaded programming model

• ArchSim: a macro­scale discrete event simulator for predicating application
performance on large­scale parallel machines

Example application: Hartree­Fock theory

•Approximate solution to Schrödinger's equation

•Electrons interact with average field of other electrons, giving rise to a
generalized eigenvalue problem

•Major steps (assuming spin restricted closed shell):

– Integral computation:

–Fock matrix formation:

–Diagonalization:

–Density computation:

H=−
1
2∑i

n

∇ i
2−∑

i

n

∑
a

N qa

r ia
∑

i j

n
1
r ij
∑

ab

N qaqb
rab

F C=S C  C S C T=1

H pq=∫ pr ∇ 2
−∑

a

N atom Z A

r A q rd rS pq=∫ p r q r d r

F pq=H pqPrsG pqrs−
1
2
G prqs

G pqrs=∫ p  r1 q  r1
1
r12

r  r2s  r2d r1d r2

P pq=2 ∑
a

N elec./2

C paC qa

Solved self consistently, since F depends on P

Traditional (imperative) approach for Hartree­Fock

•Programmer specifies where all data resides
•Programmer specifies operations on data
•Typical parallel implementation (but using block cyclic generalized Jacobi
eigensolver with tournament ordering to expose more parallelism):

Form the atomic orbital overlap matrix, S

Form the atomic orbital Fock matrix, F, computing integrals, G, as needed.

Synchronize (barrier or reduce-broadcast) so that F is complete on all nodes

Begin iterative eigensolver

For each set of independent shell pairs

Compute the rotation matrix

Synchronize so rotation matrix is complete on all nodes

Rotate F and S

Synchronize so that F and S are complete on all nodes.

End loop over independent shell pairs

End eigensolver iterations

Data­driven programming approach

• Identify the elementary operations that transform one set of data into another
•All data that is used by an operation is specified as an input to that operation
—global data is not allowed

•Let a runtime system schedule work onto the machine
–The programmer does not explicitly dictate parallelism—it is only necessary to

pick elementary operations that are not too tightly coupled
–Significant bonus: The runtime would have sufficient information to provide fault

tolerance to the running application
–There will be extra communication and scheduling overhead, but potential for

better scalability, better portability, and easier programming could outweigh this

• In the following, small test cases are examined for their parallelization
potential by simulating performance for data­driven execution

Elementary operations for Hartree­Fock
in terms of data dependencies

Two electron integrals formation, G:
Output: G(i,j,k,l) for a tshell quartet

Fock matrix formation, F:
Input: Two electron integrals

and density matrix
Output: Fock matrix elements

for a shell pair

Jacobi transform formation, J:
Input: Fock and overlap matrix elements
Output: Rotation matrix diagonalizing the sub­block

Matrix transformation, R:
Input: Fock or overlap matrix elements and Jacobi

transform
Output: Transformed matrix elements

Note: output has a sequence number that ensures rotations
are done in the correct order. Both J and R must be aware
of sequence number

Hartree­Fock data dependencies

• Computes the diagonal blocks
of the Fock matrix after a single
Jacobi sweep for a three shell
system.

• Certain input data has been
omitted to simplify the graph.

• Operations on the same row
(ovals) can be computed in
parallel

• Some parallelism can be
exploited among operations on
different rows

Comparison of data dependencies
with and without synchronization

With synchronization: Without synchronization:

Synchronization increases the number of data
dependencies. Thus, the overall potential for
parallelization is reduced by synchronizing
operations such as barriers and collectives.

Simulated timings for 16 shells on 8 processors

Summary of data­driven Hartree­Fock work

•Data­driven programming is a natural way to expose parallelism
–Programmer is not concerned with explicit details of parallelization
–Can explore more parallelism more easily than traditional approaches

•Simulated results show that a data­driven approach can improve
performance

•Much more work is needed
–Details of runtime system need to be worked out
–Communication overhead needs to be studied
–Overhead of scheduling algorithms must be considered
–May require extended memory semantics or other architectural extensions to

be efficient

• The Common Component Architecture (CCA) and its use in quantum
chemistry applications

• Exposing more parallelism in quantum chemistry applications:
Moving beyond the MPI and hybrid MPI/Multithreaded programming model

• SST/macro: a macro­scale discrete event simulator for predicating
application performance on large­scale parallel machines

SST/macro: a macroscale simulator for predicating
 performance of large­scale parallel machines

•Current approaches to architecture and application scaling have gaps
–Rough estimates and guidelines are used for architecture specifications
–Problems related to application scaling not addressed until delivery

•Simulation can assist in architecture and algorithm design
–Trade­offs between various algorithm designs can be estimated without access

to hardware or the need to write a complete application
–Can inform procurements as well as the design of machines and algorithms.

•Several simulators exist—why another?
–Current component simulators are isolated artifacts
–Need flexibility to couple together a variety of components into a simulator of the

desired architecture with the appropriate fidelity/cost.
–SST/macro is developed in the context of Sandia's Structural Simulation Toolkit

(SST)—SST has both microscale (clock­level accuracy) and macroscale
components

Institute for Advanced
Architecture and Algorithms (IAA)

•SST is a component of a larger project, the IAA, which is a partnership between
Sandia and Oak Ridge National Laboratories

• IAA seeks to enable extreme­scale computing
– Focused R&D on key impediments to high performance in partnership with industry and academia

– Foster the integrated co­design of architectures and algorithms

– Partner with other agencies industry and academia

– Impact vendor roadmaps

– Deploy prototypes to prove the technologies

• IAA is locus for a community­wide architecture simulation project

Qemu

DRAMSim II

SST/macro project goals

Provide a SST simulation components that:

•Takes into account the communication and computation coupling that
applications exhibit
–Trace files that record an actual application run
–Skeleton applications that mimic application behaviour

•Can run very large simulations
–1,000,000's of cores
–Full multi­physics simulations

•Allow investigation of effects of
–Topology and process placement
–Changes in the routing algorithm
–Changes in the network latency and bandwidth
–Having many cores share the same network interface
– Interactions between different jobs running on the same machine
–Modifications to the MPI layer
–Modifications of the application

SST/macro design

•Event interface is now used: permits integration into the hybrid multi­
scale SST framework.

•Extremely lightweight events: > 150,000 MPI ping pong round trips per
second

SST/macro architecture.
SST/macro performance.

Data no longer fits in 8
MiB L3 cache (Core i7)

Validation of simulator

•Used AMG2006: part of NNSA ASC/Sequoia acceptance tests
and being considered for Zia

•Collected traces with dumpi and played back through
simulator

Sensitivity of AMG2006
to architecture parameters

•Examined simulated time to
solution as bandwidth,
latency, and processors per
node are varied for several
topologies.

Additional information

•Contact info: Curtis Janssen, cljanss@sandia.gov
•MPQC Home Page: http://www.mpqc.org
•Parallel QC background: Parallel Computing in Quantum Chemistry, Janssen
and Nielsen, CRC Press, April 2008

End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

