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Thermal management is highly dependent on the
boundary of two materials
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P Limiting Forms of Resistance
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Time Scales in Transient Thermal Reflectance (TTR)
- Metal Film/Substrate

Free Electrons Absorb Laser Radiation

Ballistic electron transport
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Electrons Transfer Thermal Diffusion . Electron-Phonon
Energy to the Lattice by Hot Electrons ( ©oupling (=2 ps)
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v /
Thermal Equilibrium
v
Thermal Diffusion within Thin Film } Thermal Diffusion (~100 ps)
Thermal Diffusion \

. Thermal Conductance across the } Thermal Boundary (~2 ns)
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Hopkins , Kassebaum, and Norris, 2009, Journal of Applied Physics, 105, 023710.
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Time Scales In TTR - Semiconductors

TIME SCALES FOR THERMALIZATION AND
RELAXATION OF HOT CARRIERS

PROBE HEATING Coherent Regime (<2200 fs)

“PUMP” » momentum scattering
e carrier-carrier scattering
e hole-optical phonon scattering

Nonthermal Regime (<2 ps)

» electron-hole scattering

FILM « electron-optical phonon scattering

Hor Excitation Regime (~ 1~ 100 ps)

j)/%/ // W o carrier-acoustic phonon scattering

e decay of optical phonons

Isothermal Regime (=100 ps)

e carrier recombination

:
Time

Klopf and Norris, 2005, International Journal of Thermophysics, 26, p. 127.

Sandia
6 National
Laboratories



C
s
<

— o .
B o EP Relaxation in Semiconductors

Fe doped InP, 400 nm pump, 750 nm probe
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| Thermal Boundary Conductance

* G, dominant thermal transport
mechanism in nanostructures
with thicknesses less than
carrier mean free path

e Current nanoapplications rely
on controlling phonon
scattering in G,

»
»

Solution surface Solution surface

VA
T Gy= Thermal boundary WY
conductance [WmZK!] AAbOOOOOA

g‘l‘ Si surface Si surface
1 . |
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e ' a) Dry Contact b) Contact using a TIM

Samson et al., 2005, Intel
Technology Journal, 9, 75.
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honon Scattering at Rough Interfaces
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Hopkins, Norris, Stevens, Beechem, and Grahamy, 2008, Journal of Heat Transfer, 13
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Norris and Hopkins, 2009, JHT, 131, 043207.

Ref. 6 — Stevens et al., 2005, JHT, 127, 315.; Ref. 31 — Hopkins et al., 2008, JHT, 130, 022401.
Ref. 41 — Stoner and Maris, 1993, PRB, 48, 16373.; Ref. 50 — Lyeo and Cahill, 2006, PRB, 73, 144301.

When T>0,, Inelastic scattering causes linear trend in G,

DMM predicts constant trend in G,
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P Scattering at Grain Boundaries

Examples of Twist Boundaries Created by
Single Crystal Rotation

*Phonon scattering at
interfaces calculated

*Molecular-dynamics o 4\[010]
simulations [o01] [010]
100]

determine [100]
transmission
coefficients at Kapitza Conductance Computed Using
interfaces 14 Lattice-Dynamics Method
* Thermal '
conductance then 1.2
calculated via lattice-
dynamics or Monte ]
Carlo simulations < 08
£ .
% NI o s o o o o o g
Figures courtesy of E. ‘;;«0'6
Piekos, S. Aubry, 0.4
and S. Shinde —-Kapitza conductance for 6, [111]
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~7 'Phonon Scattering at Boundaries

Differential Thermal Test Structure for Monte Carlo Flux Prediction for

Measuring Phonon Scattering along Boundaries Test Ligaments

«Understand the Effect of Boundary S vy
Scattering on Thermal Transport E "

*Plans to Measure Accomodation
Coefficient Using Differential Hgi
Structure and Confirm via Simulation
Results
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‘ Engineered Thermal Emission

Advanced Modeling, Design, and Fabrication utilizing Sandia’s MESA Facility

Theory Modeling & Design Fabrication & Test
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+erulueru(Re {)k;}mK;fm;(f{”_.u'!?”fm;) @® Integration of Structured
TM\Rnm )CTM \Bp'm I2e Emitters with drive

Submitted to Optics Express: Direct Thermal Emission from a Planar Structured electronics

Emitter:Kirchoff's Law and Generalized Emissivity, P. S. Davids. Sandia
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Exergy Analysis of
Microelectronics Chip Package

Microelectronics Chip Package Junction-to-Ambient Energy and Exergy Flow
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(very high Ry) Journal of Electronic Packaging, 128, 360-369
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on Thermal Transport

\: ' Unanswered Questions

How does roughness and mixing affect electron and
phonon heat transfer at interfaces?

Can we isolate effects of electron and phonon heat
transfer at interfaces?

What are the electron and phonon thermophysical
properties of nanomaterials?

How can we quantify and contronl the effects of
Interfaces on thermal transport?

How do interfaces impact the availability of energy from
microelectronics for harvesting and/or conversion?
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‘ Thermal boundary resistance

*Thermal boundary resistance creates a temperature drop, AT, across an
interface between two different materials when a heat flux is applied.

*First observed by Kapitza for a solid and liquid helium interface in 1941.

g= hBDAT L A typical resistance of

SA 10-9-107 m2K/W

© . .

5 IS equivalent to
Nep = }/R = - 0.15-15 ym S

O ~ 1-100 nm SiO,
= = o
X

Mismatch in materials causes a resistance to heat flow across an interface.
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hermal conduction in bulk materials

. Microscopic picture
Thermal conduction pic P

A
. ar
0z L

g, =—-k—=0¢

@Z A = mean free path [m]
k = thermal conductivity [Wm-1K-1] phonon-phonon scattering length in
d = thermal flux [Wm-?] homogeneous material

What happens if Ais on the order of L?

@ ﬁandia I
ationa
17 Laboratories



2 hermal conduction in nanomaterials

T

A

Microscopic picture of
nanocomposite —

N —
K #.ciive OFf NANOCOMpoOsite does not depend on q: h AT
phonon scattering in the individual materials BD
but on phonon scattering at the interfaces
hg, = thermal boundary

conductance [Wm-2K-1]

Change in material properties gives rise to hgp
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Diffuse scattering

cutoff
2P|

1 : :
0y = EZ [ [Dyjl@)f(@z,thav joq (¢, ], @)cos(p)sin(g)dwdd = hgp AT
e Diffuse Mismatch Model (DMM)

E. T. Swartz and R. O. Pohl, 1989, "Thermal boundary resistance,” Reviews of Modern
Physics, 61, 605-668.

diffuse scattering — phonon “looses memory” when scattered

cutoff
0)1’ i

1 0
[ :ZZG_T le’j(w)f(w,T)hwvl,jaldw
j 0
T > 50 K and realistic interfaces
o Scattering completely diffuse /
« Elastically isotropic materials ~ Averaged propert_ies_in di_fferent
« Single phonon elastic scattering crystallographic directions

\ s this assumption valid?
@
iona
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Single phonon elastic scattering
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Automated Data
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Pulsed Transient ThermoReflectance (UPTTR)
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<120} Increasing mixing

- layer thickness
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DMM predicts a constant hg = 855 MWm-—=K-1

Hopkins, Norris, Stevens, Beechem, and Graham, to appear in the Journal of Heat Transfer, 2008
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Effects of disorder on hgp

e+ I 1 D:
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Effects of disorder on hgp

20— DMM predicts hgy that is
| © Measured data

0 VCDMM calculations almost 8 times larger than
200 that measured on the
samples and no dependence

< Linear trend in measured data .. .

X on mixing layer thickness
£ 150} or composition.

<

=, The VCDMM calculations
Q@MOO- are within 18% of the

Linear trend in VCDMM calculations | measured values and show
the same trend with mixing
509 | 10 | 11 | 12 | 13 | 14 | 15 Iayer thickness as the
measurements.

Mixing layer thickness [nm]
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3w technique
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@ H *Measure thermal conductivity of
T // nanocomposites
H Material 2|
J*_ A ®) «Control temperature of sample and
H y

0‘0’0’0"0‘0‘0’ ! subject samples to large temperature
variations during measurements

B. W. Olson, S. Graham, and K. Chen, Review 'SenSItIVG to anI_SOtrO_pIC are?‘ SUCh _as
of Scientific Instruments 76, 053901 (2005).  Structurally variant interfacial regions
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' 3w technique for hgp

TBR at contact pad-P4
interface
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Hopkins and Phinney, MNHT2008-52293 (2008) Hopkins and Phinney, Submitted to the Journal of Heat Transfer
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UPTTR

1.0 - . - . : .
6 | \.\ s | eMeasure electron-phonon scattering
_ [ c=7oxt0"wm’ | eVary incident laser flux
3 o6} "\\ / 1 *Heat sample to examine effects of
5 " 1 allowable phonon frequencies
E:; 0.4 "'~.“ 1 <Electron-phonon relaxation
' ool / e T, =gy IMeasurements sensitive to interfacial
[ s “71 disorder in ultrathin films
0'%.0 o5 10 15 20

Probe time delay [ps]

Different e-p equilibration
curves for different fluences

Hopkins and Norris, Applied Surface Science, 253,
6289 (2007)
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lectron and Phonon Scattering Effects on Thermal
Transport in Microelectronic Applications

Structural disorder

around device/TIM
Material 2
How does this disorder
effect electron and
phonon thermal
Veteri transport?
Fluxes Exceeding 1 kW!cm2>
Typical CWheat 34 125 500 2000 8000
transmit MMIC die ‘\rWTm2 ‘ ‘\f'WtTm2 ‘ W.*'(Tm2 | W!Tm‘r Wle2
| GaAs | PresentsSiC,GaN |  Projected SiC, GaN L>
[ | | [ [ [
Powerigate 0.5 Wimm 1 Wimm 2 Wimm 4 Wimm 8 W/mm 16 W/mm

Increasing power per unit width & gate pitch density

Smith, A. N. and Calame, J. P., International Journal of Thermophysics, 25, 409 (2004). Sandia
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HEAT ABSORBED
(COLD SIDE)

Ceramic Substrate

P-Type
Semiconductor
Pellets

N-Type
Semiconductor

Pallats Megativa (=)

SiGe
contact layer

200 period,
SiGelsi
superlattice (SL)

!

SiGe/SiGeC
relaxed SL buffer

Thermoelectrics

Cold side

Conducting

Si (001)
substrate

29

ZT = figure of merit

S = Seebeck coefficient
o = electrical conductivity
k = thermal conductivity
T = temperature
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