

High Performance Community Detection in Networks

Jonathan Berry (Sandia Labs)
Cynthia Phillips (Sandia Labs)

SIAM Annual Meeting
July 10, 2009

Outline

- **Community detection in networks**
- **HPC and community detection**
- **A parallel algorithm with accuracy and resolution tolerance**
- **Preliminary results**

Community Detection in Networks

- **Break a network (graph with attributes) into modules**
 - Different from graph partitioning. E.g. $O(n)$ communities, overlaps may be allowed
 - More than 400 recent papers in physics and computer science, **BUT**
 - **There's no canonical theory saying *what's best to do* (let alone the best way to do it)**
- **The state of the art: two diverging approaches**
 1. Modularity maximization and variants (Girvan, Newman 2004)
 2. Generative Models (Clauset, Moore, Newman 200x)

Modularity

$$Q = \sum_s e_{ss} - a_s^2$$

e_{ss} : (directed edges within s)/(all directed edges)

a_s : (directed edges originating in s)/(all directed edges)

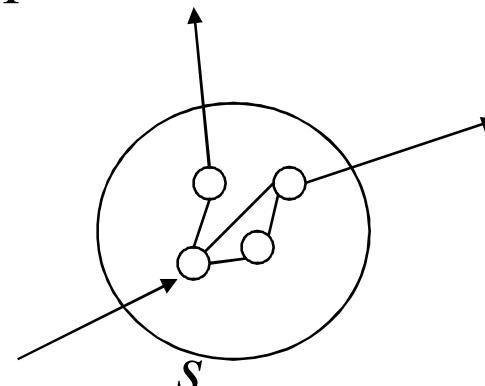
in other words :

e_{ss} quantifies the actual edges within s

a_s^2 quantifies the expected number of edges in a set

of vertices with the same degree sequence as in s

(assuming random wiring)



Modularity Maximization

- Dozens.. Hundreds(?).. of papers propose ways to maximize modularity or one of its variants
- Here are some things we (the community detection community) know about modularity maximization
 - *It's NP-hard* (but greedy heuristics do ok)
 - *Succeeding doesn't necessarily mean that you've found something useful*
 - Many real-life networks have nodes that belong to many communities (e.g., Leskovec, et al. 2008)
 - The “**resolution limit**” says that a global maximum solution for large networks will have communities that have too many nodes (Fortunato, Barthelemy 2007)
 - But it's the most familiar way to evaluate the quality of a community assignment

Generative Models

- **What if being a “community” doesn’t mean being tightly connected?**
 - Newman, Leicht (2007) example: classify English words by part of speech
 - Determine what a community “is” as the search for communities progresses
- **Clauset, Moore, Newman (Nature, 2008) give a “generative model” that**
 - Infers hierarchical community structure from data
 - Does this by searching a space of tree models of hierarchical community structure via a likelihood function
 - Benefits: accuracy
 - Challenges: scalability

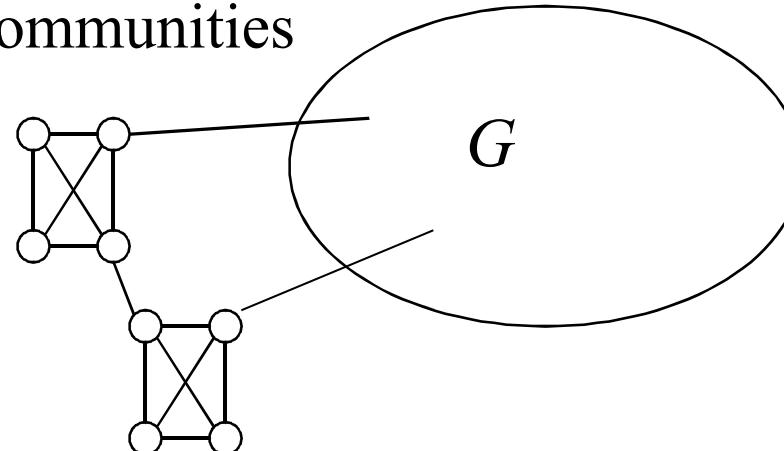
HPC and Community Detection

- What algorithms could be made to scale on HPC?
 - Subquadratic algorithms (e.g.) for modularity maximization
 - *ClausetNewmanMoore (CNM)* is a **bottom-up** approach that scales as $O(m \log^2 n)$, with priority queues as the kernel data struct.
 - *HQcut* (Ruan and Zhang, 2008) is a **top-down** approach that combines spectral methods with modularity-specific heuristics (also $O(m \log^2 n)$)
 - *Facility Location* via the “Volume algorithm” (Barahona, Anbil 2000) (empirical runtime similar to CNM)
 - For generative models: scalability work is in its infancy

CNM

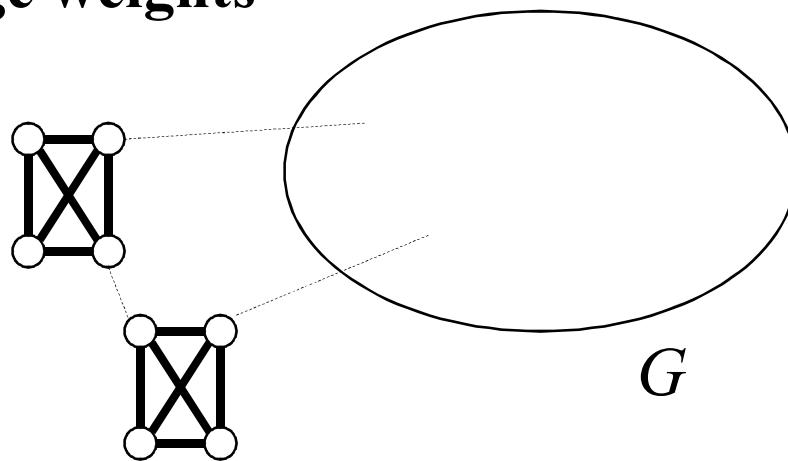
1. Start with every vertex in its own community
2. Find the merger of two communities with best delta Q
3. Do the merge if this is a positive change, then goto 2 (else quit)

- Since this maximizes modularity, it suffers from a *resolution limit*:
 - If G is large enough, these two cliques are not resolved as separate communities



Our Idea

1. Observe that the mathematics behind the resolution limit argument permits a relaxation of the limit if the edges are *weighted* appropriately
2. Define such a weighting by finding *neighborhood coherence*
3. Adapt CNM (with no change to its runtime complexity) to leverage weights

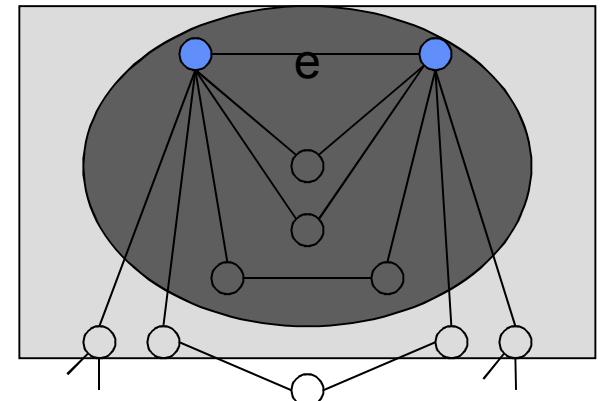


Berry, Hendrickson, LaViolette, Phillips

“Tolerating the Community Detection Resolution Limit with Edge Weighting” (arXiv 2008)

Neighborhood Coherence

- Assumption: communities are more tightly connected than non-communities
- We'd really like to compute the 2-neighborhood of each node (in parallel), but that's too expensive
- Solution: “edge 1-neighborhood” of an edge (*the light gray rectangle*)
- From that we distinguish “good” edges (*the dark gray oval*)

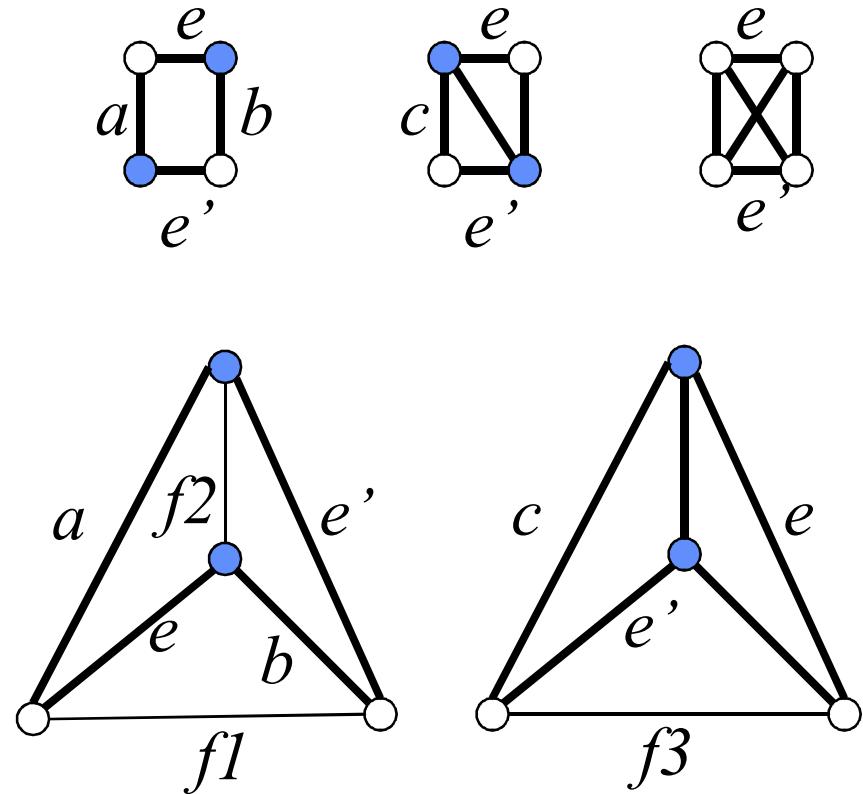


Parallel Algorithms

- **For this talk, we'll limit ourselves to this neighborhood computation**
 - *We can compute an approximation to the gray rectangle and oval for each edge in parallel*
 - We can use the weights in several ways
 - E.g. Helping CNM overcome resolution limit
 - E.g. assigning opening costs for facility location approach
- **The computation reduces to:**
 - Finding triangles (3-cyles)
 - Finding rectangles (4-cycles)
 - We'll describe a parallel algorithm for this and give some results for the Cray XMT

Some Terminology

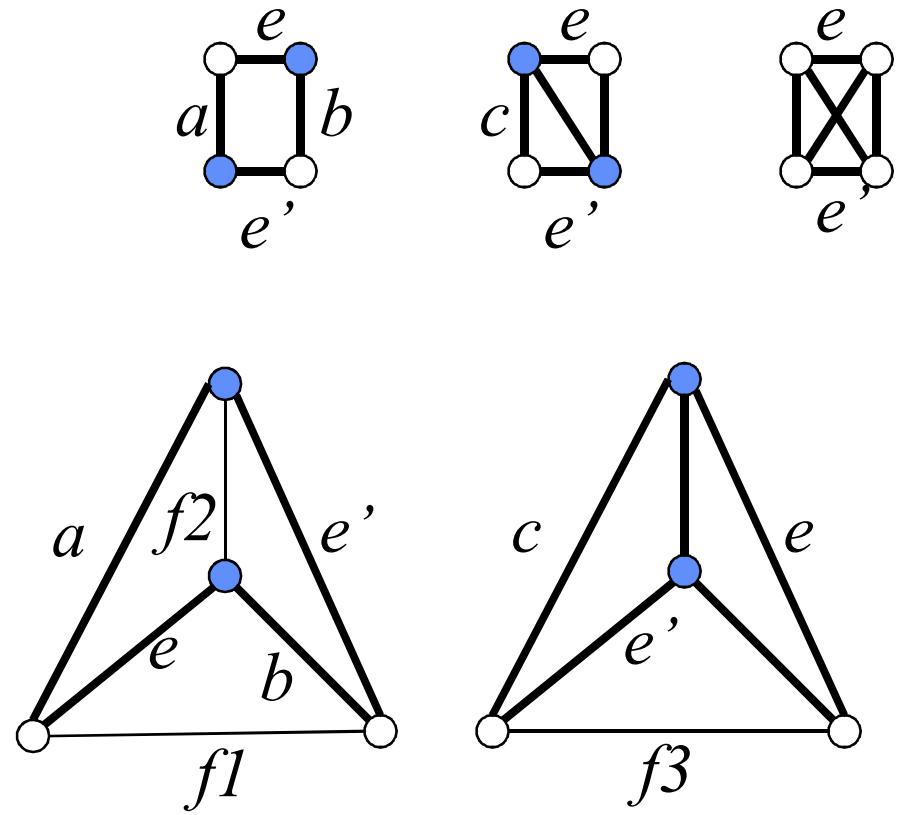
- Each of these concepts is defined with respect to an edge (e)
 - e' is an *opposing rectangle edge*
 - a, b , and c are *spokes*
 - The unlabeled edges are *tent poles*
 - Any missing chord in a rectangle is a *fake edge*



Shown: tent poles with respect to $f1$ and $f3$

The Algorithm in Abstract

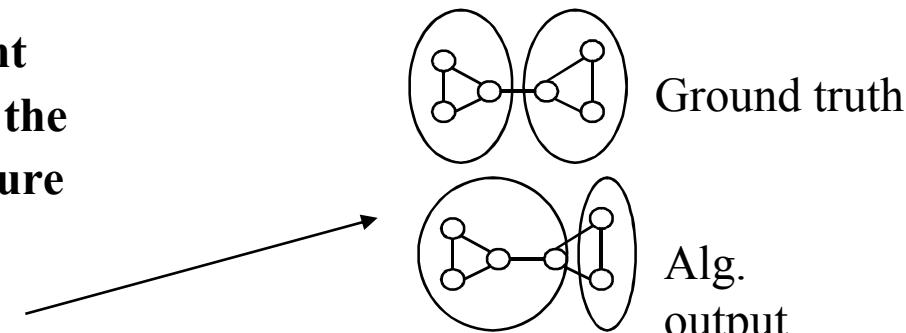
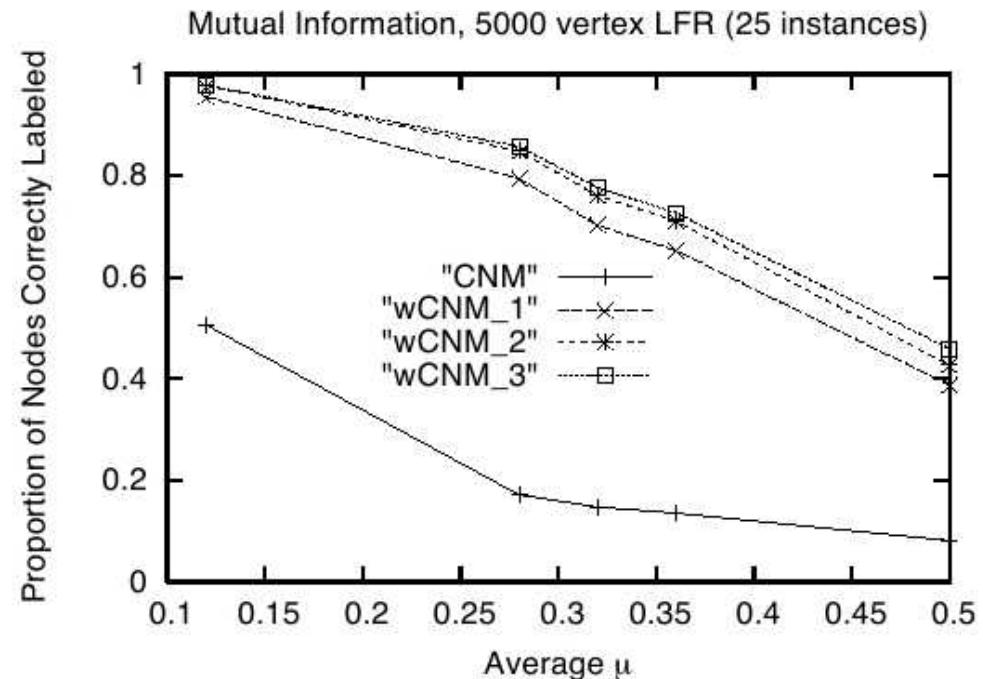
- By simply iterating over all edges (real and fake) in parallel, we can give each edge e credit for its **spokes** and **opposing rectangle edges**
- This counting is correct if there are one or two chords, else we give $\frac{1}{2}$ credit (details omitted)
- By iterating over triangles*, we account for **tent poles**
- We apply a degree threshold to limit the number fake edges
- We expect relatively small numbers of triangles for many real-world graphs
- This works with weighted edges too



*e.g. triangle algorithm from *J. Cohen, "Graph Twiddling in a MapReduce World," CiSE, Vol. 11, No. 4*

Community Detection Results: Mutual Information

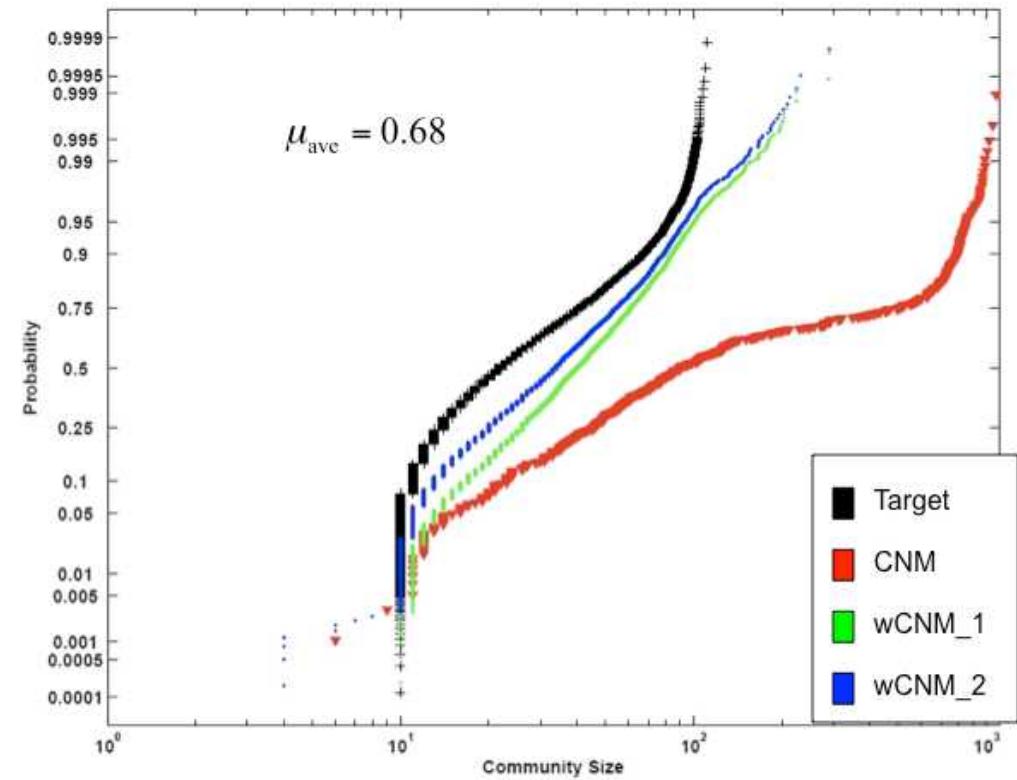
- Given a ground truth assignment and an algorithmic assignment, the “mutual information” is a measure of how well we matched
 - In the example at left, 5 of 6 vertices in the alg. output are “good”
- LFR is a benchmark for generating graphs with ground truth communities of differing sizes (arXiv search “Fortunato Benchmark”)
- wCNM_k is CNM weighed with our neighborhood coherence scores (k iter.)
- Summary: major improvement in accuracy



μ is a community coherence measure

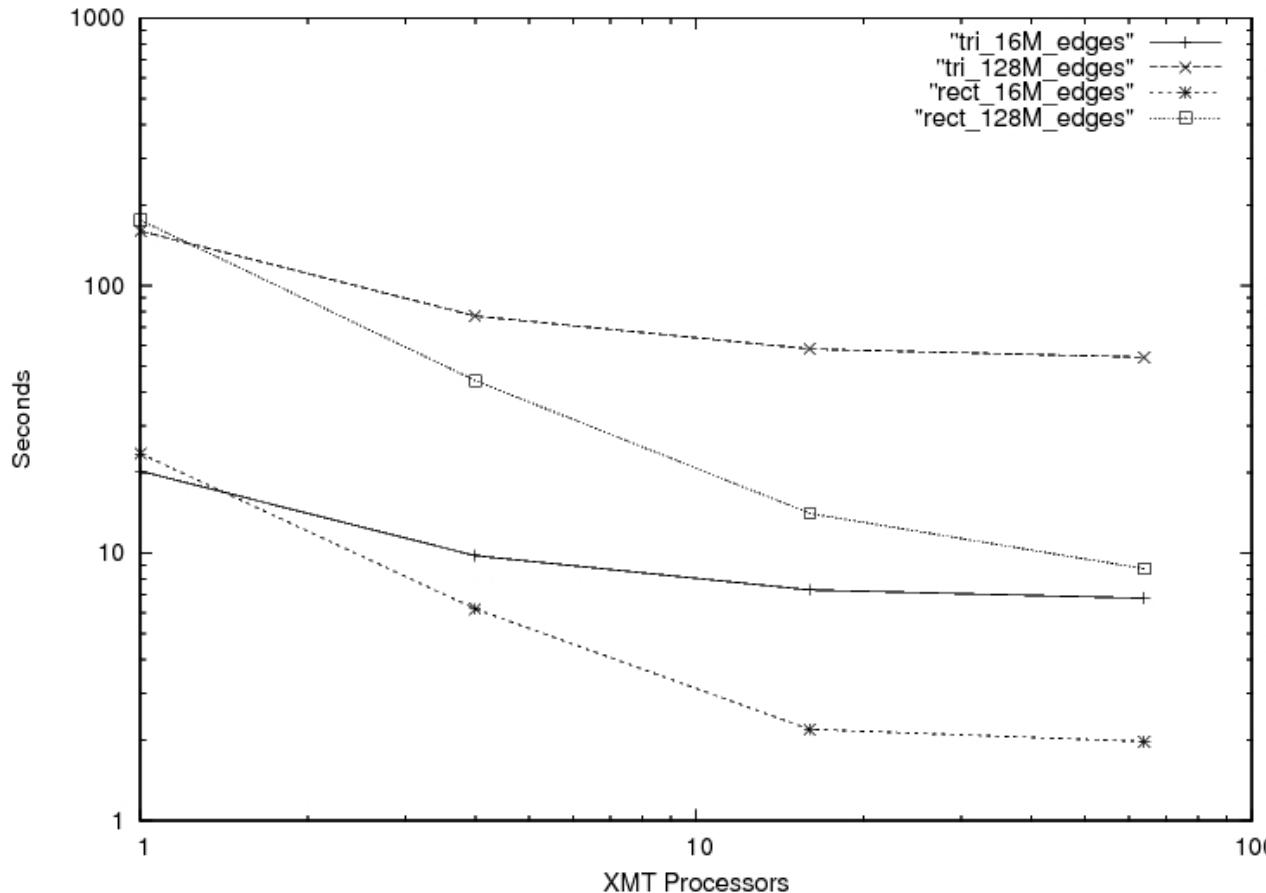
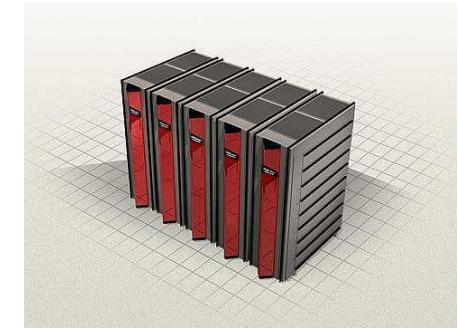
Community Detection Results: Resolution Limits

- We used LFR to generate ground truth communities with exponentially distributed sizes between 10 and 100 vertices
- The figure below shows empirical cumulative distribution functions over community sizes
- **95% of the communities found by wCNM are appropriately sized**
- **Less than 50% of the communities found by CNM are appropriately sized**



Preliminary Computational Results

- On “R-MAT” graphs with inverse power law degree distribution
- A couple of minutes to compute neighborhood coherence in graphs with $O(100M)$ edges on the Cray XMT (massively multithreaded supercomputer)



Conclusions

- Our weighting improves CNM, which has become notorious for poor accuracy despite its speed
- This better tolerates the resolution limit, and matches the accuracy of more complicated methods
- Our initial parallelization results of neighborhood coherence suggest that large instances will be tractable
- CNM itself can be parallelized, but we haven't done that
- Differing approaches may parallelize better and still benefit from our neighborhood coherence computations