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Introduction

Petroleum fuels are the foundation of industry in the United States. The U.S. presently
consumes almost a quarter of the world’s oil production. Securing a stable, renewable
source of fuel for transportation may be one of the most important challenges for the future.
A liquid hydrocarbon fuel has the added advantage of utilizing existing infrastructure for
processing and distribution.

Sunlight is a readily available source of energy that is capable of heating gases up to very
high temperatures. Utilizing solar energy, we can “reverse” the process of combustion to
split CO, into its components CO and O.. It is possible to synthetically produce many fuels
from a mixture of CO and H..

The present work aims to determine the most efficient system architecture that minimizes
capital and operating cost. Prior to fuel synthesis, the Water-Gas Shift reaction is used to
obtain a 2:1 H,:CO ratio. The optimal arrangement and operating parameters of a reactor
and two CO, separations steps needs to be determined.

Solar Energy + xCO, + (x+1) H,O — C_H,, .,(liquid fuel) + (1.5x+.5) O,
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