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Introduction
Petroleum fuels are the foundation of industry in the United States. The U.S. presently
consumes almost a quarter of the world’s oil production. Securing a stable, renewable
source of fuel for transportation may be one of the most important challenges for the future.
A liquid hydrocarbon fuel has the added advantage of utilizing existing infrastructure for
processing and distribution.processing and distribution.

Sunlight is a readily available source of energy that is capable of heating gases up to very
high temperatures. Utilizing solar energy, we can “reverse” the process of combustion to
split CO2 into its components CO and O2. It is possible to synthetically produce many fuels
from a mixture of CO and H2.

The present work aims to determine the most efficient system architecture that minimizes
capital and operating cost. Prior to fuel synthesis, the Water-Gas Shift reaction is used to
obtain a 2:1 H2:CO ratio. The optimal arrangement and operating parameters of a reactor
and two CO2 separations steps needs to be determined.

Solar Energy + xCO2 + (x+1) H2O → CxH2x+2(liquid fuel) + (1.5x+.5) O2
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-Process temperature “dips” in CO2 separations make it the
largest source of energy consumption. If one or both of the CO2

separation stages could be eliminated, the total savings would
be significant.

-Composition of gas exiting solar splitter is 3:1 CO2:CO. An
optional separation step strips out CO2 prior to the Water-Gas-
Shift reaction. The removal of this initial separation stage has
the potential to save operating cost by ameliorating or
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CO is produced by splitting CO2 with
sunlight to produce synthetic methanol
or a mixture natural gas, gasoline,
diesel and hard wax via the Fischer-
Tropsch process.

the potential to save operating cost by ameliorating or
eliminating the temperature dip exhibited above.

The Water-Gas Shift Reaction
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The Water-Gas Shift Reaction
CO + H2O ↔ CO2 + H2, ΔHrxn=-41.1 kJ/mol

•Was modeled using Aspen Plus Process Simulator

•Two modes of operation to choose from: 

-Low Temperature (200-220°C): higher Activity, expensive, CuO/ZnO/Al2O3 based, sensitive 
to poisoning and sintering, rate limited by adsorption to activation sites.

-High Temperature (350-400°C): lower Activity, inexpensive, Fe2O3/Cr2O3 based, strong, 
resistant to sintering and poisons, rate limited by diffusion into the catalyst pellets.

Conversion vs. Reactor Length
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CO2 Separations
-Currently the most well understood technology for carbon
dioxide separation uses an absorbent with a strong affinity for
CO2, methyl ethanol amine (MEA). After scrubbing CO2 out of
the process gas, the MEA mixture is then recovered and
recycled using a stripper column by boiling off CO2. The optimal
level of CO2 to be separated from the charged MEA which
minimizes operating cost is yet to be determined.
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•The LTS 0-1 reactor exhibits a higher initial activity than HTS 0-1, but HTS kinetics speed up 
as temperature increases along reactor length. Equilibrium limits the kinetics of LTS.

•HTS at 3:1 CO :CO exhibits greater heating/cooling costs due to equilibrium shift at high 
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-Condenser/Reboiler Duty is higher for lower lean MEA 
loadings. In order to obtain a more pure lean MEA solution, a 
greater portion of the fluid must be boiled/condensed over a 
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•HTS at 3:1 CO2:CO exhibits greater heating/cooling costs due to equilibrium shift at high 
temperatures and CO2 concentrations. More steam must be added to the reactor inlet in order 
to push the reaction forward. Because more steam is used, more steam must be heated.

greater portion of the fluid must be boiled/condensed over a 
higher number of stages. Using a “dirty” lean MEA solution 
has the potential to save in thermal energy requirement.
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