
Customizing ParaView with Plugins

IEEE Vis ParaView Tutorial

October 2009

Kenneth Moreland

Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

SAND2009-4572P

Create Readers,
Filters, and Writers

Customize
Properties and
Display Panels

Add New Views and
Representations

Add Menus and
Toolbars

Autostart Code

Embed Python Modules

Loading Plugins

• GUI Plugin Manager (ToolsManage Plugins/Extensons).

• PV_PLUGIN_PATH environment variable.

• Recognized locations (see top of Plugin Manager).

Where to Go for Help

• Documentation on the Wiki

– http://www.paraview.org/Wiki/Plugin_HowTo

– www.paraview.org  Help Wiki  Plugins

• MIRARCO plugin wizard

– http://pluginwizard.mirarco.org/

• Examples

– ParaView3/Examples/Plugins

– ParaView3/Plugins

http://pluginwizard.mirarco.org/
http://www.paraview.org
http://www.paraview.org/Wiki/Plugin_HowTo

ParaView Application Layers

UI (Qt, Python)
User Interaction

Pipeline Management
Client-Only Processing

Server Manager
Proxy-Based Client-Server Management

Introspection
XML Registration

VTK
Visualization/Data Processing Units

Server Manager Proxy Objects

SM Proxy

Property 1

Property 2

Property 3

VTK Object

Command 1

Command 2

Command 3

Client Only Any, all, or none of client, render
server nodes, and data server nodes.

<ServerManagerConfiguration>
<ProxyGroup name="filters">

<SourceProxy name="OBBDicer" class="vtkOBBDicer" label="OBB Dicer">
<Documentation

short_help="Break dataset into pieces."
long_help="Define pieces for a dataset and annotate in a field.">
This filter uses a tree of oriented bounding boxes to partition the
space in which a data set is defined. A field is then added to the
dataset that defines which partition each point is contained in.

</Documentation>

<InputProperty name="Input" …

<IntVectorProperty name="DiceMode" …

<IntVectorProperty name="NumberOfPointsPerPiece" …

<IntVectorProperty name="NumberOfPieces" …

<IntVectorProperty name="MemoryLimit" …

</SourceProxy> <!-- OBBDicer -->

</ProxyGroup>
</ServerManagerConfiguration>

Root Tag

Named Group

Filter Proxy Definition

Property tags inside
proxy tag.

<ServerManagerConfiguration>
<ProxyGroup name="filters">

<SourceProxy name="OBBDicer" …

<InputProperty name="Input" command="SetInputConnection">
<ProxyGroupDomain name="groups">

<Group name="sources" />
<Group name="filters" />

</ProxyGroupDomain>
<DataTypeDomain name="input_type">

<DataType value="vtkDataSet" />
</DataTypeDomain>

</InputProperty>

<IntVectorProperty name="DiceMode" …

<IntVectorProperty name="NumberOfPointsPerPiece" …

<IntVectorProperty name="NumberOfPieces" …

<IntVectorProperty name="MemoryLimit" …

Data Types the
Input can have.

Groups from
which inputs
can come.

vtkAlgorithmMethod

<ServerManagerConfiguration>
<ProxyGroup name="filters">

<SourceProxy name="OBBDicer" …

<InputProperty name="Input" …

<IntVectorProperty name="DiceMode" command="SetDiceMode"
number_of_elements="1"
default_values="0">

<EnumerationDomain name="enum">
<Entry value="0" text="Number of Points" />
<Entry value="1" text="Specified Number" />
<Entry value="2" text="Memory Limit" />

</EnumerationDomain>
<Documentation>

Specify the method to determine how many pieces the data should
be broken into.

</Documentation>
</IntVectorProperty>

<IntVectorProperty name="NumberOfPointsPerPiece"
command="SetNumberOfPointsPerPiece"
number_of_elements="1"
default_values="5000">

<IntRangeDomain name="range" min="1000" />
<Documentation>
The maximum number of points to have in each piece. Only valid
if the mode is set to Number of Points.

</Documentation>
</IntVectorProperty>

<IntVectorProperty name="NumberOfPieces" …

<IntVectorProperty name="MemoryLimit" …

Numerical Properties are
Vectors (scalars are size 1)

Domains limit values and
help GUI build widgets

Bundling SM XML with Implementation

SM Definitions
<ServerManagerConfiguration>
<ProxyGroup name=“filters”>
<SourceProxy name=“MyFilter”

C++ Implementation
#include “MyFilter.h”

MyFilter::MyFilter() {

Shared Object Library

(.so, .dll, or .dylib)

VTK Wrapping
Call Unmarshalling.
Instantiation.

Bundling Plugins with CMake

PROJECT(MyFilter)

FIND_PACKAGE(ParaView REQUIRED)
INCLUDE(${PARAVIEW_USE_FILE})

ADD_PARAVIEW_PLUGIN(MyFilter "1.0"
SERVER_MANAGER_XML MyFilter.xml
SERVER_MANAGER_SOURCES vtkMyFilter.cxx
)

Using MIRARCO's Plugin Wizard

• http://pluginwizard.mirarco.org/

Designed by Matthew Ansell, Matthew Livingstone, and Robert Maynard

http://pluginwizard.mirarco.org/

Create a vtkTransformImage Filter

Implementation: Add Properties to SM XML
<SourceProxy name="TransformImage" class="vtkTransformImage">

<InputProperty
name="Input"
command="SetInputConnection">
<ProxyGroupDomain name="groups">
<Group name="sources"/>
<Group name="filters"/>

</ProxyGroupDomain>
<DataTypeDomain name="input_type">
<DataType value="vtkImageData"/>

</DataTypeDomain>
</InputProperty>

<DoubleVectorProperty name="Translate" command="SetTranslate"
number_of_elements="3" default_values="0 0 0">

</DoubleVectorProperty>
<DoubleVectorProperty name="Scale" command="SetScale"

number_of_elements="3" default_values="1 1 1">
</DoubleVectorProperty>

</SourceProxy>

Implementation: Add Properties to Header
public:
static vtkTransformImage *New();
vtkTypeRevisionMacro(vtkTransformImage,vtkImageAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent);

vtkGetVector3Macro(Translate, double);
vtkSetVector3Macro(Translate, double);

vtkGetVector3Macro(Scale, double);
vtkSetVector3Macro(Scale, double);

protected:
vtkTransformImage();
~vtkTransformImage();

double Translate[3];
double Scale[3];

int RequestData(vtkInformation *, vtkInformationVector **,
vtkInformationVector *);

Implementation: Computation
int vtkTransformImage::RequestData(vtkInformation *request,

vtkInformationVector **inputVector,
vtkInformationVector *outputVector)

{
vtkImageData *input = vtkImageData::GetData(inputVector[0]);
vtkImageData *output = vtkImageData::GetData(outputVector);

output->CopyStructure(input);
output->GetPointData()->PassData(input->GetPointData());
output->GetCellData()->PassData(input->GetCellData());

double origin[3], spacing[3];
output->GetOrigin(origin);
output->GetSpacing(spacing);
for (int i = 0; i < 3; i++)

{
origin[i] += this->Translate[i];
spacing[i] *= this->Scale[i];
}

output->SetOrigin(origin);
output->SetSpacing(spacing);

return 1;
}

Creating a Custom Object Panel in Qt
Designer

Linking the Custom Object Panel

• ParaView will look for a Qt resource file with path
:/pqWidgets/UI/proxyname.ui

<RCC>
<qresource prefix="/pqWidgets/UI" >

<file>TransformImage.ui</file>
</qresource>

</RCC>

Linking the Custom Object Panel

• Add the resource file to the
ADD_PARAVIEW_PLUGIN command.

ADD_PARAVIEW_PLUGIN(TransformImageSMPlugin "1.0"
SERVER_MANAGER_XML TransformImage.xml
SERVER_MANAGER_SOURCES vtkTransformImage.cxx
GUI_RESOURCES TransformImage.qrc
)

Panel Classes

pqAutoGeneratedObjectPanel Automatically creates

widgets based on the properties defined in the server manager
proxies. Used internally to create the automatically defined
panels. Can be extended if you have small adjustments to
make or small features to add.

pqNamedObjectPanel When your widgets have names

corresponding to the server manager properties, this class can
automatically hook them up. If your initial design comes
principally from Qt Designer, this is a good class to extend.

pqObjectPanel Base class for all object panels. Provides

little other than a blank widget container. You are responsible
for managing Apply/Reset, SM state, and the undo stack.

#include "pqTransformImagePanel.h"

#include "ui_TransformImage.h"
class pqTransformImagePanel::pqUI : public Ui::TransformImage {};

pqTransformImagePanel::pqTransformImagePanel(
pqProxy *pxy, QWidget *p)

: pqNamedObjectPanel(pxy, p)
{
this->ui = new pqUI;
this->ui->setupUi(this);

this->linkServerManagerProperties();
}

pqTransformImagePanel::~pqTransformImagePanel()
{
delete this->ui;

}

PROJECT(TransformImage)

FIND_PACKAGE(ParaView REQUIRED)
INCLUDE(${PARAVIEW_USE_FILE})

QT4_WRAP_UI(UI_SRCS TransformImage.ui)
QT4_WRAP_CPP(MOC_SRCS pqTransformImagePanel.h)

ADD_PARAVIEW_OBJECT_PANEL(IFACES IFACE_SRCS
CLASS_NAME pqTransformImagePanel
XML_NAME TransformImage XML_GROUP filters
)

ADD_PARAVIEW_PLUGIN(TransformImageSMPlugin "1.0"
SERVER_MANAGER_XML TransformImage.xml
SERVER_MANAGER_SOURCES vtkTransformImage.cxx
GUI_INTERFACES ${IFACES}
GUI_SOURCES ${MOC_SRCS} ${UI_SRCS} ${IFACE_SRCS}
pqTransformImagePanel.cxx

)

Autostart Plugins

• ParaView can automatically launch code when
your plugin starts up and when it shuts down.

• Create a QObject class with methods you want
called on startup and shutdown.

• Use ADD_PARAVIEW_AUTO_START command to
register startup and shutdown methods.

#include <QObject>

class pqMyApplicationStarter : public QObject
{
Q_OBJECT

public:
pqMyApplicationStarter(QObject* p=0);
~pqMyApplicationStarter();

// Callback for startup.
void onStartup();

// Callback for shutdown.
void onShutdown();

QT4_WRAP_CPP(MOC_SRCS pqMyApplicationStarter.h)

ADD_PARAVIEW_AUTO_START(IFACES IFACE_SRCS
CLASS_NAME pqMyApplicationStarter
STARTUP onStartup
SHUTDOWN onShutdown
)

ADD_PARAVIEW_PLUGIN(Autostart "1.0"
GUI_INTERFACES ${IFACES}
GUI_SOURCES pqMyApplicationStarter.cxx
${MOC_SRCS} ${IFACE_SRCS}
)

Menu/Toolbar Plugins

• Your plugin can create menus and toolbars and
add actions.

– Connect actions to Qt slots to perform arbitrary
operations.

• Create a subclass of QActionGroup that fills itself
with QActions in its constructor.

– Hint: You can use Qt Designer to create a “dummy”
widget with the QActions you want to return.
Create all your QActions with a single setupUi call.

• Use ADD_PARAVIEW_ACTION_GROUP
command to register startup and shutdown
methods.

QT4_WRAP_CPP(MOC_SRCS MyActions.h)

ADD_PARAVIEW_ACTION_GROUP(TB_IFACE TB_IFACE_SRCS
CLASS_NAME MyActions
GROUP_NAME "ToolBar/MyActions”
)

ADD_PARAVIEW_ACTION_GROUP(M_IFACE M_IFACE_SRCS
CLASS_NAME MyActions
GROUP_NAME "MenuBar/MyActions”
)

ADD_PARAVIEW_PLUGIN(SourceToolbar "1.0”
GUI_INTERFACES ${TB_IFACES} ${M_IFACES}
GUI_SOURCES
${MOC_SRCS}
${TB_IFACE_SRCS} ${M_FACE_SRCS}
SourceToolbarActions.cxx

)

What’s Next

• More plugin types exist. More on the way.

– Keep up to date with Wiki documentation.

• Coming soon: Branding.

– The client applications will be replaced with a
generic empty application.

– Empty application configured to load a set of
predefined plugins, called a brand.

– In the future, you should be able to create new
“vertical applications” by writing plugins.

– Allows you to better share code between vertical
applications (brands).

