

Briefings to the Gulf Cooperation Council

July 24, 2009

Introduction to Nuclear Safety

*T.A. Wheeler, Structural Integrity and Licensing Department
Sandia National Laboratories
Albuquerque, New Mexico
Dept 6764 tawheel@sandia.gov*

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

What is risk?

- Arises from a “Danger” or “Hazard”
- Always associated with undesired event
- Involves both:
 - likelihood of undesired event
 - severity (magnitude) of the consequences

Risk Definition

- Risk - the frequency with which a given consequence occurs

Risk $\left[\frac{\text{Consequence Magnitude}}{\text{Unit of Time}} \right] =$

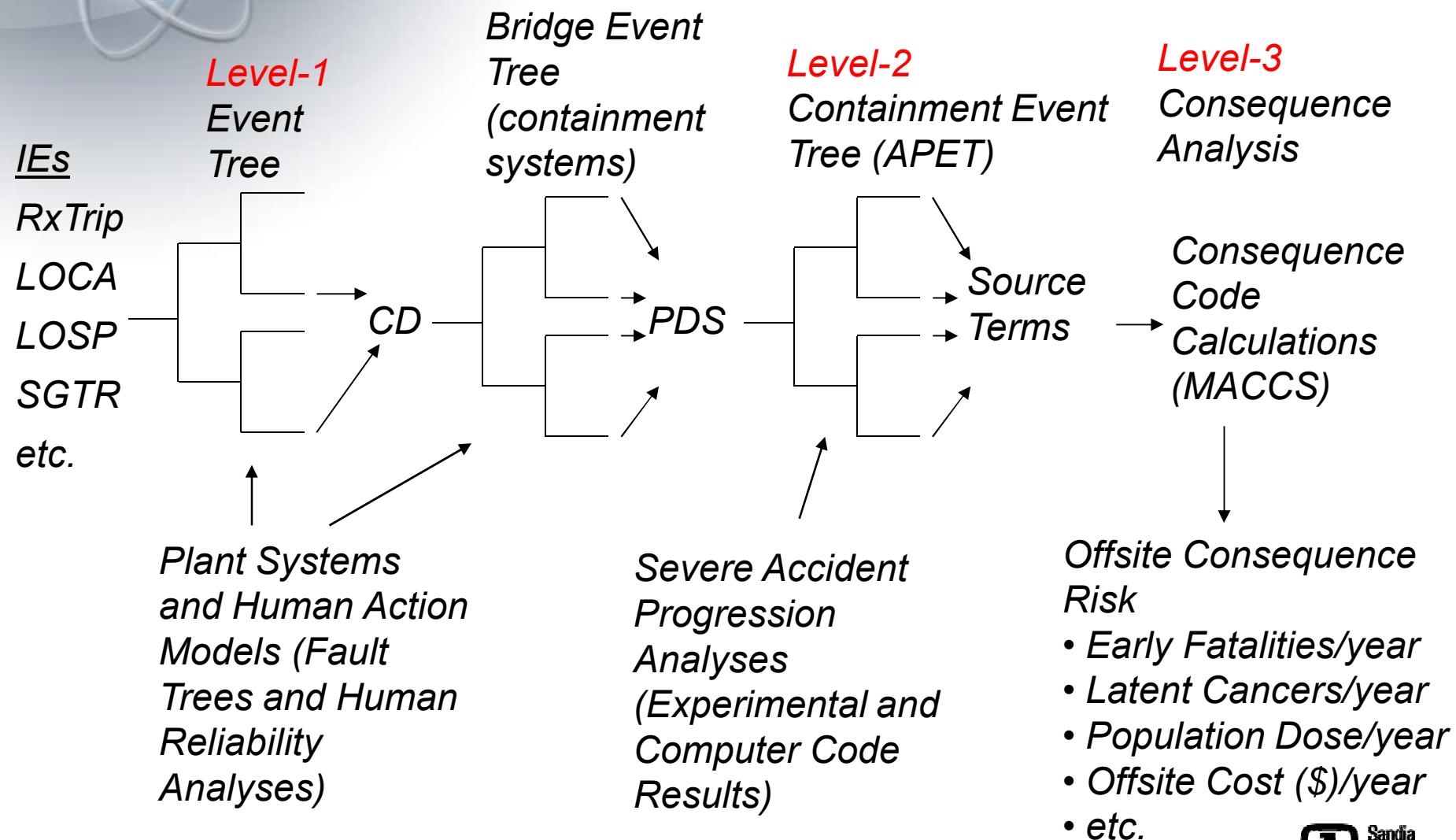
Frequency $\left[\frac{\text{Events}}{\text{Unit of Time}} \right] \times \text{Consequences} \left[\frac{\text{Magnitude}}{\text{Event}} \right]$

Risk Example: Deaths Due to Accidents

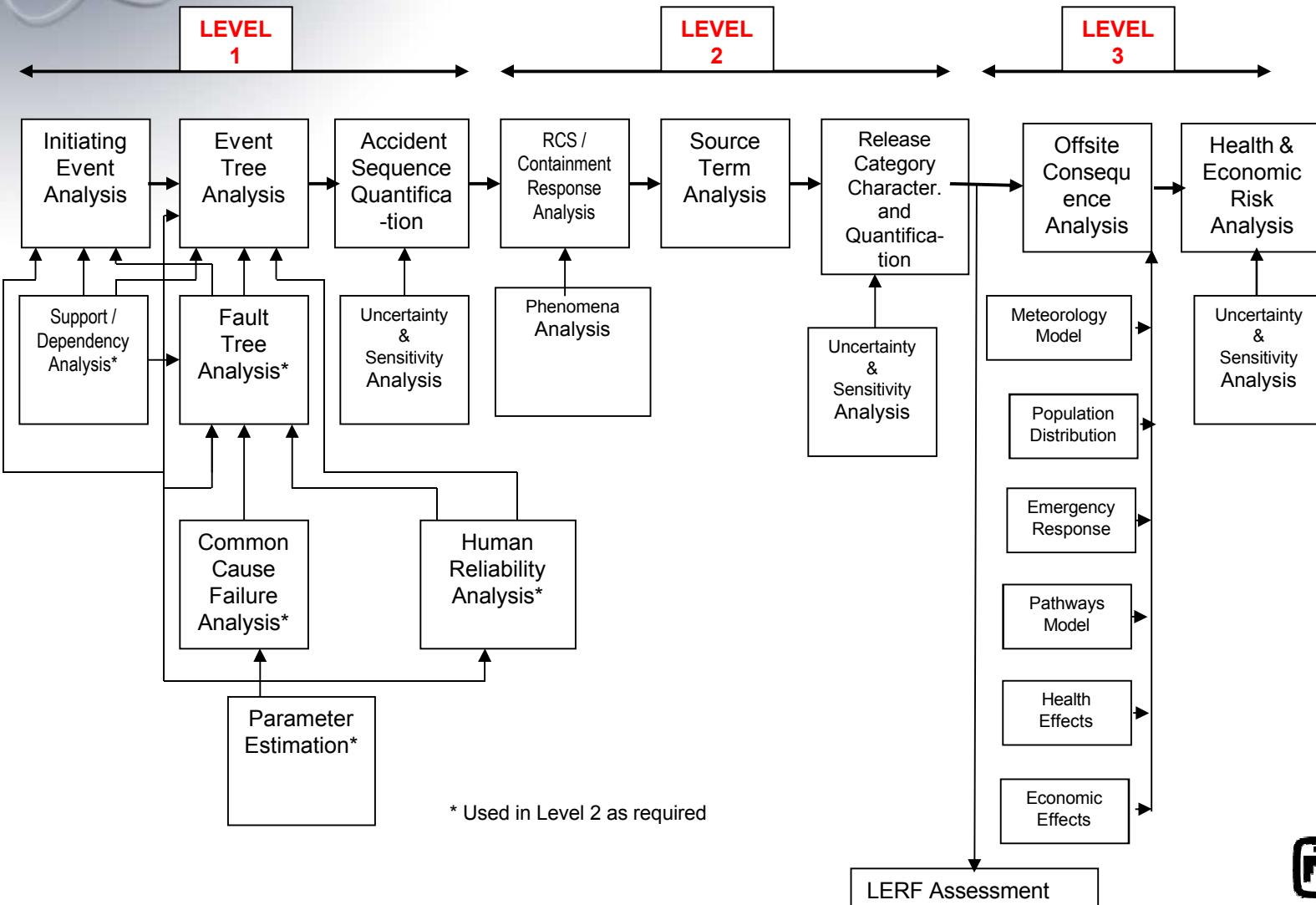
- Societal Risk = 117,809 accidental-deaths/year (USA)
• (based on Center for Disease Control actuarial data)
- Average Individual Risk
 - $= (93,000 \text{ Deaths/Year}) / 304,000,000 \text{ Total U.S. Pop.}$
 - $= 3.9 \times 10^{-4} \text{ Deaths/Person-Year}$
 - $1/2500 \text{ Deaths/Person-Year}$
- In any given year, approximately 1 out of every 2,500 people in the entire U.S. population will suffer an accidental death

Risk Example: Deaths Due to Cancer

- Societal Risk = 538,000 cancer-deaths/year
- (based on Center for Disease Control actuarial data)
- Average Individual Risk
- = $(538,000 \text{ Cancer-Deaths/Year}) / 250,000,000 \text{ Total U.S. Pop.}$
- = $1.7 \times 10^{-3} \text{ Cancer-Deaths/Person-Year}$
- $1/550 \text{ Cancer-Deaths/Person-Year}$
- In any given year, approximately 1 person out of every 550 people in the entire U.S. population will die from cancer


Overview of PRA Process

- PRAs are performed to find severe accident weaknesses and provide quantitative results to support decision-making. Three levels of PRA have evolved:


Level	An Assessment of:	Result
1 (Systems Analysis)	Plant accident initiators and systems'/operators' response	Core damage frequency & contributors
2 (Containment Analysis)	Frequency and modes of containment failure	Categorization & frequencies of containment releases
3 (Consequence Assessment)	Public health consequences	Estimation of public & economic risks

Overview of Level-1/2/3 PRA

Principal Steps in PRA

PRA Analyzes Risk from Various Perspectives

- The type of Initiating events, or the nature of potential insults to the plant
 - Internal Initiating Events
 - Loss of Coolant Accidents (LOCAs)
 - fire events
 - internal flooding (e.g., pipe breaks within the plant)
 - loss-of-offsite power
 - Plant transients
 - External Initiating Events
 - risk from external events. Includes:
 - seismic events,
 - external flooding (rivers, lakes, burst dams, etc.)
 - high winds and tornadoes,
 - airplane crashes,
 - lightning, hurricanes, sandstorms, etc.
 - Dependent on the physical location of the plant.
- Operational mode of Plant
 - Full Power – accidents initiated while plant is operating at power
 - Low Power and Shutdown (LP/SD) – accidents initiated while plant is at low power or shutdown

Risk Insights Gained from PRA

PRA has shown that:

- Plants are fundamentally safe – when operated well.
- Many events must occur for an undesirable consequence to take place.
 - **Level I**
 - Initiating event must occur, which is actually a common occurrence.
 - Numerous plant safety functions must fail
 - Redundant & diverse safety systems must fail to protect the core
 - Operators must fail to detect, diagnose, & correct accident conditions and system failures.
 - **Level II**
 - Additional safety systems must fail to mitigate the accident conditions.
 - Containment integrity must be compromised.
 - **Level III**
 - Severity of dispersion of source term dependent on:
 - Weather
 - Emergency Response

Risk Insights (Cont.)

PRA has caused regulatory and operational practices to change over time:

- Current generation of reactors were designed against large LOCA accidents
- PRA showed that transient accidents were a bigger threat to safety
 - High dependence on lots of active components (e.g., pumps, valves)
- PRA showed that external events (e.g., seismic) were a significant threat to safety
- Regulations have changed to address this shift in risk perspectives
 - Seismic safety redesigned into existing plants
 - “Back-fits” to many plants address transient issues (e.g., better emergency AC power supplies)
- Licensees use PRA to review proposed design and operational changes

Principal Limitations of PRA

- Inadequacy of available data
- Lack of understanding of physical processes
- High sensitivity of results to assumptions
- Constraints on modeling effort (limited resources)
 - simplifying assumptions
 - truncation of results during quantification
- PRA is typically a snapshot in time
 - this limitation may be addressed by having a “living” PRA
 - plant changes (e.g., hardware, procedures and operating practices) reflected in PRA model
 - temporary system configuration changes (e.g., out of service for maintenance) reflected in PRA model
- Lack of completeness (e.g., human errors of commission typically not considered)