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View of the Simulation Problem
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HPC Simulation: More Challenges
•Network/Application Feedback: A static trace or simple statistical 
model will not capture the causal relationships between messages.  

•Scalability: Many network effects only become apparent at hundreds 
or thousands of nodes.  

•Variable Processor/Memory/Network Systems: Local interactions 
can have global performance implications.  

•Ability to Model Message Overheads: Overheads in the network (e.g. 
packetization, protocol overhead) and messaging library (e.g. MPI 
matching, message assembly) can have a major effect on 
performance. 

•Ability to Explore Programming Models: Novel hardware will require 
novel programming techniques and capabilities. 

•Power and Economic Effects: Power and cost are the key limiting 
factors on system design. Any system model must be able provide 
feedback on the power and cost implications of new architectural 
features. 



SST Fundamental to 
Several Projects

•Microarchitecture
– Inter CacheLine Gather (ICGL)
– Recon. FU (Wisc./SNL)
– FP Aggregates
– In-Memory Ops

•Application analysis
– Memory Footprint
– Instruction Usage

•Network/MPI
– NIC Tradeoffs
– MPI Acceleration

•Programming Models
– PIM Compiler work (SNL/Rice)
– ParallX (LSU/SNL)(FastOS)
– Transactional Memory (ORNL)
– QThreads

•Processor-In-Memory (LDRD)
Instruction Mix & Usage for

Sandia Applications

MPI Accelerator Tested with SST

Inter CacheLine Scatter/
Gather 

Microarchitecture

 



Simulation Project

Technical Approach

Goals

•Become the standard architectural simulator for the 
HPC community

•Be able to evaluate future systems on DOE workloads
•Use supercomputers to design supercomputers

•Multiscale
•Cycle-accurate to analytic
•Instruction-based to message-based

•Parallel
•1000s of simulated nodes on 100s of 
real nodes

•Holistic
•Integrated Tech. Models

Consortium

•“Best of Breed” simulation suite
•Combine Lab, academic, & industry



Official Use Only

Official Use OnlyParallel Simulation

Usage 
Model

Message Traces, 
Symbolic Workload 

Descriptions
Execution Based

Execution w/ 
FPGA 

Acceleration

Real Nodes 100s-1000s 100-1000s 1-10

Simulated 
Nodes 10000s-100000s 100s-1000s 1-10

Goal System Scaling 
Behavior

Cycle-level 
system 

performance
Co-design

Usage ModelsUsage ModelsUsage ModelsUsage Models

•Requirements
–High speed, Parallel, Scalable
–Multiple clock domains
–Checkpointing

•Implementation
–Conservative distance-based 

DES optimization
–Multi-criteria partitioning
–Built on MPI
–Future: FPGA acceleration

while(event = getNextEvent(queues)) {
  cycle = event->time;
  if (event->isClockEvent) {
    event->component->preTic();
  } else if (event->exchange) {

startSends();
recv();
finishSends();

  } else if (event->checkpoint) {
checkpoint();

  } else {
    event->component->handleEvent();
  }
}
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•Weak Scaling
•Distance Based Opt.
•Minimal Partitioning

Parallel Core Pseudocode

Distance-based DES Scaling



Holistic Simulation
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struct {
  Joules readPower;
  Joules staticPower;
  mm Area;
  ns clock;
};

setTech(nm);
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•Create interface to multiple technology libraries
–Power/Energy
–Reliability
–Area/Timing estimation

•Make it easier for components to model technology 
parameters



Multi-Scale Simulation

• Goal: Interface component reuse at 
different scales

• High- & Low-level interfaces (more?)
– Allows multiple input types
– Allows multiple input sources

• Traces, stochastic, state-machines, 
execution...

– Adapter objects to translate?

Adapter ?
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Proposed Structure

• Separate Software/Front-End from Hardware/Timing/Back-End
• Standard interfaces for power, area, cost?
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Simulator Framework Model

Parallel DES

MPI
Checkpointing

Statistics

Power Area 
Cost

Configuration

Services

Vendor
Component

Open
Component

Vendor
Component

Open
Component

Simulator Core

•Simulator Core will provide...
–Power, Area, Cost modeling
–Checkpointing
–Configuration
–Statistics gathering
–Parallel Component-Based 

Discrete Event Simulation
•MPI hidden from user
•Multiple clocks

•Components
–Ships with basic set of open 

components
–Industry can plug in their own 

models
•Under no obligation to share



Parallel SST Core• Strawman
– “API Testbed”
– < 1000 lines of code
– Demonstrates basic functionality

• Sim startup
• Component partitioning
• Checkpointing
• Event passing

• Current work
– System Description Language
– Refining Parallel DES
– Event interfaces
– Scaling

• Initial/Setup Mode:
– 1. Load config file(s)
– 2. Generate component graph
– 3. Partition graph 
– 4. Instantiate components on each node
– 5. Dump initial checkpoint 

• Run Mode:
– 1. Read checkpoint from disk
– 2. Apply Edits 
– 3. Run Loop

•   a. advance components upto time+dt
•   b. exchange messages with neighbors
•   c. goto (3a)
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•Minimal Partitioning



Consortium
• IAA Simulation effort is a community effort
• Seeking more partners...

• Current consortium
– Sandia (Structural Simulation Toolkit)
– ORNL (Scalable application models)
– U. Maryland (DRAMSim II)
– U.Texas-Austin (FAST)
– Georgia Tech (CAPSTONE/Manifold)
– JCAS (ORNL)
– Seshat (SNL)
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FPGA-Accelerated Simulation Technologies 

(FAST): Parallelized Simulators

Rename
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Initial Project Plan

New SDL

Remove BGL
Replace

Redo Wireup

Wrap
DRAMSim

Wrap
Processor Create NIC New Core
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Proc+Mem
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June 15
Early Components

Loading & Tech. Interfaces

July 15
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September 15
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Of FLITS and FLOPS:
Balancing Energy and Interconnect Performance
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System-level Interconnect and Energy

• Interconnect performance is the key factor in determining how well 
many applications scale

• With increasing bandwidths, interconnect power is becoming a real 
concern
– Serdes don’t turn off well (OK, they turn off fine, they just don’t turn back on 

quickly, due to channel initialization times)
• Uses power whether valid data is moving through the network or not

• A lot of discussion lately on minimizing picojoules/bit

• However, interconnects are not used in isolation and a system view 
is vital to maximizing energy efficiency
– NIC and router architectures, topologies and MPI implementations all play an 

important role



Application Case Study: CTH

Image courtesy of ASC

Asteroid Golevka measures about 500 x 600 x 700 meters. In this 
CTH shock physics simulation, a 10 Megaton explosion was 
initiated at the center of mass. The simulation ran for about 15 
hours on 7200 nodes of Red Storm and provided approximately 0.65 
second of simulated time.

• CTH is a multi-material, large deformation, strong shock wave, solid 
mechanics code developed at Sandia National Laboratories. CTH 
has models for multi-phase, elastic viscoplastic, porous and 
explosive materials.



Application Case Study: CTH

As job size increases, 
communication time can 
grow to consume around 
40-50% of the runtime.

CTH communication 
is dominated by long 
messages.

Shaped Charge Problem (weak scaling)



CTH Bandwidth Degradation Study

• Uses capabilities built into the Red Storm SeaStar interconnect to 
turn off interconnect router lanes at boot time
– Links are made up of 4 3-bit subchannels that can be independently 

enabled
• Measure application performance at full and one-quarter link 

bandwidth

• At largest measured job 
size, quartering 
bandwidth leads to 32% 
longer runtime



CTH Power Signature Study

• Power measured using Red Storm’s built-in current monitors

Total Node Power:

CPU:         37 (red)
SeaStar:   16 (blue/4)
Memory:   20 (estimated)
                  73 Watts



Putting it all Together

• Assume interconnect power drops linearly with bandwidth
– 68% of the performance for 25% of the interconnect power

• Total power for ¼ bandwidth = 61 Watts (down from 73 watts)
– 68% of the performance for 83.6% of the system power

• Total Energy for two cases assuming full bandwidth runtime of X

• Net energy increase of 10% for ¼ bandwidth case
– Keep in mind this doesn’t count the energy used for the file system attached 

to the machine or other machine room costs



Application Case Study: POP

• POP is an ocean circulation model derived from earlier models of Bryan, Cox, Semtner 
and Chervin in which depth is used as the vertical coordinate. The model solves the 
three-dimensional primitive equations for fluid motions on the sphere under 
hydrostatic and Boussinesq approximations. 

Image and description from http://www.lanl.gov/orgs/t/t3/codes/pop.shtml

• POP sends small-ish messages 
(one run showed 16KB average 
message size) and spends large 
portions of it’s MPI time in 
MPI_Allreduce (at large node 
counts)

• POP is generally believed to be a 
latency and/or message rate 
bound application



Red Storm GP vs AP



Power Study from Indiana University

Torsten Hoefler, Timo Schneider and Andrew Lumsdaine, “A Power-Aware, Application-Based Performance
 Study of Modern Commodity Cluster Interconnection Networks.”  To appear in IPDPS/CAC09, May 2009.



Solving the Message Rate Problem
• Problem: Message rate 

determines effective bandwidth
• SST Analysis: MPI matching 

limits performance
• Solution: Accelerate list 

management with hardware
• SST Simulation

– Hardware
• Implement NIC/Router based on 

RedStorm SeaStar
• Implement List Manager, ALPU, and 

Match Unit, integrate with NIC
–“Translated” from FPGA RTL

• Validate against FPGA & Red Storm
– Software

• Create baseline offload MPI
• Modify MPI to use acceleration HQ

• Impact: Collaboration w/ Intel
– Intel licensing
– Keith Underwood “on loan” to Intel
– Foundation for IAA network project
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Dramatic MPI Acceleration

•Long MPI message queues 
increase effective latency 
dramatically

•Queue processor processes 
messages more quickly

•Queue processor more area 
effective than conventional 
or threaded NIC processor

1x
4.6x
3.8x
7.7x

61.5x

Relative
Size

Baseline
Conventional 

NIC Processor Queue Processor

Threaded NIC 
Processors



System View is Vital

• First example showed a case where higher interconnect power 
leads to lower energy to solution

• Second example illustrates how advanced features which add very 
little to system power can improve performance, thus improving 
energy to solution

• The system view is critical
– Interconnect is not an isolated system and only accounts for a portion of the 

total system power
– Thus, higher interconnect power can actually lead to lower energy
– Understanding the true impact of the interconnect trade-offs can lead to 

more energy efficient systems



Microbenchmarks

• Fallacy:  Optimizing interconnects and MPI implementations to 
microbenchmarks will necessarily improve application performance 
(or at least won’t hurt it).

• Any optimization that reduces performance without reducing power 
will lead to less energy efficient system
– Conversely, any optimization that increases performance without increasing 

power will lead to more energy efficient systems

• Removing useful advanced features to improve NetPipe latency and 
bandwidth will not generally translate to improved application 
performance (and may actually make it worse)

• Coalescing identical zero-byte messages will not help any 
application of which I am aware

• Measuring message rate under ideal conditions does not provide 
useful information about message rate achievable by an application



• Measures message rate using communication patterns mimicking 
those of scientific applications
– Simulation of computation/communication phase with variable working set 

sizes (compute stage modeled by touching data to invalidate some portion 
of cache)

Sandia Message Throughput Benchmark

– Each MPI rank both sends 
and receives

– Variable number of peers



Conclusions

• It’s not necessarily about power, it’s about energy to solution
– Higher power systems can actually lead to lower energy to solution
– When peak power is a limiter, likely better off with a “smaller”, more 

balanced system, than a larger, unbalanced system
• It’s not about peak FLOPS/Watt, it’s about the percent of peak that 

can be sustained
– We pay an energy penalty for unused operations
– With rising awareness of energy-efficient computing, FLOPS/Watt threatens 

to become the new HPL.  Let’s not let this happen!
• This talk focused on interconnects, but other areas are equally 

important
– What’s the application impact of slower, less complex cores

• Can in-order cores use wide floating-point units?
• Can applications scale to the dramatically increased number of cores?

• Components should be designed with a system view and 
understanding of the application needs



Bonus



Model of Operation 2
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Setup() {
  setTech(90, LOGIC);
  L2Power =
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}

Clock() {
  ...;
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  reportPower(Power);
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struct {
  Watts  currentPower;
  Joules totalEnergy;
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getPower(Component)
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1. Setup2. Component 
Reports Power

3. Power 
Request

4. Pwr/
Energy 

Returned



DES APIs



Key API Calls
Construction

Constructor(map<str,str> param);

Component

serialize(Archive &a);

addLink(int link_num, Handler);

ClockRegister(Freq, Handler);

handleClock();

recvHander(event *e);

Link

Send(Time_t t, Event *e);

Event* Recv();

Link(latency);

Event

  arrivalTime();

source();

  destination();

Current Strawman

User Defined



Simulation::Run()
•Current strawman

–Advances through each 
cycle

–No Opt-out mechanism for 
clock

–No easy support for multiple 
clock domains

•Future Parallel Proto
–Clocks and communication 

events all in queue
–Skip event-less cycles
–Clock events special cased

while(1) {
  cycle++;
  foreach component {
    component->preTic();
  }

  while(event = 
        getNextEventThisClock(queues)){
    event->component->handleEvent();
  }
}

while(event = getNextEvent(queues)) {
  cycle = event->time;
  if (event->isClockEvent) {
    event->component->preTic();
    reschedule(event, queue);
  } else {
    event->component->handleEvent();
  }
}

Current
Strawman

Future
ParallelProto



Parallel
•Checkpointing and 
message exchange are 
also queued events

•Possible optimization: 
different exchange times 
for each neighbor, based 
on partition

while(event = getNextEvent(queues)) {
  cycle = event->time;
  if (event->isClockEvent) {
    event->component->preTic();
    reschedule(event, clockPeriod);
  } else if (event->exchange) {

startSends();
recv();
finishSends();

    reschedule(event, minPartition);
} else if (event->checkpoint) {
checkpoint();

    reschedule(event, checkPointTime);
  } else {
    event->component->handleEvent();
  }
}



Sending an Event

void compLink::sendEvent(event *e) {
  e->_arrivalTime = theSim->cycle + latency;
  e->_src = source;
  e->_dest = dest; 
  if (destination is local) {
    theSim->eventQ.push_back(e); 
  } else {
    theSim->
      remoteEvents[destRank].push_back(e); 
  }  
}

Calculate arrival 
time

(may include BW 
calculation)

Queue local 
events

Store remote 
events

(To send later)


