
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energyʼs National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Sandia Simulation and Networking

Arun Rodrigues

SAND2009-3825P

SST Simulator

View of the Simulation Problem

Application writers
purchasers
designers

system procurement
algorithm co-design

architecture research
language research

Multiple Audiences.....
Network

Processor
System

present systems
future systemsX X X

Scale..... Many
Cores

+
Memory

Many
Many
Nodes

Many
Many
Many

Threads
X X

Multi-Physics Apps
Informatics Apps

Complexity.....
Communication Libraries

Run-Times
OS Effects

Existing Languages
New LanguagesX X

Constraints.....
Performance

Cost
Power

Reliability
Cooling
Usability

Risk
Size

HPC Simulation: More Challenges
•Network/Application Feedback: A static trace or simple statistical
model will not capture the causal relationships between messages.

•Scalability: Many network effects only become apparent at hundreds
or thousands of nodes.

•Variable Processor/Memory/Network Systems: Local interactions
can have global performance implications.

•Ability to Model Message Overheads: Overheads in the network (e.g.
packetization, protocol overhead) and messaging library (e.g. MPI
matching, message assembly) can have a major effect on
performance.

•Ability to Explore Programming Models: Novel hardware will require
novel programming techniques and capabilities.

•Power and Economic Effects: Power and cost are the key limiting
factors on system design. Any system model must be able provide
feedback on the power and cost implications of new architectural
features.

SST Fundamental to
Several Projects

•Microarchitecture
– Inter CacheLine Gather (ICGL)
– Recon. FU (Wisc./SNL)
– FP Aggregates
– In-Memory Ops

•Application analysis
– Memory Footprint
– Instruction Usage

•Network/MPI
– NIC Tradeoffs
– MPI Acceleration

•Programming Models
– PIM Compiler work (SNL/Rice)
– ParallX (LSU/SNL)(FastOS)
– Transactional Memory (ORNL)
– QThreads

•Processor-In-Memory (LDRD)
Instruction Mix & Usage for

Sandia Applications

MPI Accelerator Tested with SST

Inter CacheLine Scatter/
Gather

Microarchitecture

Simulation Project

Technical Approach

Goals

•Become the standard architectural simulator for the
HPC community

•Be able to evaluate future systems on DOE workloads
•Use supercomputers to design supercomputers

•Multiscale
•Cycle-accurate to analytic
•Instruction-based to message-based

•Parallel
•1000s of simulated nodes on 100s of
real nodes

•Holistic
•Integrated Tech. Models

Consortium

•“Best of Breed” simulation suite
•Combine Lab, academic, & industry

Official Use Only

Official Use OnlyParallel Simulation

Usage
Model

Message Traces,
Symbolic Workload

Descriptions
Execution Based

Execution w/
FPGA

Acceleration

Real Nodes 100s-1000s 100-1000s 1-10

Simulated
Nodes 10000s-100000s 100s-1000s 1-10

Goal System Scaling
Behavior

Cycle-level
system

performance
Co-design

Usage ModelsUsage ModelsUsage ModelsUsage Models

•Requirements
–High speed, Parallel, Scalable
–Multiple clock domains
–Checkpointing

•Implementation
–Conservative distance-based

DES optimization
–Multi-criteria partitioning
–Built on MPI
–Future: FPGA acceleration

while(event = getNextEvent(queues)) {
 cycle = event->time;
 if (event->isClockEvent) {
 event->component->preTic();
 } else if (event->exchange) {

startSends();
recv();
finishSends();

 } else if (event->checkpoint) {
checkpoint();

 } else {
 event->component->handleEvent();
 }
}

1.00

1.25

1.50

1 2 4 8 16 32 64 128

T
im
e/
St
ep

Ranks

•Weak Scaling
•Distance Based Opt.
•Minimal Partitioning

Parallel Core Pseudocode

Distance-based DES Scaling

Holistic Simulation

Te
ch

 A
PI

D
yn

am
ic

 L
ib

. I
/FgetInfo(CACHE, ECC, size,

 blockSize, ports);

struct {
 Joules readPower;
 Joules staticPower;
 mm Area;
 ns clock;
};

setTech(nm);
setModel(MCPAT); McPAT

Cacti

Sim-Panalyzer

Others

Component

1. Setup

2. Component
Query

4. Library
Answers

3. API Asks
Library

5. API
reformats

•Create interface to multiple technology libraries
–Power/Energy
–Reliability
–Area/Timing estimation

•Make it easier for components to model technology
parameters

Multi-Scale Simulation

• Goal: Interface component reuse at
different scales

• High- & Low-level interfaces (more?)
– Allows multiple input types
– Allows multiple input sources

• Traces, stochastic, state-machines,
execution...

– Adapter objects to translate?

Adapter ?

Low-level

Interface
Message

Trace
Synthetic

Messages

Thread
GetInstruction()

Instruction
Fetch()
Exec()
Retire()
isMem()
Type()

High-level

Interface

Instruction

Trace
Instruction

Execution

Message
Type()
Size()
Dest()

Compute
NumOps()

FPs()

DFG()

High Proc.

GetData()

Special()

Low Proc.

Special()

MsgRecv?()

"Processor"

Component

Multiscale Parameters

Analysis

Memory
NIC

Node

Protocol
Topology
Routers

Network

Execution
Trace
Stochastic

Application Models

Simulated Components

Parallel Simulator Core

FLASH

DRAM
Memory

Experiment Setup
ReportingSimulation Support

Processor

High-Level Low-Level

Detail Message Instruction

Fundamental
Objects

Message, Compute
block, Process

Instruction,
Thread

Static
Generation

MPI Traces,
MA Traces

Instruction
Trace

Dynamic
Generation State Machine Execution

Proposed Structure

• Separate Software/Front-End from Hardware/Timing/Back-End
• Standard interfaces for power, area, cost?

Parallel

Core

(MoC)

NIC

Component

Generic

Component

Stats. I/F

Power I/F

Cost I/F

Tech. I/F

"Processor"

Component

High-level

Interface

Low-level

Interface

Stats. I/F

Power I/F

Cost I/F

Tech. I/F

Events
Eve

nts

Router

Component

Component

Events

Events

Eve
nts

Component

Events

E
ve
n
ts

Memory

Component

Instruction

Trace
Instruction

Execution

Message

Trace
Synthetic

Messages

Core Intefaces

Ad Hoc Interface

Analysis

Memory
NIC

Node

Protocol
Topology
Routers

Network

Execution
Trace
Stochastic

Application Models

Simulated Components

Parallel Simulator Core

FLASH

DRAM
Memory

Experiment Setup
ReportingSimulation Support

Processor

Simulator Framework Model

Parallel DES

MPI
Checkpointing

Statistics

Power Area
Cost

Configuration

Services

Vendor
Component

Open
Component

Vendor
Component

Open
Component

Simulator Core

•Simulator Core will provide...
–Power, Area, Cost modeling
–Checkpointing
–Configuration
–Statistics gathering
–Parallel Component-Based

Discrete Event Simulation
•MPI hidden from user
•Multiple clocks

•Components
–Ships with basic set of open

components
–Industry can plug in their own

models
•Under no obligation to share

Parallel SST Core• Strawman
– “API Testbed”
– < 1000 lines of code
– Demonstrates basic functionality

• Sim startup
• Component partitioning
• Checkpointing
• Event passing

• Current work
– System Description Language
– Refining Parallel DES
– Event interfaces
– Scaling

• Initial/Setup Mode:
– 1. Load config file(s)
– 2. Generate component graph
– 3. Partition graph
– 4. Instantiate components on each node
– 5. Dump initial checkpoint

• Run Mode:
– 1. Read checkpoint from disk
– 2. Apply Edits
– 3. Run Loop

• a. advance components upto time+dt
• b. exchange messages with neighbors
• c. goto (3a)

1.00

1.25

1.50

1 2 4 8 16 32 64 128

T
im
e/
St
ep

Ranks

1

2 3 4

5 6 7

8 9 10

11 12

XML

SDL

!

Point

1

2 3 4

5 6 7

8 9 10

11 12

•Weak Scaling
•Distance Based Opt.
•Minimal Partitioning

Consortium
• IAA Simulation effort is a community effort
• Seeking more partners...

• Current consortium
– Sandia (Structural Simulation Toolkit)
– ORNL (Scalable application models)
– U. Maryland (DRAMSim II)
– U.Texas-Austin (FAST)
– Georgia Tech (CAPSTONE/Manifold)
– JCAS (ORNL)
– Seshat (SNL)

1
100

10000
1000000

100000000
10000000000

1x
1

2x
4

8x
8

16
x3

2
64

x6
4

12
8x

25
6

51
2*

51
2

POP Grid (nproc_x x nproc_y cores)

06/09/2008 IAA Planning Meeting 5

FPGA-Accelerated Simulation Technologies

(FAST): Parallelized Simulators

Rename

RS

Br ALU

Decode

Fetch

dTLB

L2

L1

iTLB L1

ROB

Functional Model

When functional_path != timing path, timing model notifies FM

FM provides timing path instructions (rolls back)

The better the micro-architecture, the more frequently paths are the same

Timing Model

(FPGA)

MICRO 2007

Software full-system

sim with checkpoint

OR

Rollbackable proc

JCAS Vizualizer

Modeling Assertions

FAST

DRAMSim II

Initial Project Plan

New SDL

Remove BGL
Replace

Redo Wireup

Wrap
DRAMSim

Wrap
Processor Create NIC New Core

I/F Proc/MemI/F Proc/NIC

Proc+Mem
Test

Proc+NIC
Test

Define Inst.
Front!End I/F

Implement
Exec. FE

Define Group
Front!End I/F

Implement

Connect
Proc/FE

Proc+NIC+Mem
Test

Alpha

Understand
DRAMSIM

Understand
Proc

Port SST FE

New Structure

New SVN

Dynamic
Loading

I/F

Dynamic
Loading

New Msg.
Delivery

New Event
Loop

Port MPI Find Initial
Apps

Define
Tech I/Fs

Pwr/Fault
Models

Validate
Power Models

Define
Tech I/Fs

Pwr/Fault
Models

Validate
Power Models

Grouped FE

May 15
Basic Simulator Core

June 15
Early Components

Loading & Tech. Interfaces

July 15
Inter-Components Interfaces

Initial Applications

September 15
Alpha Release

Scott Hemmert

Scalable Computer Architectures
Sandia National Laboratories

SAND2009-2588C

Sandia is a Multiprogram Laboratory Operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy Under Contract DE-ACO4-94AL85000.

Of FLITS and FLOPS:
Balancing Energy and Interconnect Performance

Contributors

• Sandia
– Jim Ang
– Brian Barrett
– Ron Brightwell
– Kurt Ferreira
– Sue Kelly
– Jim Laros
– Kevin Pedretti
– Courtenay Vaughan

• Indiana University
– Torsten Hoefler

System-level Interconnect and Energy

• Interconnect performance is the key factor in determining how well
many applications scale

• With increasing bandwidths, interconnect power is becoming a real
concern
– Serdes don’t turn off well (OK, they turn off fine, they just don’t turn back on

quickly, due to channel initialization times)
• Uses power whether valid data is moving through the network or not

• A lot of discussion lately on minimizing picojoules/bit

• However, interconnects are not used in isolation and a system view
is vital to maximizing energy efficiency
– NIC and router architectures, topologies and MPI implementations all play an

important role

Application Case Study: CTH

Image courtesy of ASC

Asteroid Golevka measures about 500 x 600 x 700 meters. In this
CTH shock physics simulation, a 10 Megaton explosion was
initiated at the center of mass. The simulation ran for about 15
hours on 7200 nodes of Red Storm and provided approximately 0.65
second of simulated time.

• CTH is a multi-material, large deformation, strong shock wave, solid
mechanics code developed at Sandia National Laboratories. CTH
has models for multi-phase, elastic viscoplastic, porous and
explosive materials.

Application Case Study: CTH

As job size increases,
communication time can
grow to consume around
40-50% of the runtime.

CTH communication
is dominated by long
messages.

Shaped Charge Problem (weak scaling)

CTH Bandwidth Degradation Study

• Uses capabilities built into the Red Storm SeaStar interconnect to
turn off interconnect router lanes at boot time
– Links are made up of 4 3-bit subchannels that can be independently

enabled
• Measure application performance at full and one-quarter link

bandwidth

• At largest measured job
size, quartering
bandwidth leads to 32%
longer runtime

CTH Power Signature Study

• Power measured using Red Storm’s built-in current monitors

Total Node Power:

CPU: 37 (red)
SeaStar: 16 (blue/4)
Memory: 20 (estimated)
 73 Watts

Putting it all Together

• Assume interconnect power drops linearly with bandwidth
– 68% of the performance for 25% of the interconnect power

• Total power for ¼ bandwidth = 61 Watts (down from 73 watts)
– 68% of the performance for 83.6% of the system power

• Total Energy for two cases assuming full bandwidth runtime of X

• Net energy increase of 10% for ¼ bandwidth case
– Keep in mind this doesn’t count the energy used for the file system attached

to the machine or other machine room costs

Application Case Study: POP

• POP is an ocean circulation model derived from earlier models of Bryan, Cox, Semtner
and Chervin in which depth is used as the vertical coordinate. The model solves the
three-dimensional primitive equations for fluid motions on the sphere under
hydrostatic and Boussinesq approximations.

Image and description from http://www.lanl.gov/orgs/t/t3/codes/pop.shtml

• POP sends small-ish messages
(one run showed 16KB average
message size) and spends large
portions of it’s MPI time in
MPI_Allreduce (at large node
counts)

• POP is generally believed to be a
latency and/or message rate
bound application

Red Storm GP vs AP

Power Study from Indiana University

Torsten Hoefler, Timo Schneider and Andrew Lumsdaine, “A Power-Aware, Application-Based Performance
 Study of Modern Commodity Cluster Interconnection Networks.” To appear in IPDPS/CAC09, May 2009.

Solving the Message Rate Problem
• Problem: Message rate

determines effective bandwidth
• SST Analysis: MPI matching

limits performance
• Solution: Accelerate list

management with hardware
• SST Simulation

– Hardware
• Implement NIC/Router based on

RedStorm SeaStar
• Implement List Manager, ALPU, and

Match Unit, integrate with NIC
–“Translated” from FPGA RTL

• Validate against FPGA & Red Storm
– Software

• Create baseline offload MPI
• Modify MPI to use acceleration HQ

• Impact: Collaboration w/ Intel
– Intel licensing
– Keith Underwood “on loan” to Intel
– Foundation for IAA network project

H
ost

N
etw

ork Processor

RX DMA

TX DMA
SRAM

FIFO FIFO

FIFO

FIFO

Queue
Processor

FIFO

FIFO

FIFO

O
ther H

eaders

Data

M
atch

Dramatic MPI Acceleration

•Long MPI message queues
increase effective latency
dramatically

•Queue processor processes
messages more quickly

•Queue processor more area
effective than conventional
or threaded NIC processor

1x
4.6x
3.8x
7.7x

61.5x

Relative
Size

Baseline
Conventional

NIC Processor Queue Processor

Threaded NIC
Processors

System View is Vital

• First example showed a case where higher interconnect power
leads to lower energy to solution

• Second example illustrates how advanced features which add very
little to system power can improve performance, thus improving
energy to solution

• The system view is critical
– Interconnect is not an isolated system and only accounts for a portion of the

total system power
– Thus, higher interconnect power can actually lead to lower energy
– Understanding the true impact of the interconnect trade-offs can lead to

more energy efficient systems

Microbenchmarks

• Fallacy: Optimizing interconnects and MPI implementations to
microbenchmarks will necessarily improve application performance
(or at least won’t hurt it).

• Any optimization that reduces performance without reducing power
will lead to less energy efficient system
– Conversely, any optimization that increases performance without increasing

power will lead to more energy efficient systems

• Removing useful advanced features to improve NetPipe latency and
bandwidth will not generally translate to improved application
performance (and may actually make it worse)

• Coalescing identical zero-byte messages will not help any
application of which I am aware

• Measuring message rate under ideal conditions does not provide
useful information about message rate achievable by an application

• Measures message rate using communication patterns mimicking
those of scientific applications
– Simulation of computation/communication phase with variable working set

sizes (compute stage modeled by touching data to invalidate some portion
of cache)

Sandia Message Throughput Benchmark

– Each MPI rank both sends
and receives

– Variable number of peers

Conclusions

• It’s not necessarily about power, it’s about energy to solution
– Higher power systems can actually lead to lower energy to solution
– When peak power is a limiter, likely better off with a “smaller”, more

balanced system, than a larger, unbalanced system
• It’s not about peak FLOPS/Watt, it’s about the percent of peak that

can be sustained
– We pay an energy penalty for unused operations
– With rising awareness of energy-efficient computing, FLOPS/Watt threatens

to become the new HPL. Let’s not let this happen!
• This talk focused on interconnects, but other areas are equally

important
– What’s the application impact of slower, less complex cores

• Can in-order cores use wide floating-point units?
• Can applications scale to the dramatically increased number of cores?

• Components should be designed with a system view and
understanding of the application needs

Bonus

Model of Operation 2

Pseudo
Component

Te
ch

 A
PI

D
yn

am
ic

 L
ib

. I
/F

McPAT
Component

Setup() {
 setTech(90, LOGIC);
 L2Power =
 getInfo(CACHE,...)
}

Clock() {
 ...;
 Power = L2Power *
 L2Reads;
 reportPower(Power);
}

Co
re

 P
ow

er
 M

on
ito

r

reportPower();

struct {
 Watts currentPower;
 Joules totalEnergy;
}

getPower(Component)

Tabulate

getPower(Component)

Process()

1. Setup2. Component
Reports Power

3. Power
Request

4. Pwr/
Energy

Returned

DES APIs

Key API Calls
Construction

Constructor(map<str,str> param);

Component

serialize(Archive &a);

addLink(int link_num, Handler);

ClockRegister(Freq, Handler);

handleClock();

recvHander(event *e);

Link

Send(Time_t t, Event *e);

Event* Recv();

Link(latency);

Event

 arrivalTime();

source();

 destination();

Current Strawman

User Defined

Simulation::Run()
•Current strawman

–Advances through each
cycle

–No Opt-out mechanism for
clock

–No easy support for multiple
clock domains

•Future Parallel Proto
–Clocks and communication

events all in queue
–Skip event-less cycles
–Clock events special cased

while(1) {
 cycle++;
 foreach component {
 component->preTic();
 }

 while(event =
 getNextEventThisClock(queues)){
 event->component->handleEvent();
 }
}

while(event = getNextEvent(queues)) {
 cycle = event->time;
 if (event->isClockEvent) {
 event->component->preTic();
 reschedule(event, queue);
 } else {
 event->component->handleEvent();
 }
}

Current
Strawman

Future
ParallelProto

Parallel
•Checkpointing and
message exchange are
also queued events

•Possible optimization:
different exchange times
for each neighbor, based
on partition

while(event = getNextEvent(queues)) {
 cycle = event->time;
 if (event->isClockEvent) {
 event->component->preTic();
 reschedule(event, clockPeriod);
 } else if (event->exchange) {

startSends();
recv();
finishSends();

 reschedule(event, minPartition);
} else if (event->checkpoint) {
checkpoint();

 reschedule(event, checkPointTime);
 } else {
 event->component->handleEvent();
 }
}

Sending an Event

void compLink::sendEvent(event *e) {
 e->_arrivalTime = theSim->cycle + latency;
 e->_src = source;
 e->_dest = dest;
 if (destination is local) {
 theSim->eventQ.push_back(e);
 } else {
 theSim->
 remoteEvents[destRank].push_back(e);
 }
}

Calculate arrival
time

(may include BW
calculation)

Queue local
events

Store remote
events

(To send later)

