

Release Mitigation Safety Spray System for Chem Demil Applications IPR

**September 2, 2009
Sandia National Laboratories**

**Rita G. Betty
Dan Lucero
John Brockmann
Mark Tucker**

Original Funded Proposal

Scope and Schedule

- **Tasks/Deliverables**

- **Task 1:** Test decon candidate chemistries for compatibility with current chem detection systems
- **Task 2:** Modeling, analysis, and testing to design spray safety system to mitigate release in EDS operational geometry and environment
- **Task 3:** Build and install prototype spray mitigation safety system at selected operational test location
- **Task 4:** Test and characterize performance of installed prototype system

Deliverables: Prototype spray mitigation safety system, installed and tested in a selected operational environment

- Original Budget – FY 09, \$500K; FY 10, \$500K
- Amended schedule - Redirected to PBA application (?)
- Self-determined scenarios, \$635K, aggressive 10-month year schedule (\$630K spent to date)

Schedule (assumes funding arrives by October 2008)

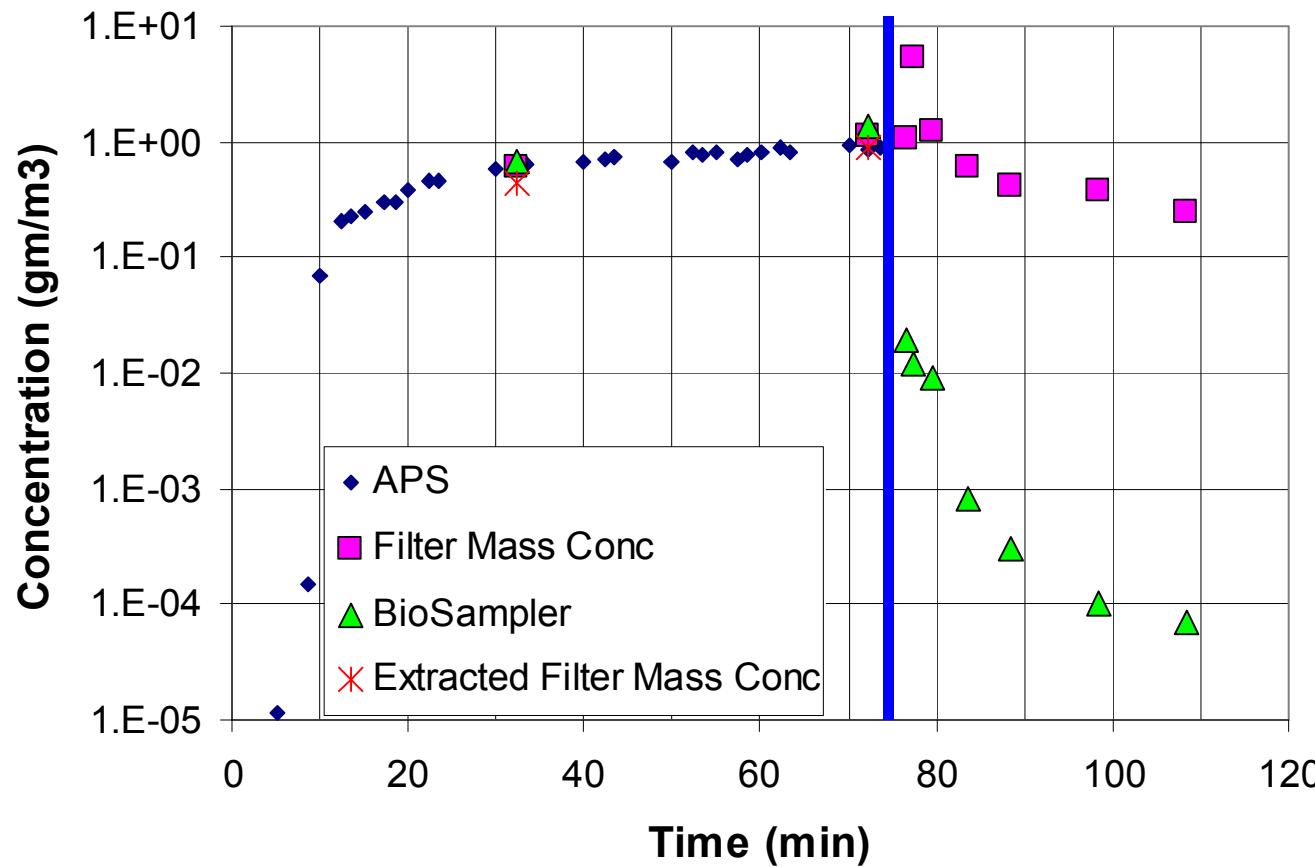
Feb 2009 – PM 5: Decon chemistry selected (Task 1)

May 2009 – PM 8: Preliminary spray safety system design completed (Task 2)

September 2009 – PM 12: Spray safety system design finalized (Task 2)

June 2010 – PM 21: Prototype installation complete (Task 3)

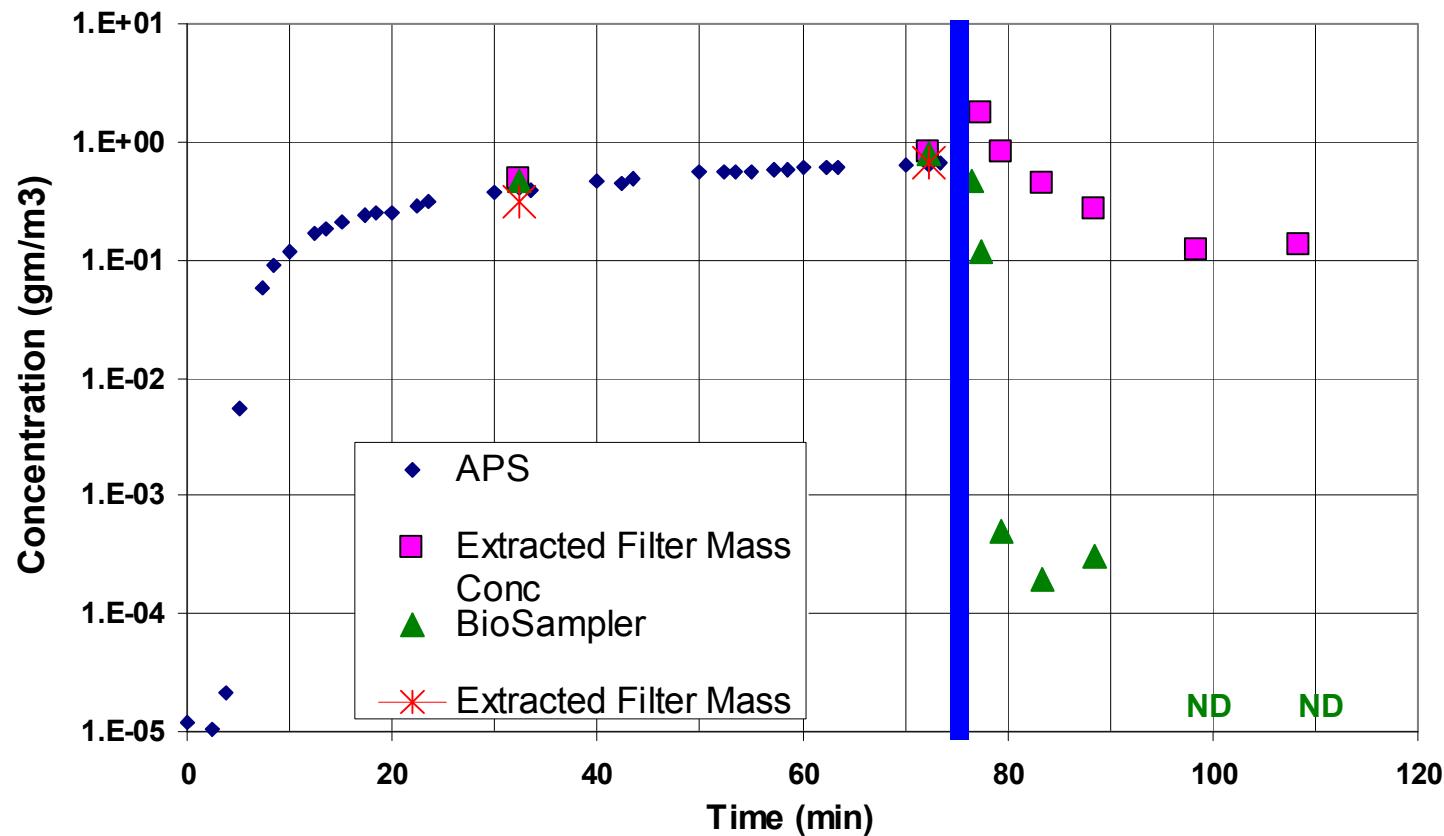
September 2010 – PM 24: Testing and characterization of prototype system complete (Task 4)


Significant progress towards an engineered solution

Project Status

- **Modeling, analysis, and testing to design spray safety system to mitigate release in EDS operational geometry and environment**
 - ✓ Nozzle characterization – Well defined
 - ✓ Modeling for proposed scenarios – Mustard and Phosgene
 - ✓ Chemistry optimization – Successful at bench scale
 - ✓ Results of aerosol chamber tests
 - Maximum immediate efficacy following 1-minute charged spray is >3 orders of magnitude; 5 orders of magnitude 20 minutes post-spray and ND at 30 minutes post-spray
 - Filter samples provide confirmation of pre-spray simulant concentrations and rate of particle fallout post-spray
 - Filter samples also provide comparison of rate of post-spray particle fallout to neutralization rate of simulant captured in vapor and aerosol droplets (as collected by BioSamplers and measured by GC)
 - Analyses of pooled floor samples – non-detectable

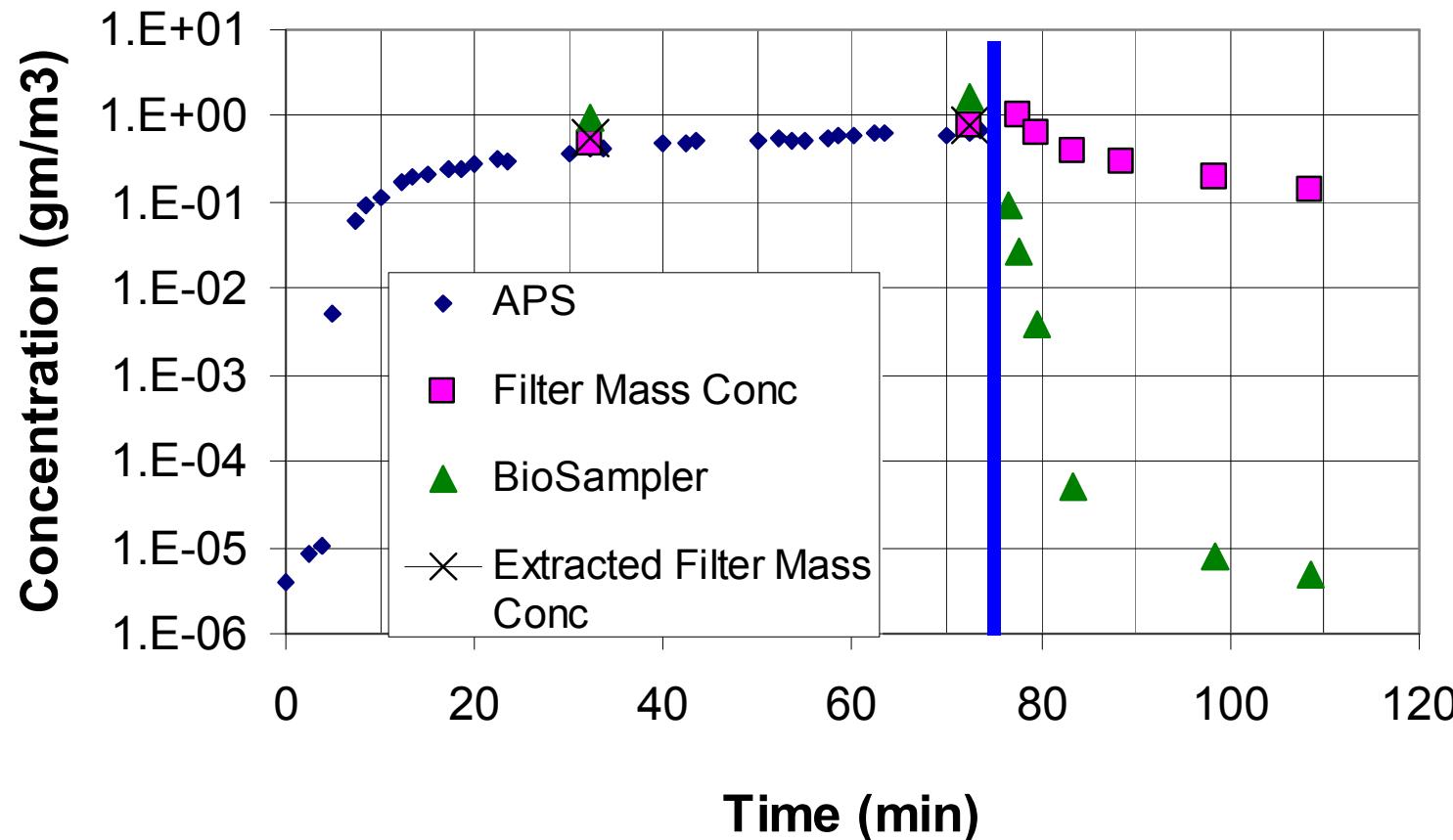
Conclusions - Spray density capability of new structure based on experimental outcome provided by smaller aerosol chamber tests; increased efficacy demonstrated by varying spray parameters.


Rapid Knockdown and Neutralization of Aerosolized G-Agent Simulant, 1-minute Charged DF200 Spray in an Unmixed chamber environment

Maximum efficacy of >4 orders of magnitude reduction at 30 minutes post-spray

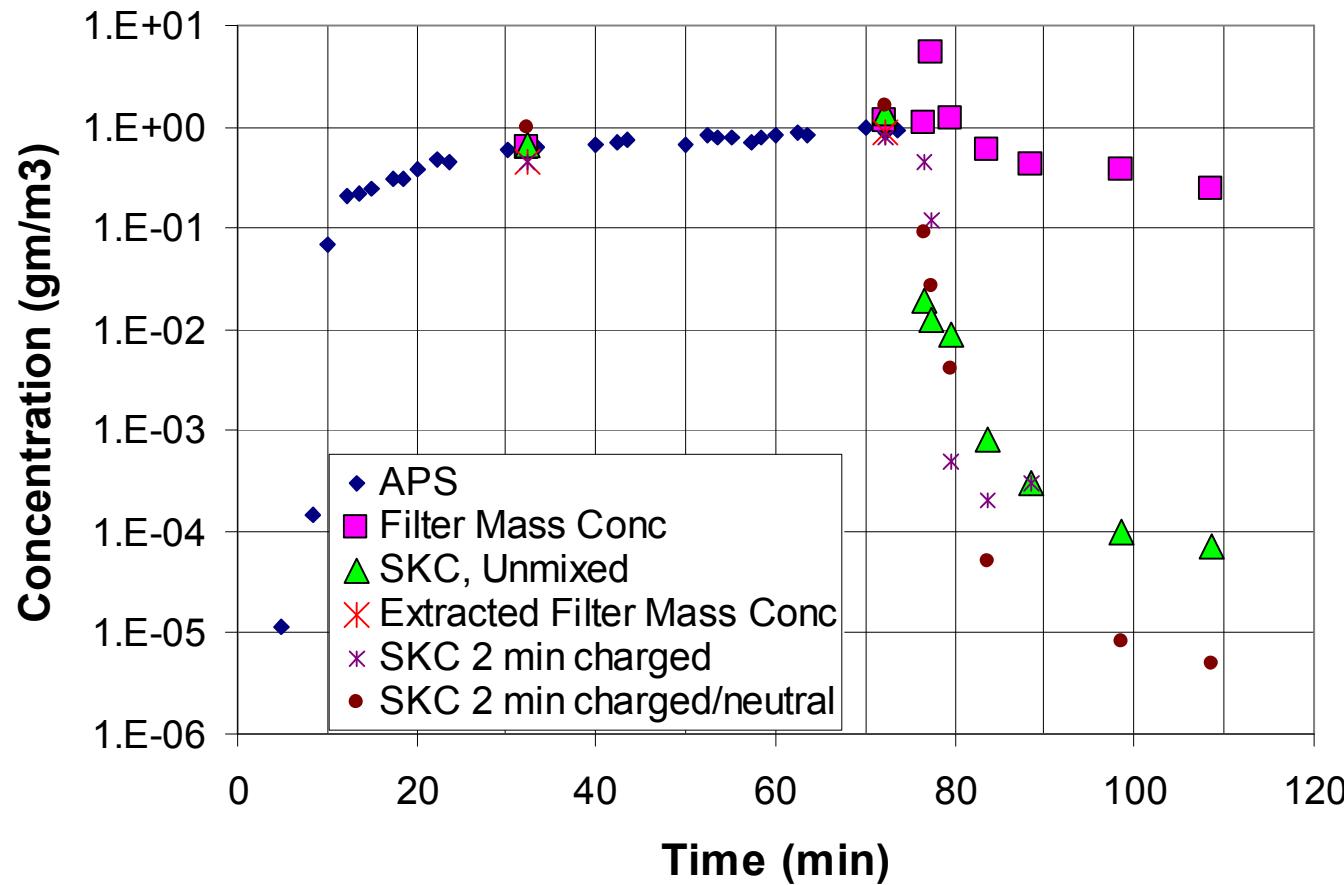
Rapid Knockdown and Neutralization of Aerosolized G-Agent Simulant, 2-minute Charged, Staged DF200 Sprays

Reduced air flow for Minute 2



Increased neutralization rate with 2-minute, charged spray deploying smaller (~ 30 μm) than larger droplets (~ 60 μm)

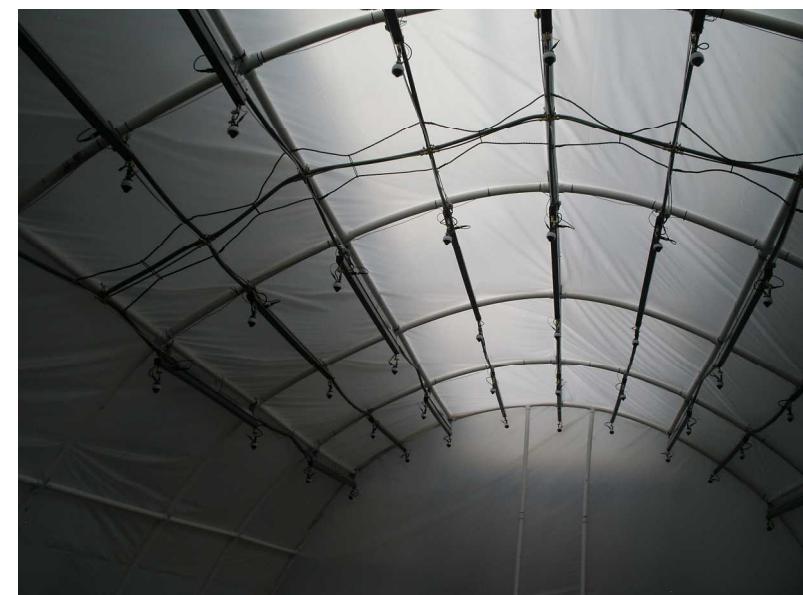
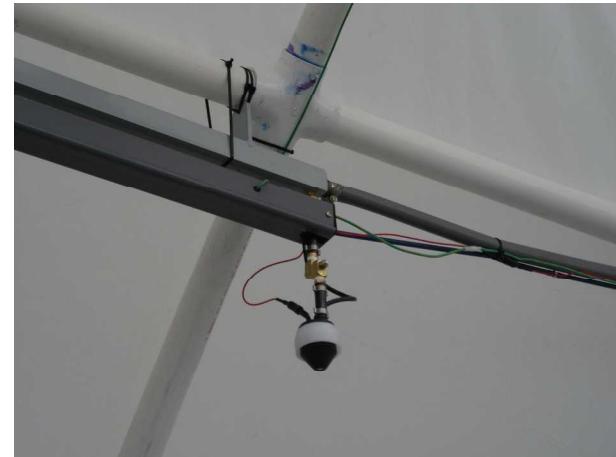
Rapid Knockdown and Neutralization of Aerosolized G-Agent Simulant


1-minute Charged & 1-minute neutral DF200 Sprays

Reduced air flow for Minute 2

Maximum efficacy of >5 orders of magnitude at 30 minutes post-spray

Increased reduction of airborne concentration is impacted by increased spray duration and change in electrostatic charge

Improved knockdown by change in spray parameters

Project Status, con't

- **Modeling, analysis, and testing to design spray safety system to mitigate release in EDS operational geometry and environment**
 - ✓ Design of prototype system
 - Completed, based on current experimental spray densities
 - Spray nozzle booms are modular, can be readily re-located
- **Evaluation of MINICAMS**
 - Incomplete, attempted DOS-based system; will incorporate purchase of software within Roadmap
 - “If TVA wants to provide MINI-LINK systems or CHROM-LINK systems to Sandia, then we would more than happy to provide upgraded software to them as needed. Otherwise, because we do not sell stand-alone MINI-LINK or CHROM-LINK software, we would prefer that TVA not provide stand-alone software to them either.” April 20, OI Analytical
- **Build and install prototype at SNL**
 - ✓ Required extensive planning for ES&H permits & procedures, site permits
 - ✓ Some site preparation and installation costs offset with contributing SNL Center support funds
 - ✓ ESS technical evaluation and consultation

Prototype Mitigation Spray Safety System at Sandia National Labs

Roadmap Phase I

- **Test and characterize performance of current prototype system**
 - Complete experimental in current aerosol chamber (\$72K, 6 weeks)
 - Six tests: optimized chemistry for G-agent & mustard simulants
 - Increased mixing fan capability
 - Staged Sprays using optimized chemistry, two simulants
 - Complete MINICAMS interference assessment - software purchase
 - Demonstration to provide an assessment of performance and proof of concept in operational geometry and volume
 - Based on Threat Scenarios 1 & 2
 - *DMMP as simulant?*
 - Assess a reduced # of sampling points in operational volume
 - Proposed 9x9x3 grid, 21 Samplers in cluster design (6 samplers/cluster), 126 Total Samplers \$6K/node, 4 weeks to install, Lab View programming, large pump
 - Incorporate BROOM to increase speed, ease and accuracy of sampling collection, track analyses, provide sampling and simulant analyses contour maps
 - Additional mixing capability, DC valves and DC power supply
 - Estimated hardware costs of \$185K
 - Spray system functionality testing (test manifolds, switch and high voltage controls) – 4 weeks, ~\$118K labor plus purchases

Roadmap Phase I, con't

- 1 pre-Demonstration readiness test – 1 week prep, 1 week to assess, perform (\$32K labor and materials)
- Deliver Full-Scale Demonstration – 1 week prep, 1 week to assess, perform and preliminary report (\$46K labor and materials)
 - Provides proof of concept in operational geometry and volume
- Analysis and Reporting (\$110K labor plus purchases)
- Management and Development (\$118K)
- Travel to CWD, 4 staff personnel (\$20K)
- BROOM Integration (\$20K)
- Schedule:
 - October-December, 2009 – Purchases, installation
 - January-February, 2010 – Characterization of operational volume
 - March 1, 2010 – Pre-demonstration readiness
 - April 1, 2010- Final Demonstration
 - May, June – CWD 2010
- Go/no-go for larger full scale application

Estimated cost of Phase I - ~\$700- \$720K

Roadmap Phase IIA

A Fielded System, 2010

- **Field, install and test prototype system**
- **Prototype assembly and deployment (\$385K)**
 - Spray system will mount on existing structure
 - Additional sensors, detect & deploy – automated, or manual?
 - Hardware (tanks, plumbing, air compressor, electrical, data acquisition, sampling/detection pre-filters, floor containment) - \$100K
 - Shipping, logistics (\$50K)
 - Travel for design
 - 1 staff + 1 tech, $\frac{1}{2}$ time for 6 months; plus .25 FTE
- **CONOPS and Guidance for Use (\$160K, labor and purchases)**
 - 2 staff, $\frac{1}{2}$ time (6 months)
 - Understanding of current event response is 1st task!
- **Travel (\$92K)**
- **Management (\$63K)**
- **Operational Demonstration at facility (Qualification Test - \$110K)**
 - Travel - 5 personnel, 4 weeks each (\$20K)
- **Schedule – 6 months from identification of location, ideally June – November, 2010**

Estimated cost for Phase IIA – \$710K - \$725K

Phase IIB - Technology Development Roadmap

- **To explore and bound the PERFORMANCE ENVELOPE, we need the following:**
 - Additional modeling to narrow parameter space for testing
 - Different Threat scenarios will be tested and evaluated
 - Full Scale experiments to pinpoint efficacy and capability
 - Increase sampling density and confirm density of instrumentation demonstrates smooth contour; alter if necessary
 - Incorporate BROOM to increase speed, ease and accuracy of sampling collection, track analyses, provide sampling and simulant analyses contour maps
 - More heavily instrumented capability

R&D focused to improve & optimize prototype system for different agents

Phase IIB - Technology Development Roadmap, con't

- **Four primary parameters provide effective neutralization**
 - Droplet size
 - Staged Sprays of multiple spray sizes to enhance overall performance
 - Charging
 - May enhance efficacy
 - Enhanced particle collection
 - Magnitude of applied voltage may impact aerosolized peroxide concentrations
 - Chemistry
 - Mixing – large gains in efficacy possible (increased # of collisions and contact time)
 - **Mixing characterization** w/ smoke (propylene glycol) to assessment flow and movement in chamber
 - 3 confirmatory measurement methods, 10 DustTracs (log data), filters and GC prior to spray; purchase FID
 - Macro vs. Micro-scale mixing
 - Macro-scale: Fans, nozzle number, position and orientation, multi nozzles produce multiple droplet sizes
 - Micro-scale: Air entrainment, droplet/chemistry interactions can increase mixing and contact time
 - >1 mixing characterization test/day; blow air out and squeegee water out between tests
 - Schedule 2 months to complete mixing characterization

Optimization strategies based on staged sprays and improved mixing

Phase IIB - Technology Development Roadmap, con't

- **Baseline performance in smaller, 14.5 m³ chamber first, then perform in larger chamber (\$126K, 2 months)**
- **Additional 14 samplers provide a greater density of information (\$128K, 1 month)**
- **Determine efficacy over range of simulant material choices (\$534K)**
 - Choose simulants based on physical properties:
 - Vapor vs. particle
 - Vapor insoluble vs. water soluble vapor
 - Water insoluble particle droplets
 - Water soluble particle droplets
 - Eight full-scale simulant tests
 - Budget for 12 tests - Labor + materials, \$67K each
 - Schedule – 1/week, 1-2 tests per month maximum, 4 months duration
- **Analysis and Reporting (\$250K)**
- **Travel (\$66K) – increased for program development activities**
- **Management (\$231K, Staff + Post Doc)**
- **Schedule to complete full simulant testing – 6 months**
- **Parallel to Phase IIA if SNL management commits to increase in personnel resources**

Determine efficacy in optimized full-scale system
Estimated cost for Phase IIB - ~\$1,350K

Technology Development Roadmap Summary

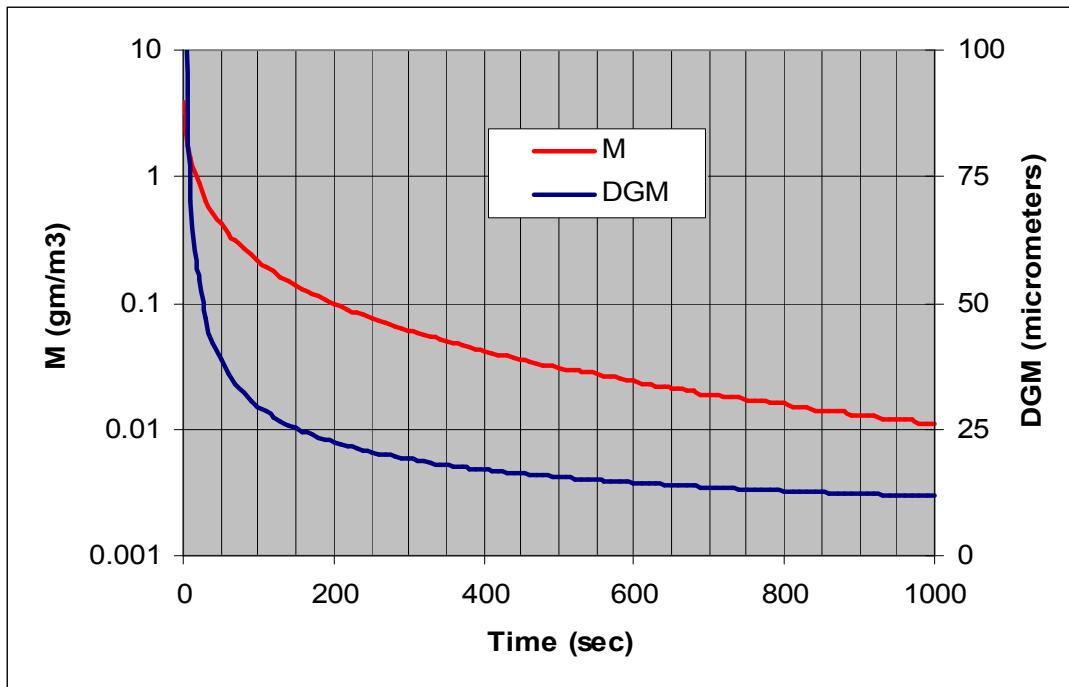
- **Current Period of Performance (Phase I)**
 - \$635K, from receipt of funding to today; 10 months
 - Operational geometry installed; Strengthened proof of concept in 14.5m³ & began exploring optimization strategies
- **Phase I - Test and characterize performance of current prototype system**
 - \$710K, 6 months (October 2009 – April, 2010)
- **Phase IIA – Fielded System, Operational Demonstration & CONOPS**
 - \$720K, 6 months (June, 2010 – November, 2010)
- **Therefore, from project start to Fielded System**
 - \$2,065K, 22 months
- **Phase IIB – R&D to bound the Performance Envelope**
 - \$1,350K, 12 months (January, 2011 – December, 2011; could conceivably start in June, 2010)

From project start to Fielded system and Optimization to Bound Performance Envelope – 34 months, \$3,415K

Our Team

- **Acknowledgements:**

- Brandon Servantes
- Jonathan Leonard
- Mollye Wilson
- Ashley Allen
- Andres Sanchez
- Matt Tezak
- Richard Griffith
- J. Bruce Kelley
- Brent Haroldsen
- Duane Lindner
- Dan Rondeau


Backup Slides

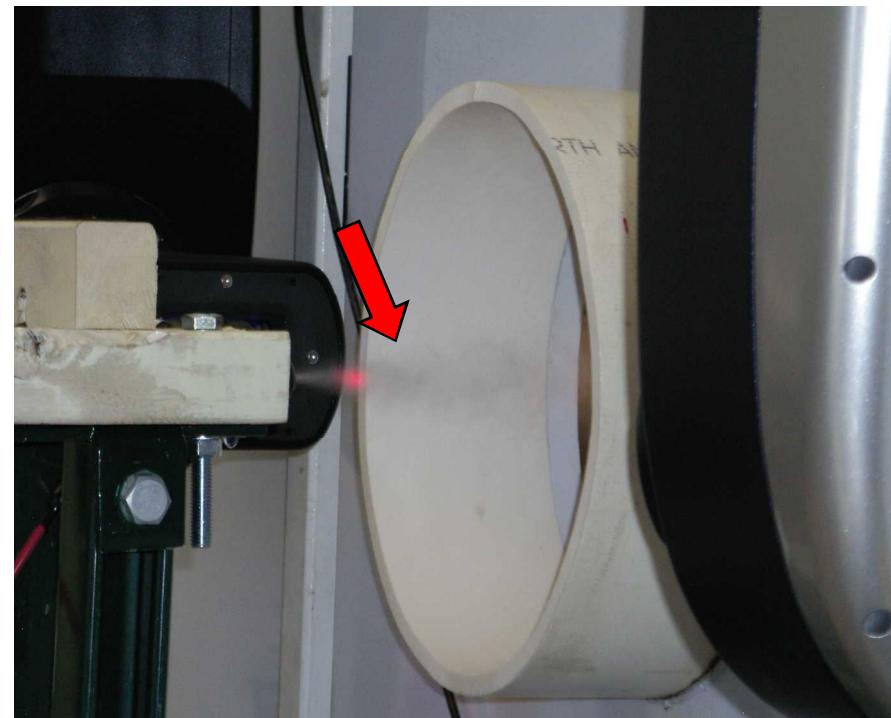
Threat Scenario #1

Based on a theoretical accident at a typical EDS deployment and operation site such as Spring Valley, MD

- 30' by 60' by 12' to 19' high containment structure
- 4.2 inch mortar shell, center burster configuration with 0.73 pounds of explosive
- 3.0 Kg of HD
- Source term is a liquid drop dispersion
 - Geometric mass mean droplet diameter of 150 μm
 - Estimated geometric standard deviation of 2.5 μm
- Initial airborne dispersion mixed throughout the building volume of $\sim 4.8 \text{ gm/m}^3$; The larger drop sizes will settle out fairly quickly.

Threat Scenario #1 Definition

- Airborne drop size and mass concentration decrease from 150 to 30 micrometers and 3.9 to 0.22 gm/m³ in 100 seconds
- ~ 0.9 gm/m³ additional vapor for a total airborne concentration of 4.8 to 1.12 gm/m³

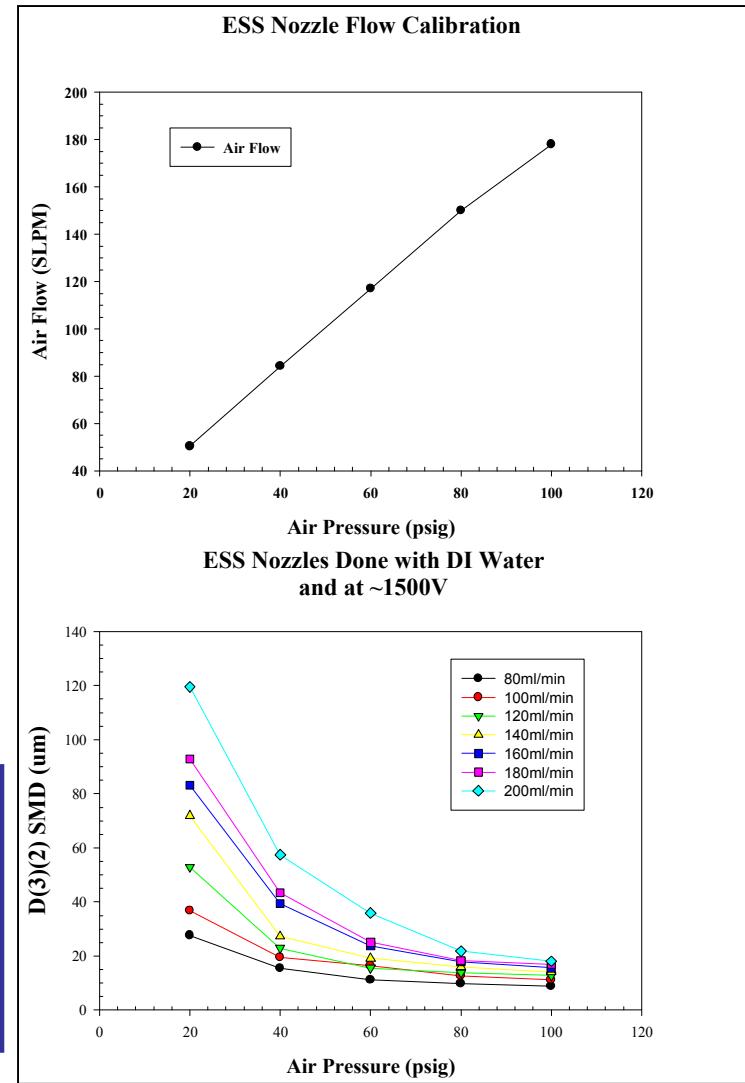

We will design to mitigate this airborne source.

Threat Scenario 2

- **4.2 inch mortar shell, 6.25 pounds of phosgene**
- **Explosive dissemination**
- **Average concentration of 4.72 gm/m³**
- **Assume that all of the phosgene will be vaporized**
 - any drops impinging on surfaces will vaporize
 - given volume of air has sufficient heat capacity to vaporize all 6.25 pounds of phosgene with less than a degree K drop in temperature.
- **Livens projectile, 28 pounds of phosgene**
- **Buster of 2.11 oz (60 gm) TNT**
- **21 gm/m³ average concentration phosgene will be vaporized with about a 4 degree K drop in air temperature**

ESS nozzle and Aerosol chamber characterization

- **Test and characterize new ESS nozzle design (Spring 2009)**
 - Vary air and liquid flows to produce varying droplet sizes and spray densities
 - Measure droplet sizes
 - Average droplet diameter $<30\mu\text{m}$ (@ 100 psi dispersion air)
- **Other nozzles capable of generating smaller droplets may also be tested**



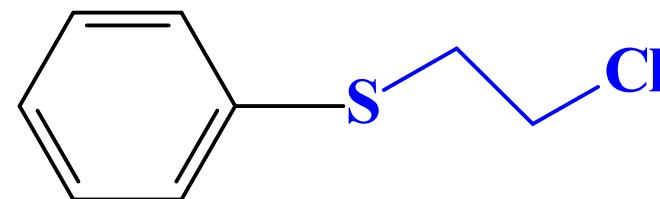
ESS nozzle characterization (side-view) – A close-up photo of the spray emitted from the ESS nozzle tip (red arrow).

ESS nozzle and Aerosol chamber characterization

- Near-linear response with respect to air flow (SLPM) and air pressure (psig).
- Volume mean particle size (μm) as a function of various liquid flow rates (80-200 ml/minute) and various air pressures (20-100 psig).

We defined test spray parameters based on nozzle characterization and desired performance.

Chemistry Optimization


- We will optimize the DF-200 chemistry to better mitigate for HD releases
 - Increasing solubility of agent into formulation is key

Decontaminant	HD Simulant (solution tests)	
	5 Min.	60 Min.
DF-200	70.0	99.8
DF-200, modified	99.3	ND

Mustard (HD)

2-Chloroethyl phenyl sulfide

Extensive effort to plan, purchase and install new Sprung Structure

- **All of the ES&H permits and procedures have been written and are either in review or have been approved and they include:**
 - NEPA - Written and through first review process, - To purchase and install Sprung Structure.
 - Security Service Request - Written and Approved - To remove security fence or install a man gate.
 - PHS -Written and Approved - To install, Sprung Structure, Spray System and perform demo.
 - OP - Written and in Review - For construction activities, erect Sprung Structure.
 - Discharge Permits - Written and Approved - For discharge of DF200
 - Biological Survey Permit - Written and in Review - To determine that there are no wildlife issues
 - Dig Permits - Written and in Review - For Grading, leveling and surface preparation.
 - Utility Spotting Permit - Written and in Review - For spotting Utilities before surface preparation.
- **The costs for erecting Sprung Structure:**
 - 30' x 80' Sprung Structure with 2 man doors, and 2 roll up garage doors with Sky Lights - \$73K
 - Site Preparation - \$30K - Includes Clearing Site, Grading, Gravel work, Creating a Man Gate in Fence, Rental Equipment and Setup and installation of Sprung Structure.
 - Site Preparation with optional concrete footer - \$38K - This is the preferred option, it would allow us to pour a permanent concrete floor later in the future, if we get additional funding and or customers.
 - Temporary Leak Proof Floor - \$5K to \$30K there are a lot of options here, we could go as simple as lay down a leak proof tarp or build a wood floor and seal with roofing material, or the most expensive option would be asphalt or concrete.
 - Spray System - \$10 to \$30K the details have not been worked out on this yet and is only a rough estimate.
- **Estimated Total - \$125K to \$150K**

Dan Lucero, 1/26/2009