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» Characteristics
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;’j DSMC Procedures

» Since the inception of the original DSMC algorithm
(1963), there have been no major changes to it.

« DSMC has been shown to provide solutions to the
Boltzmann equation more accurately than any other
numerical method.

* The original 1994 DSMC algorithm (DSMC94) has
been criticized as being computationally inefficient.

* Bird’'s new DSMC algorithm (DSMCO07) addresses
these concerns while maintaining the accuracy of the
method.
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# Overview of Sophisticated DSMC

 Basic features of DSMC algorithm retained
— Move (ballistic at molecular velocity)
— Collisions (binary, molecular chaos)
— Molecular models (VSS, VHS)
— Collision frequency calculation
— Sampling
Changes in collide
— Nearest neighbor collisions
— Virtual collision cells (VCS): nearest-neighbor (NN) collisions, N? operation (N<30)
— Adaptive transient collision cells (TASC) based on a background grid (N>30)
— Exclusion of latest collision partner: physically realistic requirement for NN schemes
Changes in temporal advection

— Two time-steps used @ @ e )
— Global time step '\ .| @ ki

— Cell-based time step ®
Changes in time-tracking / :ﬁ ? -
— Global time \../ ./’

— Cell time

— Molecule time ./9 '\
Separate sampling and collision cells .\‘
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- '
} DSMC94 Collision Partner Selection

« DSMC94 randomly selects collision partners from a cell
» Average distance between two randomly selected points In

an n-D cell:

—-1-D =0.333...
—-2-D=0.521...
—3-D =0.662...

* Independent of number of points per cell.

* Increasing the number of simulators per cell (N.) will not
reduce mean distance between randomly selected
molecules.
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;’-‘ VSC and TASC

* Virtual Sub Cells (LeBeau 2003)
— Deterministically determines the nearest neighbor
— More accurate
— More expensive than TASC for large N, O(N?)

* Transient Adaptive Sub Cells (Bird 2000)

— Stochastically determines the nearest neighbor

— Creates Cartesian sub-cell structure for each
collision phase

— Number simulators in each sub-cell ~ 1-2
— Less expensive for large N, O(N)
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%‘ VSC, TASC Spatial Discretization

« With VSC, TASC the average distance between nearest-
neighbor points in a cell is a function of:

« Dimensionality e A I B
* Cell Size
* Number of Simulators
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- Effect plateaus after about
* 50 sims/cell for 3-D
* 100 sims/cell for 2-D | 0
. 250 sims/cell for 1-D N
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%— VSC, TASC Result in Better Spatial Discretization

« The way potential collision partners are selected affects the average
distance between collision partners.

« The spatial discretization error is a function of the MCS/MFP ratio.
« ‘MCS” is Mean Collision Separation, “MFP” is Mean Free Path

Effect on Mean Collision Separation (MCS)

DSMC94 | DSMCO07
Simulators/cell no yes
Cell Size yes yes
Dimensionality yes yes

DSMC94 achieves only cell-size resolution
* Collisions between random simulators
DSMCO7 achieves sub-cell resolution
» Collisions between nearest neighbors
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;’-i Nearest Neighbor Procedures

* This improvement comes at a cost.

« VSC and TASC are computationally more expensive
than random selection.

* However, MCS will be smaller and the accuracy better.
« Same pair cannot have sequential collisions.
— Physically unlikely collision.

 Coarse, reduced-dimensionality implementations can
iIntroduce stress-tensor anisotropy.

— Molecular motion is always 3-D even in 1-D codes.
— Periodic boundary conditions on degenerate dimensions.
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# Temporal Discretization

DSMCO07 Time-Step Properties

* Local: Cell-based time step (At,): function of the local
collision frequency and average molecular speed

* Adaptive: Global time step (At,): function of the average
At (adjusted during run)

* Dynamic: Move and collision phases are not synchronized
for the whole domain (large low-collisionality regions)

 Collisions are considered for a collision cell
Move is considered for a particular molecule
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% DSMCO07 Advection and Collision

* Global time advances with small global time steps (Af))
Uniform throughout the domain, similar to DSMC94 time step

* Cell time step (At,) is local (cell-based) and is a fraction of the local
mean collision time (MCT) and the mean cell transit time (MTT)

» With this (cell-based) time step:

— Cells perform collisions for 2At, only when their “time” (cell time) falls
more than At, behind global time

— Molecules move 2At, only when their “time” (molecule time) falls more
than At, behind global time

At
il
Global time —H-HHHHHHHHHHHHHHHHHHHHHHH-H
Cell time —+@+——@+—+—
+—>
At
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%I Calculation of At

* Cell time step (At,) is local (cell-based) and is a
fraction of the local mean collision time (MCT) and
the mean cell transit time (MTT)

* Cells are examined at frequent intervals to calculated
new values for the time step.

* MTT is based on both thermal and average molecular
velocities.

— Typical values: MCT=3~5, MTT=2~4
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% Calculation of At

 The global time step is calculated as a function of (At,)

* When all cells have updated their (At,), the minimum,
average, and maximum (At,) are calculated.

» Af, is a user-specified function of the average At,
— Typical value At = 0.2 At

Cc,average

« Smaller values of Atg lead to more accurate simulations.
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%i Move-Collide: A Closer Coupling

* Molecules cannot travel across a sampling cell in one
move without considering collisions.

« DSMCO7 is more sensitive to time step.

* |t is physically inconsistent to allow molecules to
ignore collision partners during long advection phases.

» Similar to DSMC94 sub-cells. Time step should
conform to sub-cell structure.
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Assessing DSMC Convergence

Temperature Profile
* Nearly linear
* Near-continuum
« Small jumps near walls

Thermal conductivity from
CE theory and DSMC94 results

< g=K oT

ssvic| 2y

Average over central 40% of domain to
obtain a single convergence metric
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e
# Sophisticated DSMC (DSMC07)

Convergence Behavior

 The algorithm was implemented in a 1-D DSMC code

 To allow for a “fair” comparison:
— Time step was based on mean collision time only
— ldentical collision and sampling cells
— Virtual sub-cells were used for any N,

 To eliminate statistical noise, 100 simulations were
performed for each data point (ensemble averaging)
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}’- Numerical Error in DSMC Procedures

Four parameters control DSMC numerical error

« Sample size per cell (M) } —> statistical error
 Simulators per cell (N;)
» Cell size (Ax) , > discretization error

* Time step (At)

Error related to cell width, Ax
» Collision partners selected from anywhere in same cell
« Some potential partners move into adjacent cells
« Some invalid partners move into the same cell
Error related to time step, At
« Collisions occur at the end of time step
» Collisions should be uniformly distributed over time step
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fz" Convergence Behavior for N, — «
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* The algorithm is

* Insensitive to spatial resolution

« Spatial resolution constraint: Ax < A
* Almost linearly dependent on time step
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#Convergence Behavior for N, =10

Effect of Cell Size
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* For finite number of simulators, the algorithm is
* Insensitive to spatial resolution
* With error below 2% for all cases as long as At/t, < 0.2 @ Sandia
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* The algorithm exhibits a near-linear dependence on time step
» For nearest-neighbor schemes, time-step should conform to

gence Behavior for N, =10
Effect of Time Step
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Effect of Simulators Per Cell N, at At/t_=10

DSMCO7 N =7
DSMCO7 N=15
DSMCO7 N =30
DSMCO7 N_=60
DSMCO7 N =120
DSMC94 N =7
DSMC94 N =15
DSMC24 N =30
DSMC94 N =60
DSMC94 N =120
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Effect Search Scheme (At/t_,=10)
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* VSC and TASC give similar results for small N_
» Forlarge N, TASC may not always pick the nearest neighbor.
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#Convergence Behavior for N, =15
Effect of Time Step
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For large At/t, and fine Ax/A, the error of DSMCO7 can be
greater than DSMC94!

Sandia
National
Laboratories



g
e 'Convergence Behavior for N, =15
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Limiting the Time Step error

1.2 =

I

Axf)=1.662
Axf3=0.831
Ax/H=0.415
Axf»=0.208
Ax=0.104
Axf)=1.662
Ax/f?=0.831
Ax=0.415
Axf»=0.208
Ax{3=0.104

At=At
At=min{At_At)

1.05

DSMCO07

e — -

The DSMCO7 time step At is based on both
« mean collision time t_, via At oc t,
* mean cell-transit time t,, via At, o t,
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}.’ DSMC94

Functional Form of Error

Best-fit correlation function for DSMC94

2 2
% =1.0001+ 0.0286£§j + 0.0411(%j

o

_0.01[§]2 (&jz 0471+ 1 F {At , AX,[MH

t, A N, N, [t 4 ¢t

DSMC94 limiting convergence behavior is in agreement with GK theory
— Quadratic convergence in time step (Ax/A — 0, N, — )
— Quadratic convergence in cell size (At/t, — 0, N, — o)
— Linear convergence in 1/N,; for N, > 30 simulators/cell

— Coefficients in good agreement with GK theory
— Cross terms needed for finite discretization
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y DSMCO7

Functional Form of Error

Best-fit correlation function for sophisticated DSMC with At = At

2 2
%:0.99508+0.06289 [Z'Atj+o.04780(—2“j 10.00267 g)

(0]

2 2 2
_o.00193(2'mj (ix) +o.09216N1 +N1 F Z'At,AX,[Z'M }

(0]

tO C Cc tO ﬂ’ tO
DSMC limiting convergence differs from Green-Kubo (GK) behavior
— Linear convergence in time step (Ax/A — 0, N, — )
— Weak quadratic convergence in cell size (At/t, > 0, N, —» )
— Linear convergence in 1/N. for N, > 30 simulators/cell

— Cross terms needed for finite discretization (but in general
smaller than for DSMC94)
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}' Assessing Efficiency

* |s the new method computationally more efficient
than the old one?

« “Efficiency” is essentially the amount of time that can
be simulated with a prescribed accuracy on the same
computational platform.
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0.05

Hypersonics Simulation

Mach 11, 25°-55° blunt biconic

0.2

600
g 400
. 200
| ]
0.1 0.2

Flow Conditions
* Nitrogen gas

* Re = 140,000/m
« T,=3280 K

« V=2072 m/s

« Kn =0.02
M=11.3

e T=42K

* T,,=1983 K
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},-‘ Recirculation Zone

5 0 I I I I I I I I I I

shear stress, Pa
o
o

-100

_ L L L L I L L L L I L L L L
1500 0.05 0.1 0.15

X, m
Extensive studies, (Moss, Markelov) indicate that the extend of
the recirculation zone is A, =21.5mm.
As is sensitive to discretization parameters and is used as

a convergence criterion. @ Sandia
National
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50

DSMC94
DSMCO7
Holden et al. (2001)

MC94 & DSMCO07 Simulation Speed
when Achieving Equal Accuracy

50F !
DSMC94
45 |+ DSMCO7
[l Holden et al. (2001)

5:_|||\|||

100 T F

0 — 0.65 I I 0?1 I I 0.15 007 0075 ‘ 668; ‘ Id.t:Bél I 6Bé I Id.t;gél ‘ IO?1I D
,m X, m
DSMC94 MCS = DSMCO07 MCS
DSMC94 DSMCO07
# Cells Sims/cell As/Ag, | ns/proc-min | # Cells Sims/cell As/Ag, ns/proc-min
250,000 10 76% 8.72 250,000 10 94% 5.61
1,000,000 10 94% 1.48 1,000,000 10 100% 1.01
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DSMCO07 Simulation Speed

Limited Collision Partner Search
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DSMCO07
DSMC07-30
DSMC07-10
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- Tl

DSMCO07
DSMC07-30
DSMC07-10

heat flux, KW/m?
(93]
o

)
o
T =TT

10

1s 807 007 008 0085 008 0085 01 0105
X, m
Algorithm As/A, , ns/proc-min
DSMCO07 99.5% 1.01
DSMC07-30 100% 1.19
DSMC07-10 99.0% 1.33
DSMC94 94.4% 1.48
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Simulators or Cells?

'
| “ ' DSMCO07 Simulation Speed

£ {1 o e e e e e e e e e e e e e e e e e e 4

DSMCO07-10Sims - Fine Grid

DSMCO07-108ims - Fine Grid - - -
DSMCO07-58ims - Fine Grid i 1 DSMCO07-55ims - Fine Grid
¥ DSMC07-10Sims - Coarse Grid i 40 DSMCO07-10Sims - Coarse Grid
150 B DSMCO07-5 Sims - Coarse Grid i DSMCO07-5 Sims - Coarse G

I

3]
[an]

hd
o
T

heat flux, KW/m?
3
T T T I T T T
|
heat flux, KW/m?

10

/
[

By B Qo7 D075 6oe Duss 005 0086 01 D105
X, m X, m
Algorithm As/A, , ns/proc-min
10 Sims & Fine Grid 99.5% 1.01
5 Sims & Fine Grid 97.2% 1.16
10 Sims & Coarse Grid 94.4% 5.61
5 Sims & Coarse Grid 86.5% 9.51
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}»‘ DSMC Guidelines

DSMC94 rule-of-thumb guidelines
« Sample enough to drive statistical error down
« Keep time step smaller than ~1/4 mean collision time
» Keep cell size smaller than ~1/3 mean free path
« Use a minimum of ~20 simulators per cell

DSMCO7 rule-of-thumb guidelines
« Sample enough to drive statistical error down

» Keep time step smaller than ~1/3 mean collision time and
~1/2 mean cell transit time

» Keep cell size ~1/2 mean free path
« Use ~10 simulators per cell

Following these simple guidelines will lead to a discretization error ~2%
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%’ Summary

« DSMCO7 can achieve the same accuracy as DSMC94
using less resources.

« VSC/TASC is the main contributor.
* Dynamic time-stepping offers significant advantages.

 For nearest-neighbor schemes, time-step should conform
to effective spatial resolution.
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}j Assessing the Accuracy of DSMC

« Comparison of DSMC predictions to measured flow
field quantities is the ultimate criterion

« Simple, 0-D or 1-D problems can be very efficient
In assessing the accuracy of the DSMC algorithm
(or its implementation)

 Analytical solutions exists for flows in:

— Equilibrium
— Local thermodynamic equilibrium

— Near-equilibrium (Chapman-Enskog regime,
Kn~0.01)
— Thermodynamic non-equilibrium (Kn>0.01)
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Collision Frequency in
an Equilibrium Bath

Simulators per cell Vpquco7 /Vth

2 0.9969
0 1.0004
10 0.9994
30 1.0007
60 0.9970
120 1.0001

* Molecules HS "“argon”

» Walls fully accommodating
« Width 0.001 m (1 mm)
* Pressure 264.9 Pa (~2 torr)
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;" Collision Frequency in an

Equilibrium Bath with Gravity

Normalized Density Collision Frequency Ratio
-1 1 11 R L s
1.005 I 1.0005 _— —_
‘Ei 1 ii 1 ]
0.995 I 0.9995 ; ;
e ofz — of4 - ofa — O.I8 — 1 P 072 — Of4 — 0f6 — O.I8 1
x/L x/L
* Molecules HS "“argon”
» Walls fully accommodating

« Width 0.001 m (1 mm)
* Pressure 264.9 Pa (~2 torr)
* Gravity 9.81x10* m/s? (10 g) @ Sandi
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Fourier-Couette Benchmark Flow

Fourier Flow Couette Flow T
T4 - To Vi --l--t-,-.-'-'-*-- -1 Vo
heat flux q l shear stress t
XxX=0 x=L Xx=0 x=L

* Molecules VSS-Maxwell & HS “argon”

« Walls
« \Width
* Pressure
— L/A
— t,
— AT
- AV

fully accommodating
0.001 m (1 mm)
264.9 Pa (~2 torr)
~42

/1 ns (at 273.15 K)
70-400 K

100 m/s
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Comparing DSMC to
Near-Equilibrium Theory

Temperature profile (velocity profile is similar)
* Nearly linear

* Near-continuum, small jumps near walls

300 |
290 |

280 |

TempSratu re (K)
~J
Q

260 |

250 |

20, |,

* L ow level of statistical scatter can be achieved

Chapman-Enskog and Moment Hierarchy theory
DSMC results

 Thermal conductivity, viscosity: K, 1

q — K a_T T = ﬁ
DSMC | o Hpsuc ox

x/L

'o_ls" B (ij
81 DSMC

» Sonine polynomial coefficients: & /&, b./b
(—1)KI(5/2)!

3 (c'e,)
_;[(k—i)n!(i+(3/2))!j[<ézéx>

b g (DEk-DE (8
B Joge  FLKR=DU-D+@I2)Y (eg,)

i
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'
P ' DSMCO07: Hard-Sphere
} Transport Coefficient Profiles

T T | T T T | T | T T T 2 - " . I - T T | T T 1

DSMCO7
T — — - - CE

DSMCO7

15 ] -

Kosme/K
HDSMCIPL

05 -

O i L L L I L L L I L L L I L L L I L L L

| | | I | | | I | | | I | | | I | | |
0 02 0.4 0.6 0.8 1 % 0.2 0.4 0.6 0.8 .
x/L

x/L
« DSMCO07 and CE thermal conductivity and viscosity

— Low heat flux, low shear stress: Kn, = 0.006, Kn_ = 0.003
— Agreement in central region: normal solution

— Demonstrates accuracy in capturing transport properties and
non-equilibrium effects @ Sandia

National
Laboratories
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DSMCO07: Hard-Sphere
Sonine-Coefficient Profiles
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- DSMCO7 and CE Hard-Sphere Sonine polynomial coefficients a,/a, and b, /b,
* Low heat flux, low shear stress: an = 0.006, Kn_=0.003
» Good agreement in central region: normal solution
» Demonstrates accuracy of molecular velocity distribution S
ndia
@ National
Laboratories



y DSMCO07: Maxwell

Sonine-Coefficient Profiles
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- DSMCO07 and CE Maxwell Sonine polynomial coefficients a,/a, and b,/b,
* Low heat flux, low shear stress: Kn, = 0.006, Kn, = 0.003
» Good agreement in central region: normal solution
« Demonstrates accuracy of molecular velocity distribution
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DSMCO07: Maxwell
Normal Sonine Coefficients
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* DSMCO07 and MH Maxwell normal solutions for a,/a, and b, /b,
* Four DSMCO7 simulations: AT =70, 200, 300, 400 K
* MH: VSS-Maxwell (solid) and IPL-Maxwell (dashed) differ
« DSMCO07 and MH VSS-Maxwell normal solutions agree
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'
P 4 ' 2-D Problem
} Hypersonic Flow over a Wedge

DSMC94 T DSMC94

DSMCO07 ) * DSMCO07

Number Density Temperature
Gas Argon DSMC94 and DSMCO7 are in
Flow Speed Mach 5.463 agreement when the same

simulation parameters are used
Pressure 25 Pa

Wedge Angle 10°
Shock Angle 19.6°
Downstream properties are in agreement with shock theory
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;,-' Summary

DSMC can reproduce the infinite-order solution to
the Boltzmann equation.

There is a number of DSMC benchmark problems
where analytical solutions exist.

Higher-order moments are progressively more
difficult to capture.

Sandia
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Kosmc/K

DSMCO07: Maxwell
Transport Coefficient Profiles
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« DSMCO07 and CE thermal conductivity and viscosity
— Low heat flux, low shear stress: Kn, = 0.006, Kn_ = 0.003
— Agreement in central region: normal solution

Sandia
National
Laboratories



