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Presentation Purpose and Approach
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• Purpose: 

– Overview of nuclear reactor 
technology relevant to the Sodium 
Reactor Experiment (SRE)

– Description of the cause and  
progression of the accident and fuel 
damage that occurred in July 1959

SRE Facility (1957)

• Approach: 

– Reviewed available information on SRE design and July 1959 
reactor accident

– Review focused on accident causes and resulting fuel damage 

– Review covered only 2 weeks of operations at the site and did 
not include subsequent recovery activities or other Area IV 
operations



Presentation Outline
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• Background – early nuclear 

reactor technology 

• Description of SRE reactor 

• July 1959 sequence of 

events

• Reactor fuel damage

• Fission products* release 

mechanisms  

• Comments and observations

* Fission products are the atomic fragments left after a large nucleus fissions

SRE Facility (1958)



• Early nuclear power reactor development focused 
primarily on Light Water cooled Reactors (LWR)

- Water cooled reactors were selected for Naval 
applications

- Water cooled reactors were already being 
commercialized

- LWRs have limited efficiency (~33%) due to low 
temperature operation (~350º C, 660º F) 

- LWRs operate at high pressures (~2200 psi)

• Sodium (liquid metal) cooled reactors with 
graphite moderators were considered promising 
options for achieving higher efficiencies

• Sodium cooled reactors could operate at 

- Higher temperatures, higher efficiencies
- But still operate at lower pressures

ETEC 1985

Early Nuclear Power Reactor Development

Water and Sodium Cooled Systems

Shippingport  Pressure Vessel

Operational – 1957

(60 megawatt-electric)
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ETEC 1985

Overview of Area IV Reactor Operations
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• Area IV – research focused on 
development of new types of 
nuclear power reactors  

• SRE was the largest of the 10 
reactors operated in Area IV 

Facility Name
Power, 

kWt

Operating 

Period

Kinetics Experiment Water Boiler 1 07/56 -11/66

L-85 Nuclear Experiment Reactor 3 11/56 - 02/80

Sodium Reactor Experiment 20,000 04/57 - 02/64

S8ER Test Facility 50 09/59 - 12/60

SNAP Environmental Test Facility 65 04/61 - 12/62

Shield Test Irradiation Facility  50  12/61 - 07/64

S8ER Test Facility     600 05/63 - 04/65

Shield Test Irradiation Facility  1  08/64 - 06/73

SNAP Environmental Test Facility 37 01/65 - 03/66

SNAP Ground Prototype Test Facility 619 05/68 - 12/69

kWt = kilowatt-thermal                       SNAP = Systems Nuclear Auxiliary Power

Reactors Operated within Area IV (1956 – 1980)

Sodium as a Coolant

- Low pressure operation (boiling point of 883º C, 1621º F ) 

- Excellent heat removal

- Flammable in air

- Can become radioactive

- Melting point of 98º C, 208º F



Sodium Reactor

Experiment Description
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Overview of 

Sodium Reactor Experiment (SRE)

Design Rendition of

SRE Facility (1957)
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• The SRE was a 20 megawatt-thermal (MWt), low 

pressure sodium cooled nuclear reactor 

• Purpose of the SRE was to investigate different  

nuclear fuel materials and the use of sodium as 

a coolant

• SRE was operational from 1957 to 1964

• SRE did not operate on a continuous basis -

each experiment (or run) lasted up to a few 

weeks  

• Experiments were conducted under varying 

operating conditions in order to test designs 

and components,  which required frequent 

startups and shutdowns, and refueling 

operations

• During Core I operations involving uranium 

metal fuel; 14 experimental runs were

conducted between 1957 and July 1959
SRE Core and Vessel

Below

Ground               



SRE Core and Vessels
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SRE Fuel Bundle and Moderator Can
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SRE Fuel Bundle

11

A
p

p
ro

x
. 
 6

  
ft

.

Hanger Rod

Fuel Rod Jacket

(NaK filled)

6 inch Fuel Slugs

Helium Filled

Expansion Space  

• Uranium metal fuel

• 2.7% U-235 enrichment
(natural uranium is 0.7%

U-235)

• Fuel slugs are 0.75 inch 
diameter and 6 inches in 
length

• Clad in stainless steel tubes 

• Sodium-potassium (NaK) 
bonding between fuel and 
cladding

• Wire wrap around fuel 
bundles 0.75”
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SRE Fuel Bundle Cooling
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SRE Cover Gas and Venting

System Under Normal Operations

• Gaseous activation products* 
produced during normal 
operations would collect in 
the cover gas

• Cover gas was pumped to 
storage tanks to allow 
activation products to decay

• After decay to acceptable 
release levels, storage tanks 
were vented to atmosphere 
through a HEPA filter and 
stack 

• Stack was monitored with 
radiation alarms and 
automatic shut-off  valves to 
prevent  release of activation 
products exceeding 
acceptable levels
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* Activation products are materials made radioactive by neutron activation 



SRE Cooling Systems  
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• SRE core could produce up to 20 

MWt of power

• Primary sodium cooling loop 

removed heat to an intermediate 

heat exchanger

• Secondary sodium loop isolated 

core and radioactive coolant from 

power generation system 

• Numerous other pumps and valves 

existed to startup and control 

system operations

SRE Cooling System Features



Barriers to Release of Fission Products 

under Accident Conditions

• Multiple barriers were used to 
minimize release of radioactive 
materials 

- fuel 

- cladding 

- coolant 

- vessels 

• Physical and chemical 
characteristics of different fission 
products affected the probability 
of release from fuel or coolant in 
an accident

SOLID 

FUEL

Cover Gas

SODIUM      

METAL CLADDING – fission 

products release if cladding is 

breached 

SOLID FUEL – retains most fission 

products in matrix unless melted 

or vaporized 
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SODIUM – reacts with some 

fission products



General Types of Fission Products

– Inert gaseous species (Xe, Kr) are 
non-reactive; readily released from 
the fuel  

– Volatile species (I, Cs, …) have 
higher vapor pressures; generally 
reactive; released at higher 
temperatures

– Non-volatile species (Mo, Zr …) 
have low vapor pressure elements 
that generally remain with the fuel; 
less likely to be released
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Barriers to Fission Products Release
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Nuclear Fission of U-235
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U-235 Fission • U-235 “fissions” into two lighter nuclei  (fission 

products) 

• Fission products include most elements in varying 

percentages 

• Radioactive with a range of half lives:

I-131 (~8 days)

Xe-133   (~5 days)

Sr-90 (~29 years)

Fission Chain Reaction

• On average, the fission of U-235 also produces about 2.4 neutrons 

• One neutron is recaptured in U-235 to sustain the fission process

• Remaining neutrons escape out of system (or are absorbed into other materials) 

neutron

fission 

product

neutron

fission

product

neutron

Uranium 

235 nucleus

neutron



SRE Accident Description
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Status of SRE Operations 

Prior to Run 14 Fuel Damage Event 

• Run 8  Oxygen contamination observed in sodium; higher than 
expected temperatures observed in some channels

Fuel bundles and black residue removed, resulting in improved 
reliability of temperature measurements

• Run 9  High power run – fuel channel exit temperatures higher than 
expected

• Run 11  20 MWt power; fuel channel exit temperatures still higher than 
expected; fluctuations in primary sodium flow observed; several reactor 
scrams (shutdowns) experienced

• Run 13 Various temperatures measured across the core were 
observed to increase steadily with time 

1958 1959
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Observed Temperature and Power 

Variations Caused by Coolant Flow Blockages
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• Leak in primary pump seal allowed organic 
pump coolant (Tetralin, C10H12) to leak into 
primary cooling system 

• Tetralin decomposed at high temperature 
leaving an insoluble “carbon” material, 
which coated reactor internal components 
and formed partial blockages

• Blockages restricted coolant flow to fuel 
bundles, resulting in significantly higher fuel 
temperatures 

• Erratic power response observed due to 
sodium voiding and re-flooding

• Leakage of Tetralin and associated 
temperature anomalies were recognized 
during these earlier runs  

• Potential consequences of coolant 
blockages were not recognized 

Tetralin (C10H12) coolant 

formed carbon blockages 

in inlet channels

Higher fuel temperatures 

in partially blocked 

channels



SRE Accident Run 14 Summary
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• July 12 – Initial operation – higher than expected fuel temperatures in some channels; high 

radiation levels (~0.5R/hr) recorded in reactor building due to shield plug leakage

• July 13 – Startup after shield plug replaced; observed power changes were not consistent 

with control rod movements; reactor was shut down after a rapid power rise (excursion); 

power anomalies were caused by sodium boiling and re-flooding

• July 14-26 – continued operations at various power levels were conducted to investigate 

reasons for temperature and flow readings; highest fuel temperatures were recorded in the 

July 22-24 period

• Operations resulted in damage to 13 of 43 of the reactor’s fuel bundles – cladding 

failures and partial melting

• Fission products were released from the fuel into the reactor’s primary sodium coolant

• Primary reactor vessel did not fail, but some gaseous radionuclides escaped into reactor 

building from the cover gas 

• During Run 14 and the subsequent fuel recovery processes, fission products in the

cover gas were periodically vented to the environment

July 12, 1959    Start up          

July 26, 1959    Shutdown



Continued Operations During Run 14 

1. Core and sodium exit 
temperatures continued to 
increase

2. Highest fuel temperatures 
occurred July 22-24; most fuel 
damage probably occurred during 
this time

3. High fuel temperatures in blocked 
coolant channels allowed a low 
melting point alloy to form 
between cladding and fuel, 
causing local melting and cladding 
failure

4. Cladding was also breached as a 
result of fuel expansion and 
formation of the fuel/cladding alloy

5. Breached cladding allowed 
gaseous and some volatile fission 
products to be released to sodium 
coolant

6. Reactor shutdown on July 26th
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SRE Damaged Fuel Description

• 13 out of 43 total fuel bundles 
damaged 

• Damaged fuel bundles showed 
evidence of local melting and 
cladding failure

• Additional fuel bundles may have 
been damaged during removal

• Most fuel slugs were still intact 
(i.e., had not melted)
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Bottom section 

of damaged fuel 

bundle

Mid-section of 

damaged fuel 

bundle         

Mechanisms 

• Fuel/cladding melting 

• Thermal cycling, cladding failure

Intact fuel slugs on top of core 

during damaged fuel bundle removal          

Fuel Bundles Not Damaged 

Fuel Bundles Damaged



Observations Relevant to Releases

from Damaged Fuel*
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Cover Gas: Primarily noble gases observed in 

cover gas. Estimated to be less than ~1% of 

inventory. Radiation levels in cover gas much 

higher during and after Run 14. Iodine was not  

detected.  

Sodium Coolant: Levels observed for different 

fission products varied but were generally less 

than 1% of inventory. 

Iodine: Levels in sodium were less than 

expected. Iodine adsorbtion on internal 

structures was small.

Carbonaceous Material: Was an effective 

fission products collector (concentrations were 

~1000 times higher than sodium).

* NAA-SR-6890, “Distribution of Fission Product Contamination in the SRE”, R.S. Hart, March 1, 1962 

Review of accident included:

• Sandia calculation of inventory at end of Run 14 

• Review of retention and release mechanisms for the key fission products



Comparison of Core Radionuclide 

Inventory with Original SRE Analysis

• Sandia recalculated the SRE inventory after 

Run 14 using current methods (ORIGEN) 

– Based on best estimate of power history 

from early reports

• Sandia total inventory results were about 

10% lower than original analysis

– Noble gases (Xe, Kr) – essentially the 

same as original (1959) analysis

– Non-volatiles (Zr, Ba, Ru, Ce) – specific 

radionuclides differ, but totals slightly 

lower 

– Volatiles (I, Cs...) – Cs-137, Sr-90 

lower, but I-131 about 20% higher

• Original estimates were generally 

consistent with current Sandia inventory 

analysis  
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Hart, R.S., Distribution of Fission Product Contamination in the 

SRE NAA-SR-6890 Atomics International, March 1, 1962.

Total SRE Reactor Inventory, Curies

Isotope Half Life 
Hart

Inventory

Sandia

Inventory

Cs-134 2.062 y 200 80

Cs-137 30.0 y 8,700 7,754

Sr-89 50.5 d 160,000 148,100

Sr-90 29.12 y 8,150 7,512

I-131 8.04 d 16,800 21,390

Ce-141 32.50 d 127,000 136,200

Ce-144 284.3 d 169,000 159,800

Ru-103 39.28 d 75,200 83,620

Ba(La)-140 12.74 d 56,100 62,640

Zr(Nb)- 95 63.98 d 553,000 295,800

Kr-85 10.72 y 1,100 934

Xe-133 5.245 d 50,800 48,930

Xe-131M 11.9 d -- 408

I-133 20.8 h -- 62,420

I-135 6.61 h -- 58,350

Totals: 1,226,050 1,093,937



Fission Products Release Mechanisms
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• Noble gas radionuclides (Xe, Kr…) are inert, can 

be released from liquefied fuel, are not retained in 

sodium, and reside in the cover gas

- Less than 1/3 of fuel bundles were damaged 

(13/43) 

- Cladding breached in all 13 damaged bundles

- High levels of noble gases were observed in  

cover gas during accident, which were 

subsequently vented through the stack

- Liquefied fuel (uranium-iron alloy formation) 

occurred only at highest temperature locations

• Non-volatile radionuclides (Zr, Ba, Ru, Ce...) are 

low vapor pressure elements that tend to remain in 

fuel and will remain in the sodium
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Fission Products Release Mechanisms (cont’d)
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• Volatile radionuclides (I, Cs…) can be released from 

fuel, but will react with sodium

• Iodine reacts with sodium to form a soluble iodide (NaI  

melting point 651º C, 1204º F); most remains in the 

sodium

• Some release of volatiles can occur with high 

temperatures or sodium boiling at local fuel damage 

locations; these volatile fission products would then 

likely react with cooler bulk sodium

• Uranium metal fuel chemistry may explain low iodine 

readings in sodium 

- Iodine reacts with metal fuel to form non-volatile 

uranium triiodide (UI3, melting point 766º C, 1411º F)

- Unlike uranium oxide fuel (UO2), a significant fraction 

of iodine is trapped in solid metal fuel as UI3
- Results from cladding breach experiments in EBR II 

(Idaho), and other tests indicated no elemental 

iodine released to sodium coolant – almost all 

retained in fuel as an iodide 
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SRE Conclusions
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Observations and Comments

• Existing documentation from 1959 provides a reasonable description of 
the SRE accident and causes

• Fuel and cladding damage causes and mechanisms are consistent with 
current understanding 

• The inventory was re-calculated using current tools and data, which 
confirmed original inventory estimates for important fission products 

• Conclusions: 

- Absence of iodine radionuclides in the cover gas is consistent with 
known chemical mechanisms 

- Metal fuel and sodium form nonvolatile iodides
- Similar observations from EBR-II and other experiments

- From this review, primary release should have been noble gases

- The July accident itself should not have resulted in major releases of 
volatile fission products
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