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MicroElectroMechanical Systems (MEMS) devices in air

- Beams often oscillate out-of-plane at high frequencies

* Gas in gap between beam and substrate damps motion
Gas motion producing damping force is noncontinuum

« Gaps are small: ~2 ym nominal, smaller while closing

* Mean free path: ~0.07 um, larger in low-pressure package
Gas motion is driven by time-varying geometry

 Closing and opening gaps, gas motion to/from ambient
Simulate noncontinuum gas with moving object @&mm

National
Laboratories



Previous Work
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Alexeenko et al. (2006): Ellipsoidal Statistical

Several approaches have been used

Continuum: Navier-Stokes slip-jump,
Torczynski et al. (2002)

Quasi-static DSMC: fixed geometries,
Gallis et al. (2003)

Simpler physics: Reynolds equation,
Gallis and Torczynski (2004)

Kinetic model: Ellipsoidal statistical, E——
Alexeenko et al. (2006) Gallis et al. (2003): Quasi-Static DSMC

DSMC for noncontinuum gas with moving object @ Moo
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}- Current Approach
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DSMC molecules move over mesh, collide within cells Object moves over mesh

Direct Simulation Monte Carlo (DSMC) with moving object
* Object moves over mesh just like molecules do

* Molecules reflect from moving object (diffuse, specular)
Advantages and disadvantages

* Gas motion is inherently transient and noncontinuum

* Requires significant computational resources

Surface fluxes to object are most important quantities

« Gas force on object, gas energy transfer to object

« Can tolerate stochastic noise out in bulk gas @ Sandia
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}" Rigorous Algorithm

<

I P4 :
T
T..T"CZ'/""
EEEAVEEE

N
AN

5 v 0
Ll Z [
mesh frame object frame mesh frame

incident molecule ordinary reflection reflected molecule

Reflection occurs where molecule and object paths intersect
* Molecule & object move with fixed velocities over time step
* Intersection point and remaining time are determined
Molecule reflection is performed in object reference frame

* Object velocity is subtracted from molecule velocity

* Reflected molecule velocity is selected (diffuse, specular)

* Object velocity is added to reflected molecule velocity
Molecule travels for remainder of time step @ Sandia
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object & molecule intersect path with molecule reflects
move, overlap new object position from new object
Reflection occurs from envelope of object over time step
« Advancing/receding: reflect from new/old object position
* Ensures that reflected molecule remains outside object
If object is slow w.r.t. molecules, approximate — rigorous
* Molecule’s reflected velocity is same as rigorous algorithm
Advantages and disadvantages
- Faster than rigorous since reflection point is not calculated
* Positions of molecules near surface approximated @ Sandia
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% Simplified Geometry
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Initially, implement/assess algorithms for simple geometry
* Need less computational resources, verification is easier
Replace 2D microbeam cross section with 1D piston

* Piston has opening and closing gaps like microbeam

* Molecule-surface intersection point is easy to determine
* Know early (wave) & long-time behavior for some cases
Prescribe piston position analytically for all time

* Piston velocity is constant over each time step: average

* Could couple piston motion to gas force @ Sandia
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;L" Piston Motion

Simulation conditions

« Gas is hard-sphere argon at 266.644 Pa and 273.15 K
* Domain is 1000 um, cells are 10 um (100 cells)

 End walls are motionless, diffuse at 273.15 K

* Piston is 20 um (2 cells), specular or diffuse at 273.15 K

* Time step is 1 ns, no averaging over multiple time steps

* Molecules per cell: 104 (“noisy”) or 10° (“smooth”, most)
Case 1: starts at 50%, moves at 100 or 10 m/s, stops at 75%
Case 2: centered, 1 MHz, velocity amplitude 100 or 10 m/s

- Denote 100 m/s as “fast” and 10 m/s as “slow” @ Natona
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Excellent agreement with theoretical predictions

* Shock pressure and temperature on compression side
» Rarefaction pressure and temperature on expansion side
* Long-time temperatures are the wall temperature

* Long-time pressures correspond to new volumes |
Noise is significant with 10* molecules per cell () i
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Excellent agreement with theoretical predictions

* Shock pressure and temperature on compression side
» Rarefaction pressure and temperature on expansion side
* Long-time temperatures are the wall temperature

* Long-time pressures correspond to new volumes |
Noise is insignificant with 105 molecules per cell  (f) K
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Excellent agreement with theoretical predictions

* Shock pressure and temperature on compression side
» Rarefaction pressure and temperature on expansion side
* Long-time temperatures are the wall temperature

* Long-time pressures correspond to new volumes |
Virtually same as approximate except for noise @ Naiona
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Good agreement with theoretical expectations
» Gas temperatures near piston are close to piston value

* Temperature jJumps at piston and walls are evident

* Thermal boundary layers from piston weaken both waves
* Long-time pressures and temperatures are as expected
Qualitatively similar to specular piston @ Naiora
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Good agreement with theoretical expectations
» Gas temperatures near piston are close to piston value
* Temperature jJumps at piston and walls are small

* Pressures are spatially uniform, waves are negligible

* Long-time pressures and temperatures are as expected
Qualitatively different from fast piston @ Naiora
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Good agreement with theoretical expectations
 Temperature gradients (heat fluxes) near piston are small
 Temperature jJumps at walls are small

* Pressures are spatially uniform, waves are negligible

* Long-time pressures and temperatures are as expected
Qualitatively similar to diffuse piston @ Naiora
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Force on and energy transfer to object are most important
* Slow has linear waves, advancing and receding are same
- Fast has nonlinear waves, advancing and receding differ
* Increasing velocity 10x does not increase response 10x
- Slight rise over time is attributed to net heating of gas
Energy flux is mainly work, not heat transfer () i
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Moving-boundary DSMC algorithms have been developed
* Implemented for 1D piston moving between end walls

* Rigorous and approximate results agree with theory
Future work will focus on 2D implementation

« Harder to find where object and molecule paths intersect
* Must maintain good scaling for massively parallel cases
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