

DSMC-Based Shear-Stress/Velocity-Slip Boundary Condition for Navier-Stokes Simulations

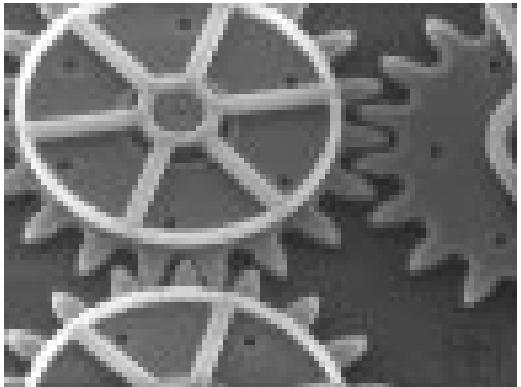
John R. Torczynski and Michael A. Gallis

**Engineering Sciences Center
Sandia National Laboratories
Albuquerque, New Mexico**

***Rarefied Gas Dynamics: 27th International Symposium
Pacific Grove, California, USA; July 10-15, 2010***

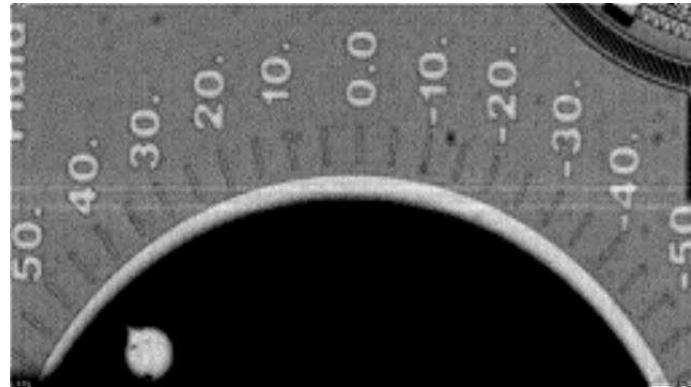
Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Motivation



MEMS gears (disks)

Gap $L \sim 2 \mu\text{m}$
MFP $\lambda \sim 0.07 \mu\text{m}$
 $\text{Kn} = \lambda/L \sim 0.03$



Torsionally-oscillating disk

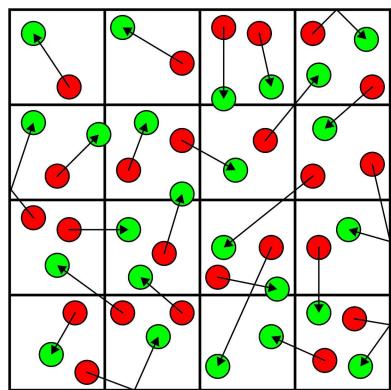
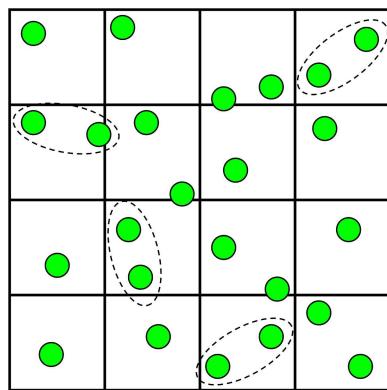
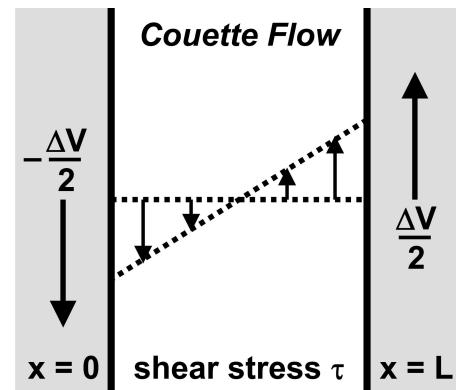
Compute gas force on MEMS disk from adjacent substrate

- Disk and substrate are separated by few-micron gap
 - Comparable to mean free path, especially if pressure reduced
- Disk is parallel to substrate and 100s-1000s microns wide
 - Gap region is very long and wide compared to height
- Disk has tangential velocity (substrate is stationary)
 - Couette-flow geometry: parallel surfaces move tangentially
- Gas shear stress transmits force between substrate & disk

Need accurate model for noncontinuum Couette flow

- Predict shear stress accurately in all regimes

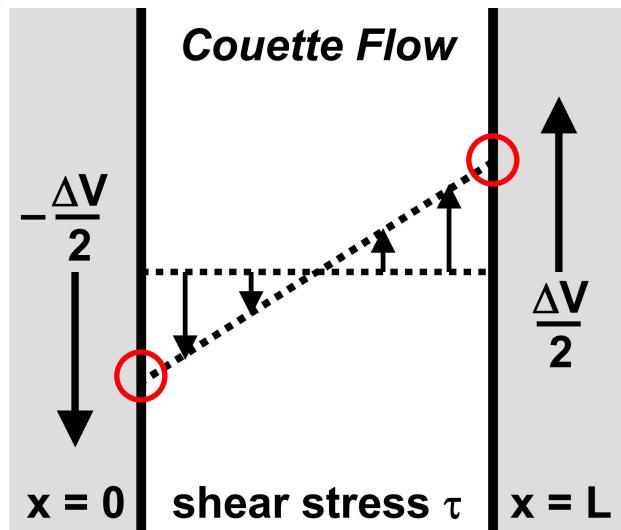
Approach



Develop shear-stress model for isothermal Couette flow

- Linear in gas-wall velocity difference
 - Low speeds relative to molecules, very small gaps
- Based on DSMC simulations
 - Wide ranges of pressures and accommodation coefficients
- Accurate in all flow regimes
 - Free-molecular, transitional, near-continuum, continuum
- Suitable for Navier-Stokes (NS) and dynamics simulations
 - Slip-jump (SJ) boundary conditions for NS equations

Model



$$\tau_{\text{wall}} = \mu \frac{\partial v}{\partial n} = k(v - V_{\text{wall}}) \quad k = \frac{\sigma \rho c_0}{S_1 S_2}$$

$$S_1 = 2 - \sigma \quad S_2 = 1 + \frac{d_1 \sigma}{1 + d_2 \text{Kn}} \quad \text{Kn} = \frac{\lambda}{L}$$

$$\lambda = \frac{\mu}{\rho c_0} \quad c_0 = \frac{\bar{c}}{2} = \sqrt{\frac{2k_B T}{\pi m}} \quad \rho = \frac{m p}{k_B T}$$

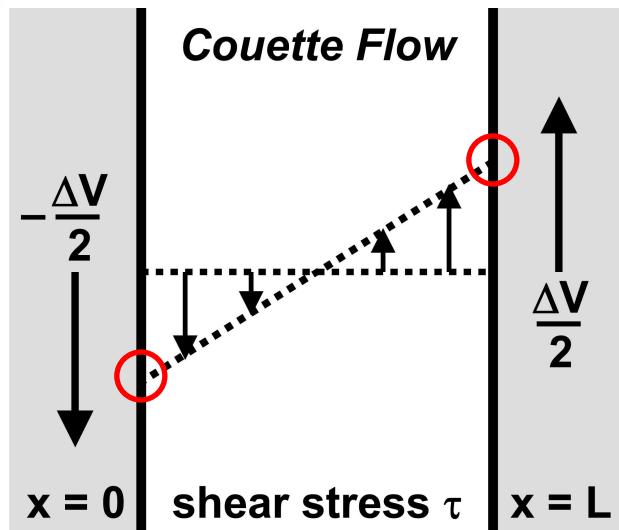
Shear stress τ equals product of velocity difference $v - V_{\text{wall}}$ and momentum transfer coefficient k defined as above

- Boltzmann constant k_B , molecular mass m , temperature T , pressure p , mass density ρ , mean molecular 1D speed c_0 , viscosity μ , mean free path λ , accommodation coefficient σ , gap height L (all gas quantities evaluated adjacent to wall)

Two $O(1)$ dimensionless model parameters d_1 and d_2

- d_1 affects near-continuum regime, Knudsen layer
- d_2 affects transitional regime, $\text{Kn} = \lambda/L \sim 1$

Model Limit: FM-AA Regime



Free-molecular (FM) flow with arbitrary accommodation (AA)

$$Kn \gg 1 \quad 0 \leq \sigma \leq 1$$

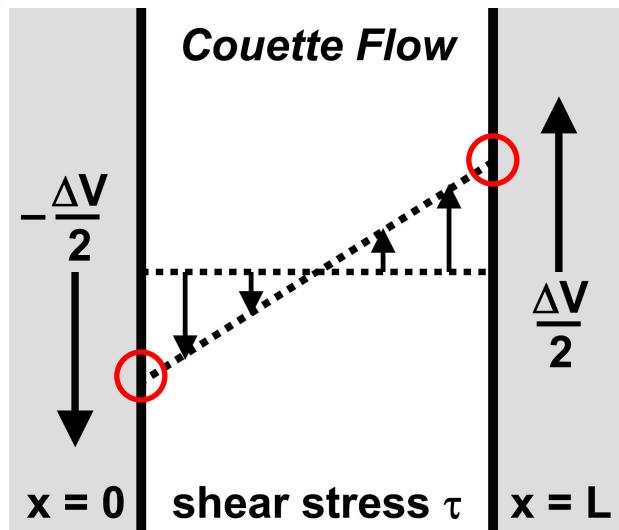
$$S_1 = 2 - \sigma \quad S_2 = 1$$

$$\tau_{\text{wall}} = \left(\frac{\sigma}{2 - \sigma} \right) \left(\frac{mn\bar{c}}{4} \right) \Delta V$$

Boundary condition has correct free-molecular limit

- Arbitrary fraction σ of half-range Maxwellian with $-\Delta V/2$ reflects into half-range Maxwellian with $\Delta V/2$ & vice versa
- Found by matching 2 rightward and 2 leftward half-range Maxwellians with $\pm \Delta V/2$ at right & left walls (no collisions)

Model Limit: NC-SA Regime



Near-continuum (NC) flow with small accommodation (SA)

$$Kn \ll 1 \quad \sigma \ll 1$$

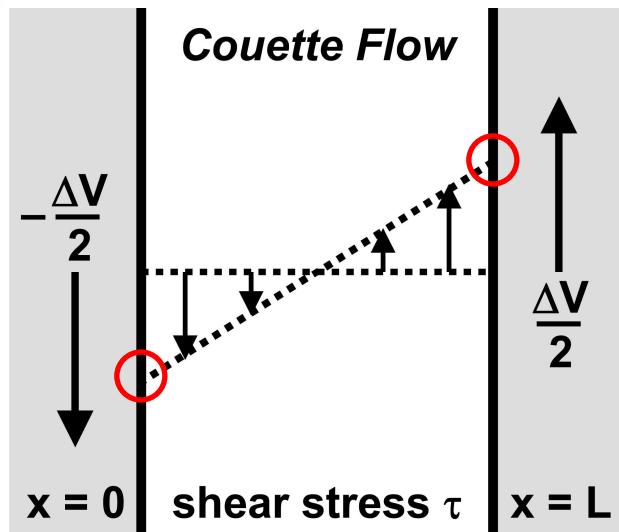
$$S_1 = 2 \quad S_2 = 1$$

$$\tau_{\text{wall}} = \sigma \left(\frac{mn\bar{c}}{4} \right) (v - V_{\text{wall}})$$

Boundary condition has correct near-continuum limit with small accommodation

- Small fraction σ of half-range Maxwellian with v reflects into half-range Maxwellian with V_{wall}
- Small reflected fraction does not affect incident distribution (dilute assumption)

Model Limit: NC-UA Regime



Near-continuum (NC) flow with unity accommodation (UA)

$$Kn \ll 1 \quad \sigma = 1$$

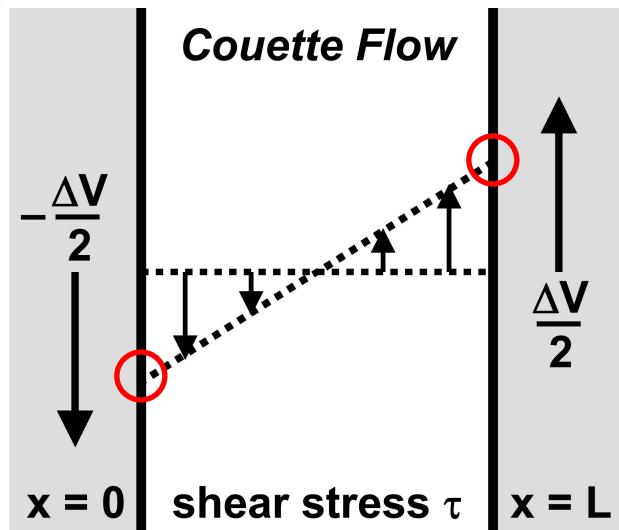
$$S_1 = 1 \quad S_2 = 1 + d_1$$

$$(1 + d_1) \lambda \frac{\partial v}{\partial n} = v - V_{\text{wall}}$$

Boundary condition has correct near-continuum limit with unity accommodation

- Yields common form of velocity-slip boundary condition
- Suggests parameter $d_1 = 0.1-0.2$ based on Knudsen layer

Model Limit: Continuum Regime



Continuum flow with zero or nonzero accommodation

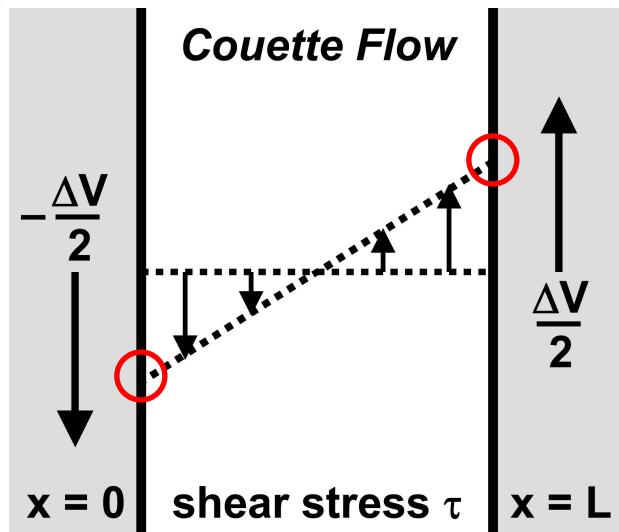
$$\text{Kn} \rightarrow 0 \quad \sigma = 0 \quad \tau_{\text{wall}} = \mu \frac{\partial v}{\partial n} = 0$$

$$\text{Kn} \rightarrow 0 \quad 0 < \sigma \leq 1 \quad v = V_{\text{wall}}$$

Boundary condition has correct continuum limit

- Yields zero-shear-stress (symmetry) condition when accommodation is zero
- Yields no-slip condition when accommodation is nonzero

Couette-Flow Solution



$$\frac{\tau_{\text{wall}}}{\tau_{\text{cont}}} = \frac{1}{1 + (2S_1 S_2 \text{Kn} / \sigma)}$$

$$\tau_{\text{cont}} = \frac{\mu \Delta V}{L} \quad \text{Kn} = \frac{\lambda}{L}$$

$$S_1 = 2 - \sigma \quad S_2 = 1 + \frac{d_1 \sigma}{1 + d_2 \text{Kn}}$$

Use Couette flow to determine model parameters d_1 & d_2

- Select a gas (Ar, He, N₂, Air)
- Perform DSMC simulations to determine shear stress τ
 - Pressure sets Kn: free-molecular to near-continuum
 - Accommodation coefficient σ : 1.00, 0.50, 0.25
- Adjust d_1 & d_2 for best fit by solution to DSMC values

Boundary condition is determined by d_1 & d_2

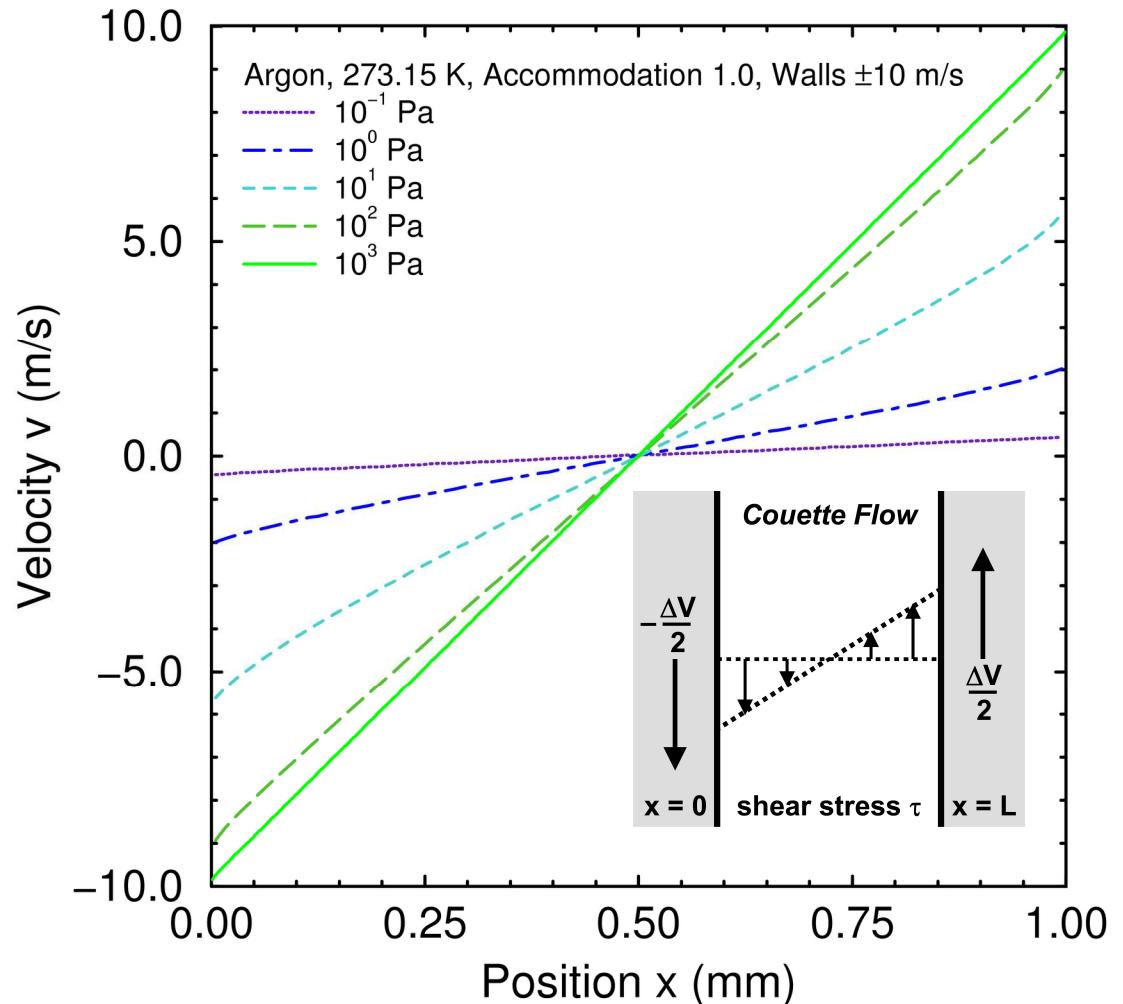
Couette-Flow Velocity Profiles

DSMC simulations

- Gas: argon
- Domain: 1 mm
- Temp: 273.15 K
- Pres (13): 10^{-1} - 10^3 Pa
- Accom: 1, 0.5, 0.25
- Walls: ± 10 m/s

Velocity profiles

- Shown for $\sigma = 1$
 - Similar for other σ
- 10^3 Pa nearly linear
 - Near-continuum
- 10^{-1} Pa nearly flat
 - Free-molecular



Argon Shear Stress

DSMC simulations

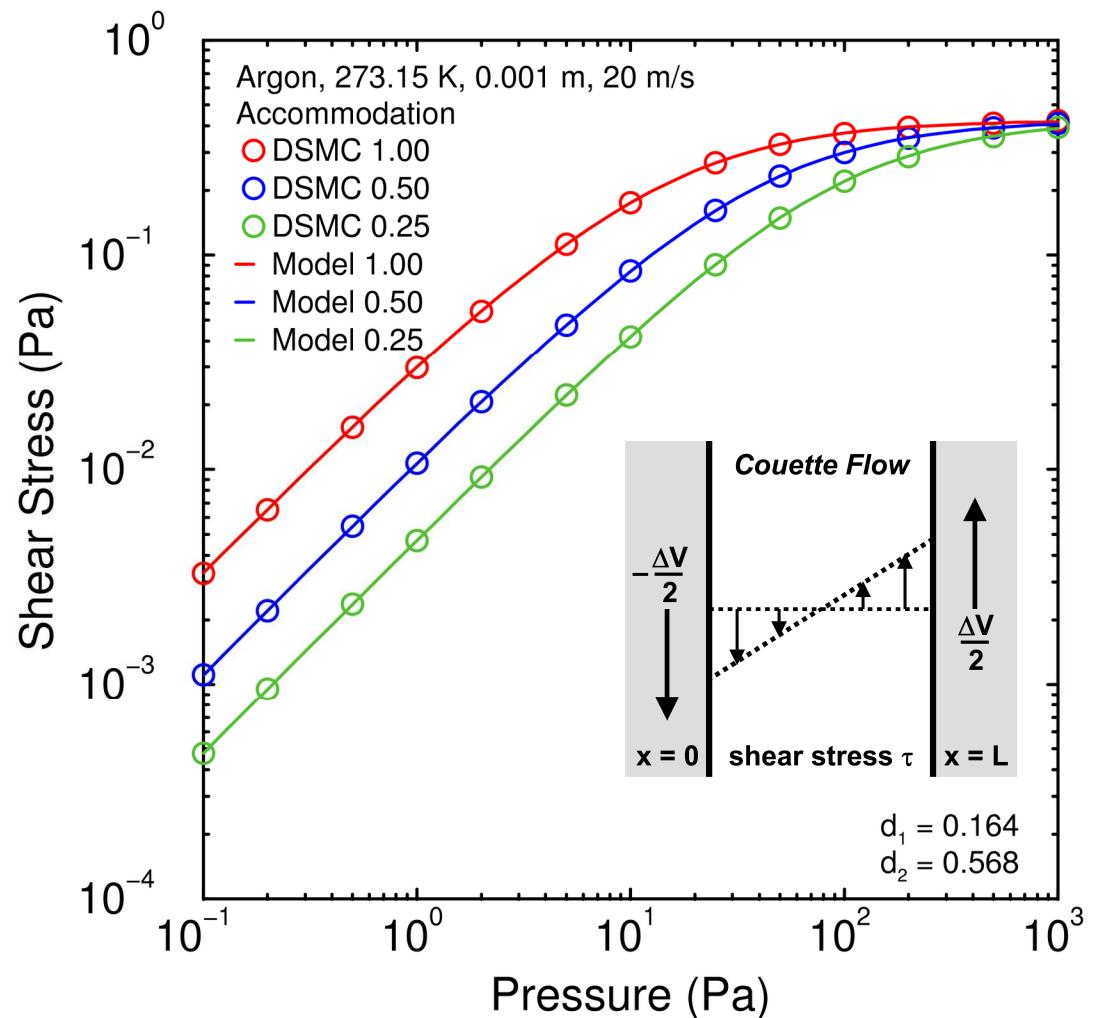
- Gas: argon
- Domain: 1 mm
- Temp: 273.15 K
- Pres (13): 10^{-1} - 10^3 Pa
- Accom: 1, 0.5, 0.25
- Walls: ± 10 m/s

Shear stress (walls)

- 39 combinations of pressure & accom.
- Uncertainty $\sim 0.2\%$

Argon parameters

- $d_1 = 0.16 \pm 0.02$
- $d_2 = 0.57 \pm 0.06$



Symbols: DSMC
Curves: Model

Shear Stress for All Four Gases

All gases are similar

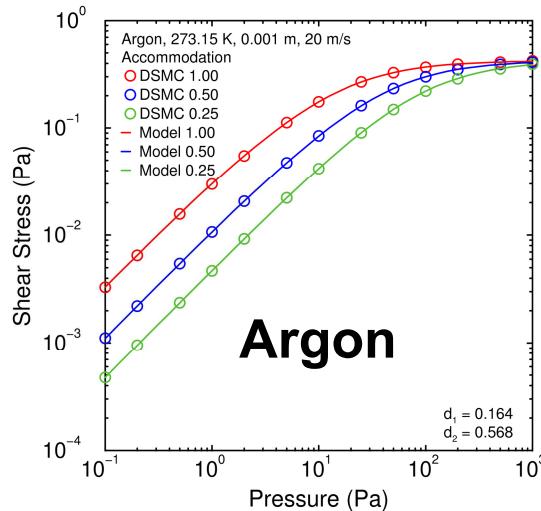
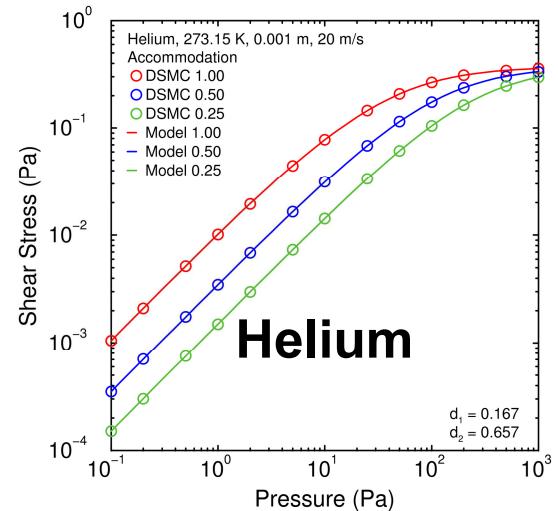
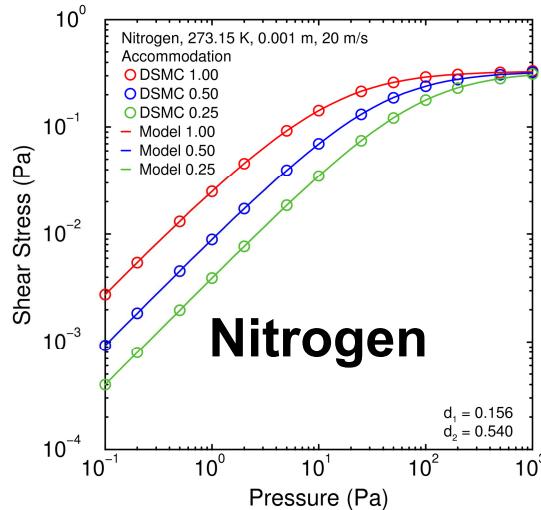
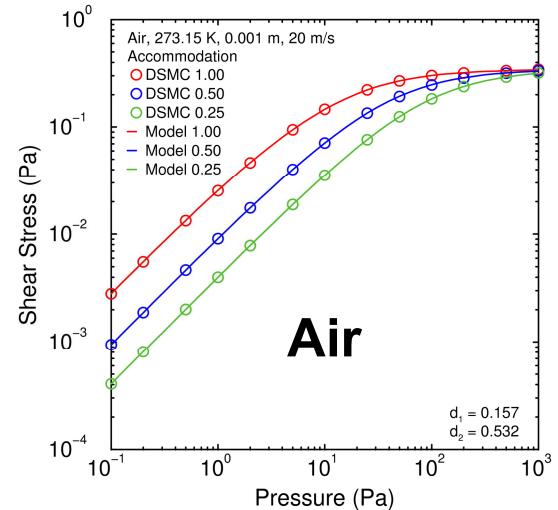
- 10^3 Pa nearly flat
 - Near-continuum
- 10^{-1} Pa nearly linear
 - Free-molecular

Ar, N₂, Air parameters

- $d_1 = 0.16 \pm 0.02$
- $d_2 = (0.53-0.57) \pm 0.06$

He parameters

- $d_1 = 0.17 \pm 0.02$
- $d_2 = 0.66 \pm 0.06$



Symbols: DSMC
Curves: Model

Collision Parameters

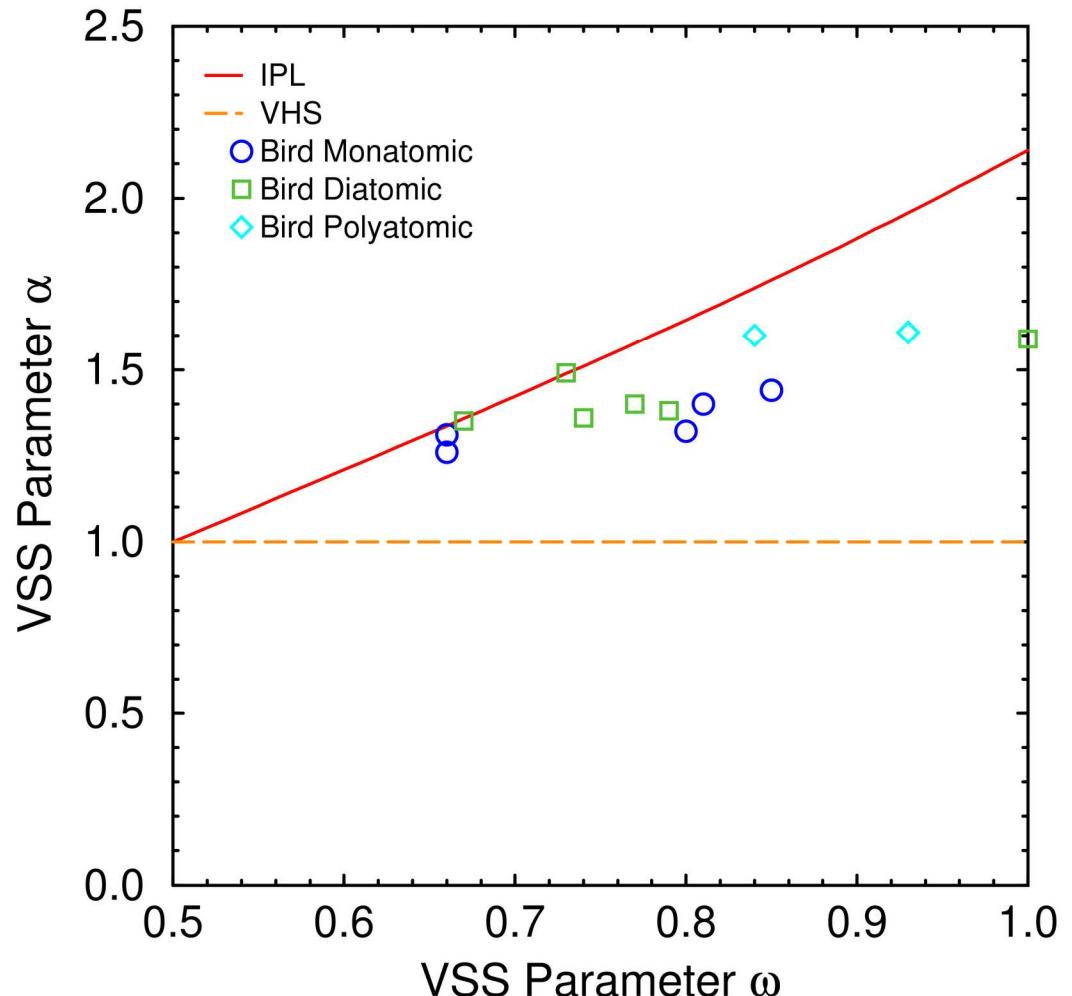
Variable Soft Sphere collision model

- VSS parameters ω , α

Bird (1994) values

- Bounded above by Inverse Power Law
 - IPL: $\alpha = \alpha[\omega]$
- Bounded below by Variable Hard Sphere
 - VHS: $\alpha = 1$

Investigate how d_1 & d_2
depend on ω & α



Effect of VSS Parameters

VHS & IPL simulations

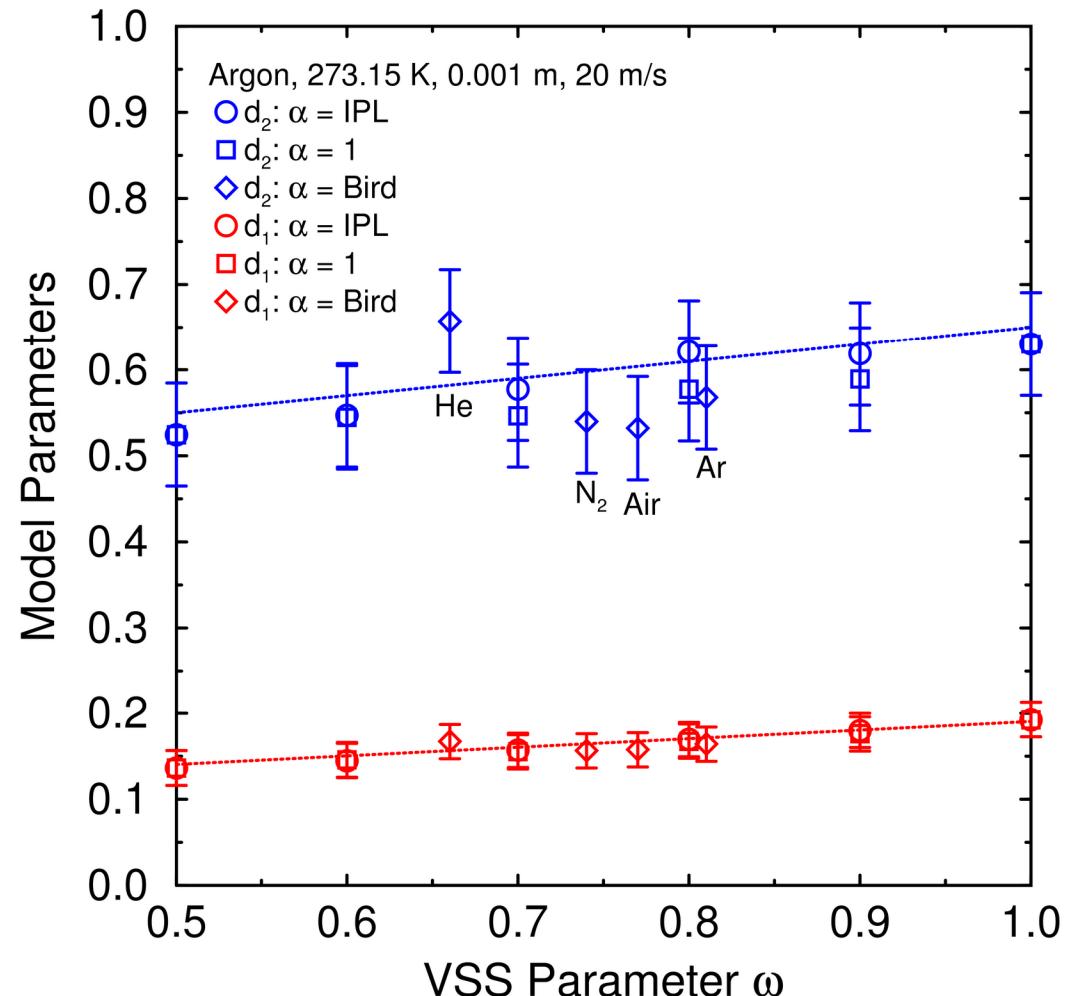
- All conditions same
- Argon-like properties
- Take $\omega = 0.5, 0.6, \dots, 1.0$
- VHS: $\alpha = 1$
- IPL: $\alpha = \alpha[\omega]$

Parameters d_1 & d_2 are almost constant

- All: $d_1 = 0.15 \pm 0.02$
- All: $d_2 = 0.59 \pm 0.07$
- Slight rise with ω lies within error bars

Four previous gases

- He seems high
- N_2 & air low, rotation?



Hard-Sphere Comparison

$$\tau_{\text{wall}} = k(v - V_{\text{wall}}) \quad S_1 = 2 - \sigma$$

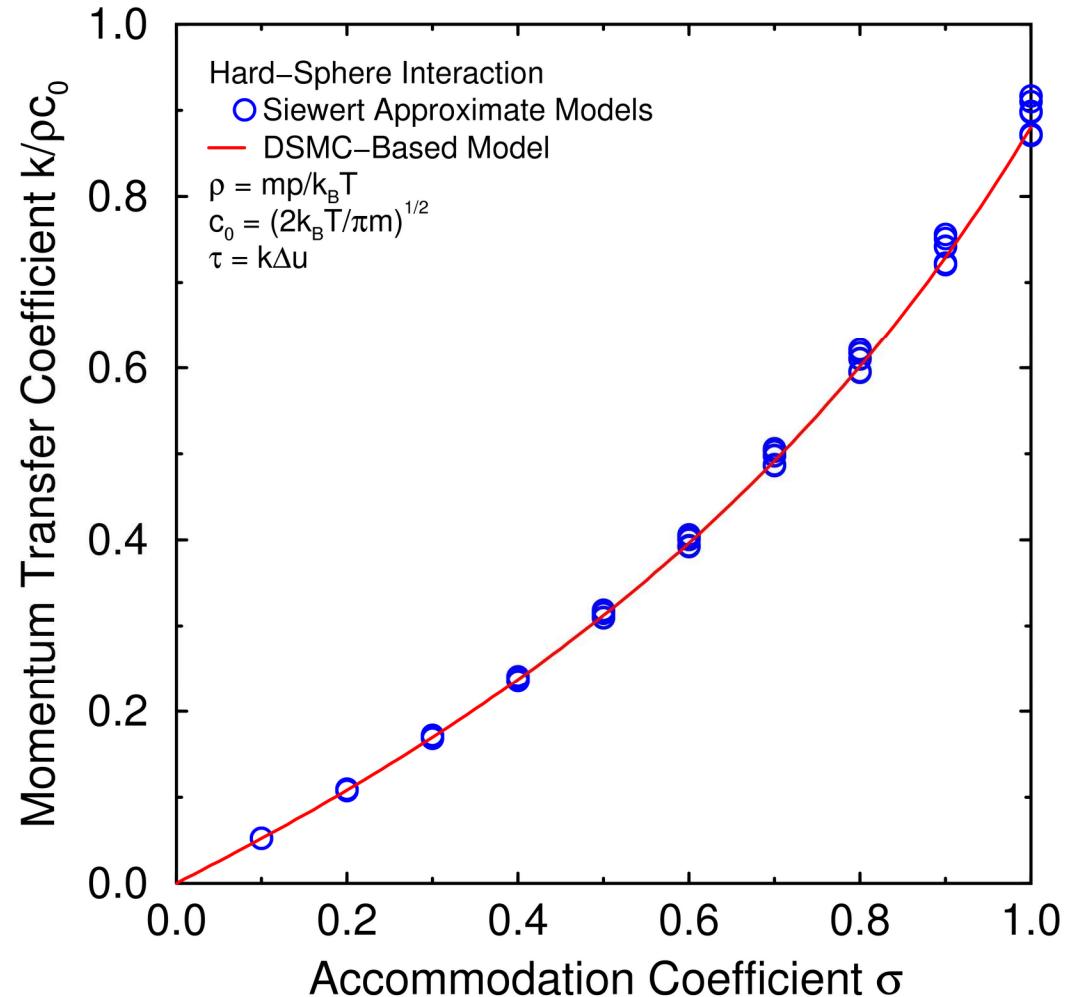
$$\frac{k}{\rho c_0} = \frac{\sigma}{S_1 S_2} \quad S_2 = 1 + \frac{d_1 \sigma}{1 + d_2 \text{Kn}}$$

Mom. trans. coeff. k

vs. accom. coeff. σ

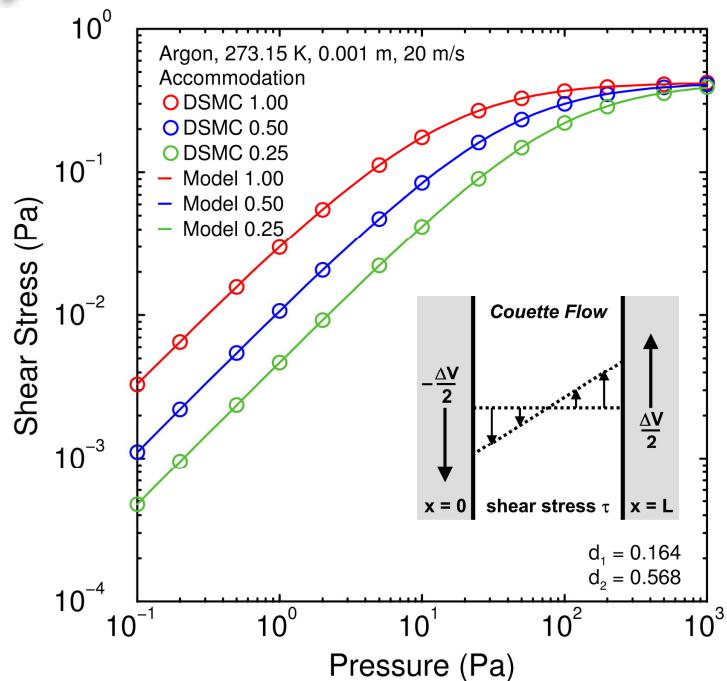
- DSMC-based model
- Siewert & Sharipov:
6 approximations
- Hard-sphere gas
- $\text{Kn} \rightarrow 0$

Excellent agreement



Symbols: Approximations
Curve: DSMC model

Conclusions



$$\tau_{\text{wall}} = \mu \frac{\partial v}{\partial n} = k(v - V_{\text{wall}}) \quad k = \frac{\sigma \rho c_0}{S_1 S_2}$$

$$S_1 = 2 - \sigma \quad S_2 = 1 + \frac{d_1 \sigma}{1 + d_2 \text{Kn}} \quad \text{Kn} = \frac{\lambda}{L}$$

$$\lambda = \frac{\mu}{\rho c_0} \quad c_0 = \frac{\bar{c}}{2} = \sqrt{\frac{2k_B T}{\pi m}} \quad \rho = \frac{m p}{k_B T}$$

DSMC-based shear-stress boundary condition developed

- Reproduces near-continuum and free-molecular limits
- Parameters depend only weakly on gas properties
- Agrees well with hard-sphere analytical approximations
- Suitable for Navier-Stokes and dynamics simulations