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Semiconductor Nanowires (NWs)

Reduced dimensionality, high crystalline quality, and high atomic surface/bulk
ratio can lead to enhanced & novel properties

Lieber et al.
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LEDs and lasers Waveguides and Filters Transistors/HEMTs
« Nanosized light sources * coupled with nanowire light sources, « improved performance characteristics
« Higher efficiency due to lack of defects Eﬁgg:ﬂg blocks for nanophotonics « small size

* High light extraction
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Chem/bio-sensors Energy Harvesting Heath et al.
* Nanowire Photovoltaics

* large atomic surface/bulk ratio leads nanowire : Sandi
depletion & ultrahigh sensitivity * Thermoelectrics Ng’rtlioﬁal
* Piezoelectric energy generation Laboratories



llI-Nitride (AlGalnN) Nanowires

[lI-Nitride (AlGalnN) Properties

Direct RT bandgaps spanning very wide energy range from ~0.7-6.2 ev
* Form solid alloy system

* High breakdown field

* High mobility

» High thermal conductivity and temperature

» Radiation resistant and chemically inert

» Used in LEDs, blue laser diodes, UV photodetectors, HEMTs

Compared to planar films, lllI-nitride nanowires ...

» Typically free of threading dislocations

» Have high aspect ratio and high surface/bulk ratio

» Are strain relaxed — can accommodate wider range of alloy compositions

» Are “discrete” — entire structure & changes to the structure can be investigated

Research Goals:

» Control of nanowire orientation, alignment

» Controlled growth of heterostructure nanowires

» Understand nanowire properties as functions of growth conditions, structure,
and composition

« Nanowire devices & potential applications @ sandia
Laboratories




NW growth
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Nanowires grown by Ni-catalyzed MOCVD

Highly-aligned, uniform vertical growth over large areas (2" wafer)

Controllable densities as high as *150 nanowires um-

Q. Li, G. T.Wang, Appl. Phys. Lett. 93, 043119 (2008)
Q.Li, J. R. Creighton, G.T. Wang. J. Crys. Growth 310 3706-3709 (2008)
Primary [11-20] growth orientation (L to (11-20) a-plane)

G. T. Wang et al., Nanotechnology 17 5773-5780 (2006)
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In-situ NW decomposition/failure

T. Westover, R. Jones, J. Y. Ultrafast optical spectroscopy

Huang, G. Wang, E. Lai, A. A. 10
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P.C. Uppadhya et al. Semicond.
Sci. Tech. 25 024017 (2010)

Photo detector

3D STEM tomography NW-templated GaN
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*CL source: UHV Zeiss Gemini FE-SEM
: ) | oCL detector: Gatan MonoCL3 (GaAs:Cs PMT)
3 \,‘UHV;E.[A eEnvironment: Room-temperature, UHV

% CL Resolution: <80 nm at 2.5KeV
s ‘sa'r{bie k.

CL system on MESA Advanced Nanotechnology Tool (ANT)

Spatial Resolution of CL — Monte Carlo Simulation for GaN
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Band-edge luminescence “quenched” for thin NWSs

CL 360 nm CL 550 nm

Band-edge luminescence(BEL) Yellow luminescence (YL)

Band-edge luminescence (BEL) not observed for skinnier nanowires
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* Tapered nanowire shows “pinch-off” effect

» Spectra taken along tapered NW length,
shows “critical diameter” of ~165 nm

e Consistent with YL surface layer model
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366 nm

| Band-edge luminescence(BEL)
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428 nm 566 nm

Blue luminescence (BL) Yellow lun .in‘(_escence (YL)
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Nanoscale CL imaging: Cross-section GaN NW

Q. Li, G. T. Wang, Nano Lett., 2010, 10 (5), 1554

Band-edge luminescence (BEL) at ~366 nm
and defect-related blue luminescence (BL) at
~428 nm observed in NW core/bulk

Defect-related yellow luminescence (YL)
exhibits strong surface component --
associated with surface states or
concentrated near surface region

Well-known YL in GaN attributed to many
possible sources (C, O impurities, Ga
vacancies, etc.)

Isolated Ga vacancies have low diffusion
barrier (~1.5 eV) & may migrate toward
surface during growth

BL linked to V,-O, (D ~2.2 eV), less mobile
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oar | 566 nm g Spot-mode: electron beam focused

on different regions of NW cross-

22k |
20k [ section, emission spectra collected
18k
@ 16k [ e YL strongest at surface
S 14k
S 12k e BEL and BL strongest at NW center,
o 10k quench at surface
8k
6k | * YL-related defects weaker but still
4k | present in the nanowire core
2K

(potentially less mobile C or O related

1 ) 1 ) I ) 1 : 1 . I impurities)
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Q. Li, G. T. Wang, Nano Letters, accepted
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CL study of GaN NWs — YL surface layer
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e YL thickness oc to the NW diameter

* Indicates YL-related defects
incorporate though sidewall growth

Sidewall Growth
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High Indium Incorporation in GaN/InGaN single core/shell NWs

e InGaN: visible wavelengths for solid-state lighting, PV, etc.
e Strain limits practical In incorporation in InGaN thin films (e.g., green-yellow-red gap)

366 nm (GaN BEL) 428 nm (GaN BL)

.

Growth con’ﬁi-tioh-s: aaN core —900 °C, 10 min.
InGaN shell — 760 °C, 60 min. 366-760 nm

700 nm (InGaN)

480 nm (InGaN )
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InGaN shell growth highly facet-dependent -- no growth on (000-1) c-plane facet
In concentration increases away from GaN/InGaN interface, highest at corners

No dislocations observed despite very high In concentration
Strain in InGaN NW shell much lower than for InGaN thin film
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150 nm GaN NW core

150nm
\ 4
10 nm 30 nm 60 nm 150 nm < Ing ,Gag gN shell

e Finite element models show compressive/tensile strain in GaN core and InGaN shell

e Compressive strain dominates in thinner shells, decreases away from interface and
becoming tensile for thicker shells

e Higher In incorporation correlated with lower (compressive) strain regions




Sandia National Laboratories l

e CL shows two main InGaN peaks
around 460 nm & 580 nm
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Conclusions

e Spatially resolved CL reveals a yellow luminescence (YL) surface “layer” in GaN NWs

e Yl-related defects may be relatively mobile & migrate to the surface region during
growth

e  For InGaN shell growth, up to 40% In incorporation is observed, with no observed
dislocations

e ClLreveals higher In incorporation at corners of InGaN/GaN NWs, explained by
reduced compressive strain as shell layer gets thicker
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