

Chem Forensics

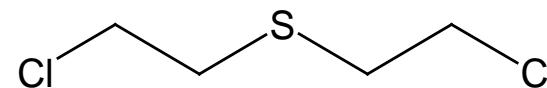
Multicomponent Forensic Signature Development: Interactions with Common Textiles; Mustard Precursors and Simulants

Mark Van Benthem

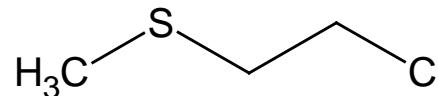
Materials Characterization

Research Team: Theodore T. Borek III, Curtis D. Mowry, and
Paul G. Kotula

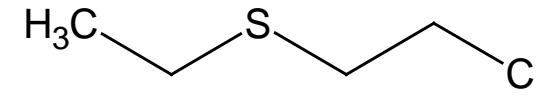
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000.


Project Objectives

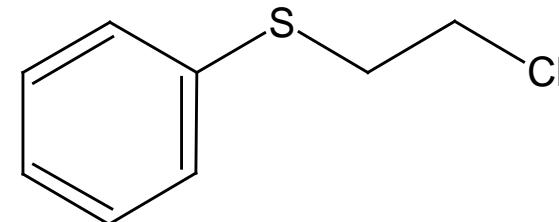
- **Use TD/MS to develop methods for generating chemical attribution signatures (CAS) employing mustard simulants and surrogates**
 - No use of the actual chemical agent
- **Develop chemometric tools to facilitate data analysis and interpretation**
 - Examine noise in the data
 - Test techniques to quickly analyze data sets
- **Conduct aging studies for mustard simulants on fabrics**
 - Age samples of simulants on fabrics at various humidity levels
 - Examine signature of simulant at various time intervals


Technical Approach/Tasks

- **Task 1: Examine mustard surrogates on selected substrates to determine efficacy of TD/MS method for this class of agents.**
- **Task 2: Apply mustard surrogates to fabrics for aging studies and perform TD/MS analysis on these samples.**
- **Task 3: Develop and test chemometric algorithms and programs to rapidly analyze TD/MS data acquired in Tasks 1 and 2.**
- **Task 4: Final report**
- **Total Funding \$230K**


Sulfur Mustard and Simulants


Sulfur mustard (HD)


**2-Chloroethyl methyl sulfide
(CEMS)**

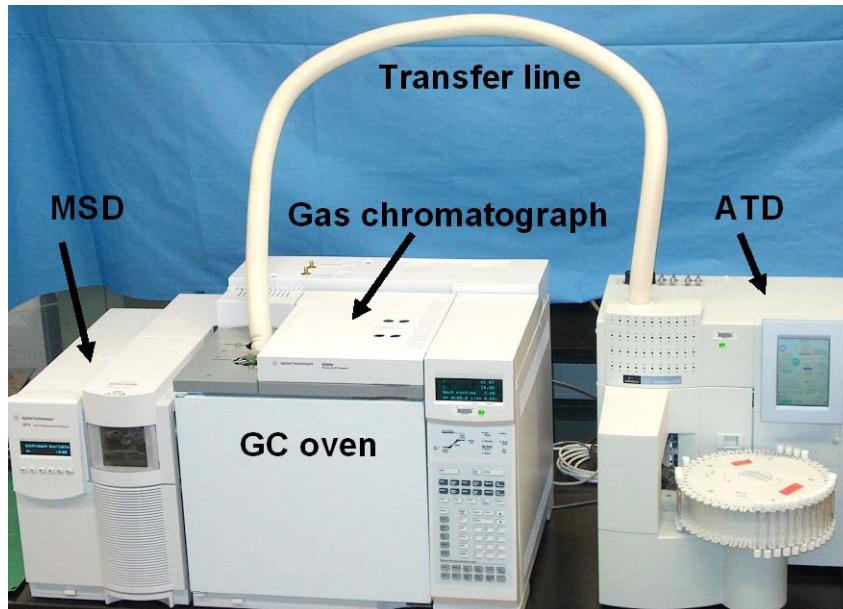
**Chloroethyl ethyl sulfide
(CEES)**

**Methyl salicylate
(MS)**

**2-Chloroethyl phenyl sulfide
(CEPS)**

TD-GC/MS

- **Thermal Desorption**


- Flexible experimental technique
- Permits the direct analysis of volatile organic species
 - Liquid or solid substrates
- Typical: Perform TD using single, predetermined desorption temperature
- Alternative : Step TD temperatures & generate series of desorptions

- **Gas Chromatography coupled Mass Spectrometry**

- Instrumentation used: widely available, unspecialized, & relative low cost
- Methods developed can easily be replicated by the widest possible audience responsible for analysis or performing forensic investigations
- Performed full scan MS: Want to find the needle in the haystack

Apparatus

Instrumentation

Description

- **Perkin Elmer model TurboMatrix ATD thermal desorption unit**
- **Agilent 6890N gas chromatograph**
- **Agilent model 5975 inert XL MSD mass spectrometer**
- **No “specialized” equipment**
- **Affordable and user friendly**
- **Similar instrumentation available from other instrument vendors**

Multivariate Data Analysis

- **Data Scaling**
 - Approximates the assumptions of the factor analysis technique
- **Principal component analysis (PCA)**
 - Decomposes a matrix into two sets of orthogonal of basis vectors
- **Orthogonal Factor Rotation**
 - Maximize some criterion that is consistent with the nature of the data
- **Multivariate Curve Resolution (MCR)**
 - Least squares method to provide physically meaningful representation of data
- **Trilinear Data Analysis**
 - Used to render a three-way model of data that has a trilinear structure
 - PARAFAC-ALS is the most common application

Fabric Spiking and Aging

- Commercial CEPs used as received
- Undyed swatches from a local fabric store
 - Cotton
 - Ripstop nylon
 - Polyester
 - Silk
- Humidity
 - Potassium acetate (23% RH)
 - Magnesium nitrate (56% RH)
 - Potassium chloride (85% RH)
- Aging: 0, 2, 7, 14, 21, and 28 days

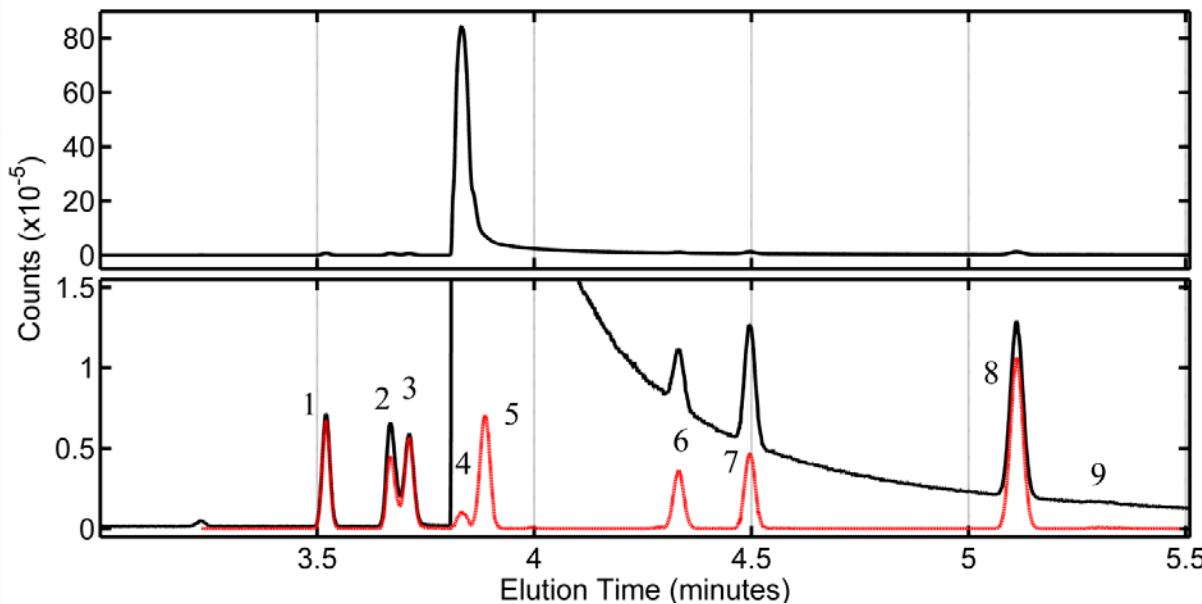
Chemometric Methods

- **Data Scaling and pretreatment**

- MS data is count data, so we use Poisson optimal scaling
- For data in matrix D , compute mean: $\bar{d}_m = \frac{1}{n} \mathbf{D} \mathbf{1}_n$
- Scale by $(\bar{d}_m)^{-\frac{1}{2}}$ in the MS domain: $\tilde{D} = \mathbf{H} \mathbf{D}^n$
- Selected ion depletion
 - Remove mass channels that contain saturated peaks (e.g., solvent peaks)

- **PCA**

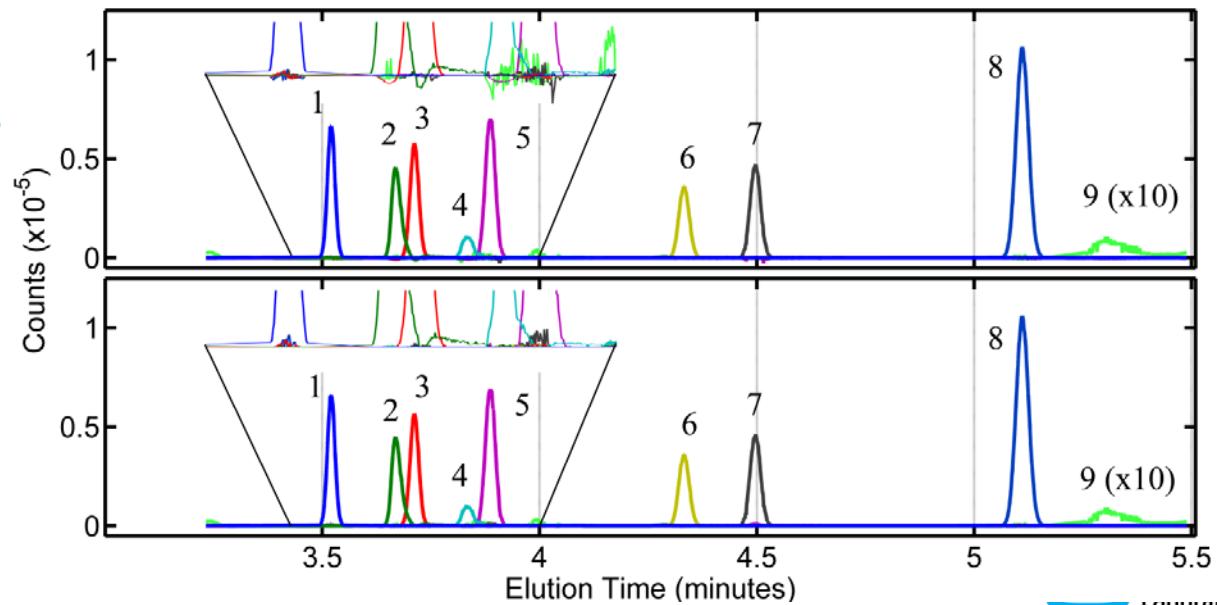
- Find the solution to: $\tilde{D} = \tilde{\mathbf{T}} \mathbf{P}^T + \tilde{\mathbf{E}}$
- Unfortunately, not easily interpretable.


- **Varimax rotation**

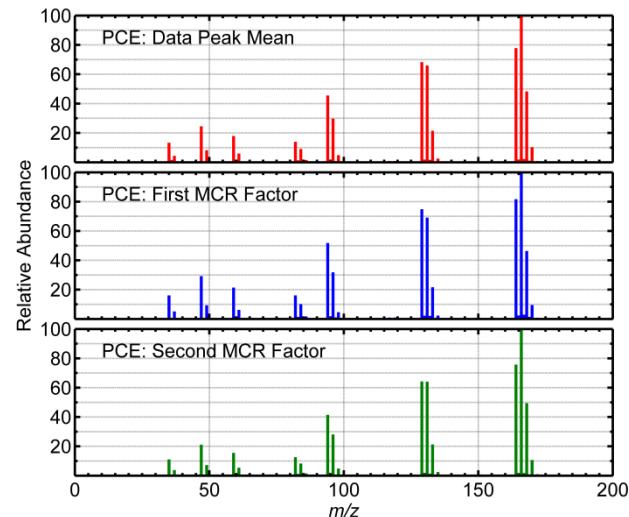
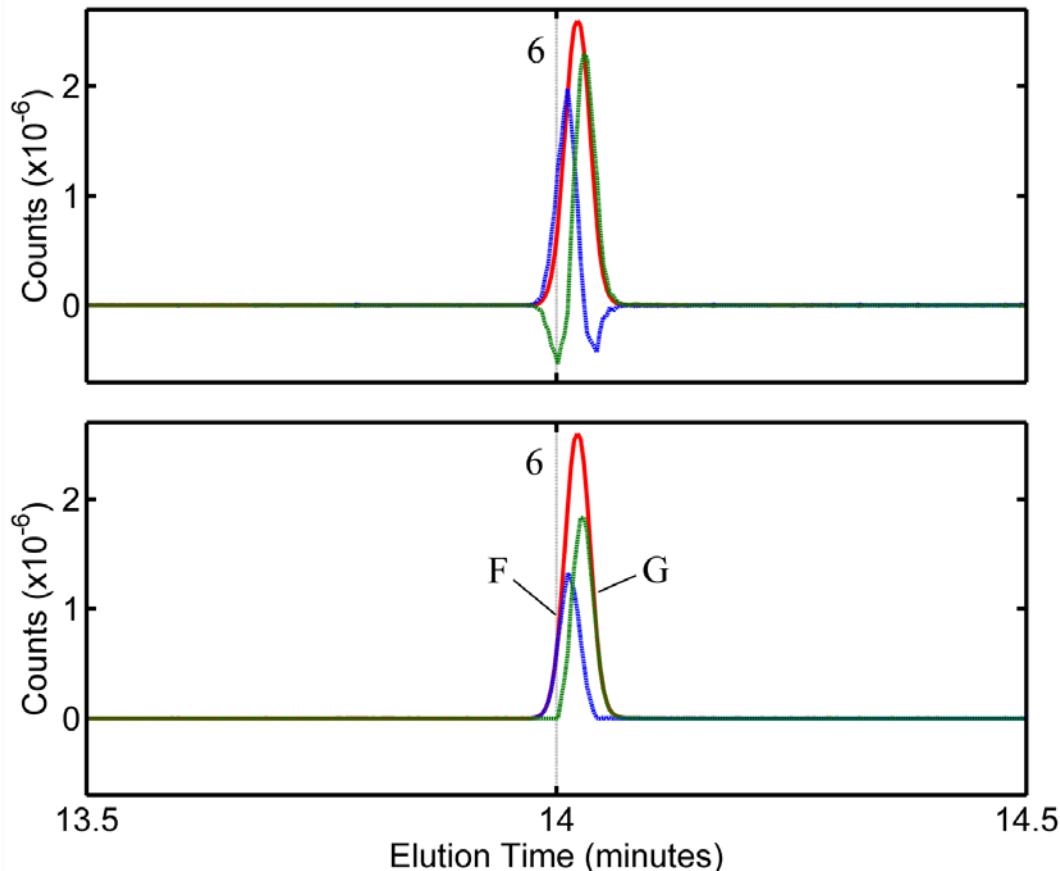
- Find the “most simple” representation of the data in the time mode
- Rotate the factors $\tilde{D} = \tilde{\mathbf{T}} \mathbf{P}^T = \tilde{\mathbf{T}} \mathbf{R} \mathbf{R}^T \mathbf{P}^T = \tilde{\mathbf{T}} \underline{\mathbf{P}}^T$

- **MCR**

- Use constraints to limit the space of the solution
- Find the least squares solution to $\tilde{D} = \tilde{\mathbf{M}} \mathbf{C}^T + \tilde{\mathbf{E}}$

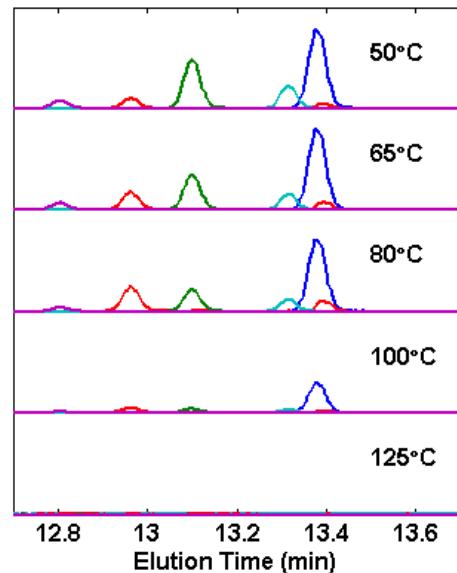
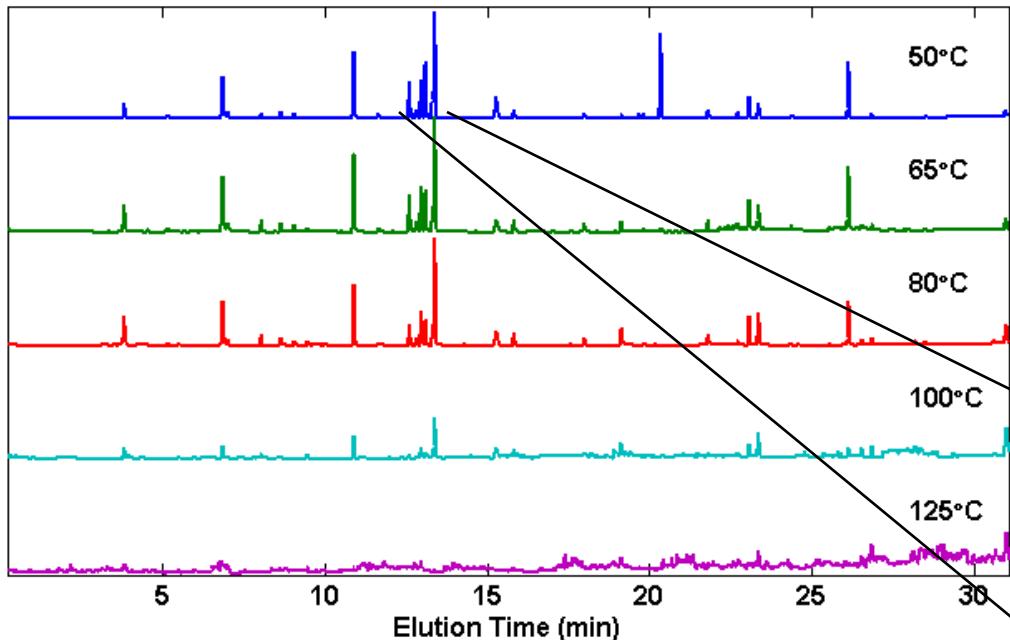

Factor Analysis with SID

Data

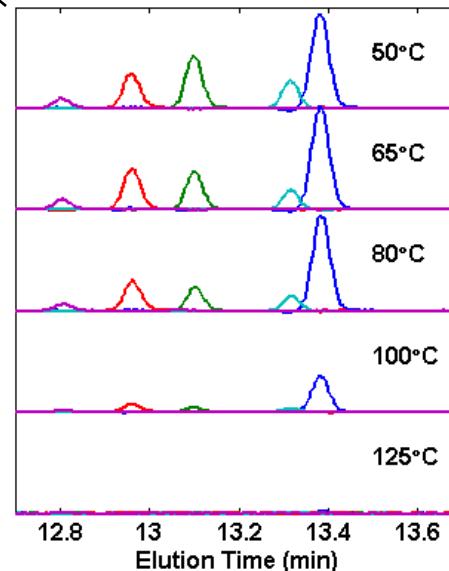


Data after SID

PCA/Varimax Factors

MCR Factors

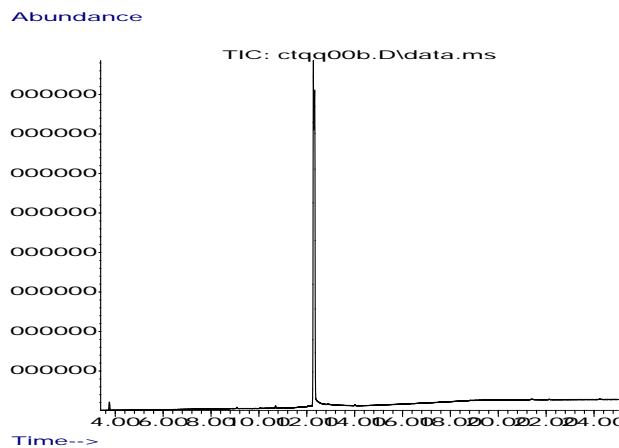


One Peak or Two?

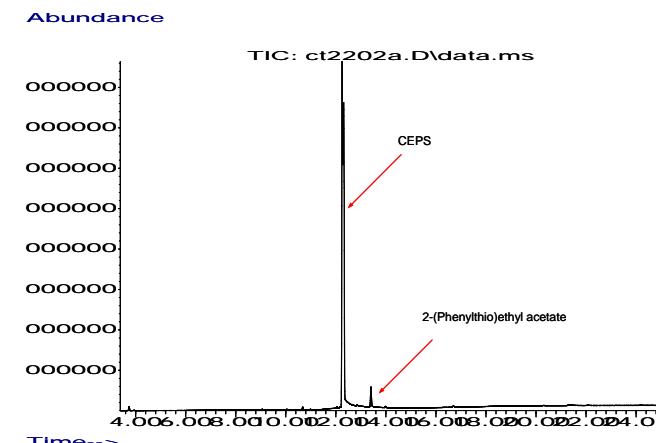
$^{37}\text{Cl}/^{35}\text{Cl}$ ratio:	0/2	1/1	2/0
Mass C_2Cl_2	94	96	98
Theoretical Prob. (%):	57.4	36.7	5.9
Raw Data Dist. (%):	56.9	37.1	6.0
Peak One Dist. (%):	58.8	36.1	5.1
Peak Two Dist. (%):	55.8	37.8	6.4
NIST data Dist. (%):	56.7	37.2	6.1


Algorithms pulled out subtle isotope effect!

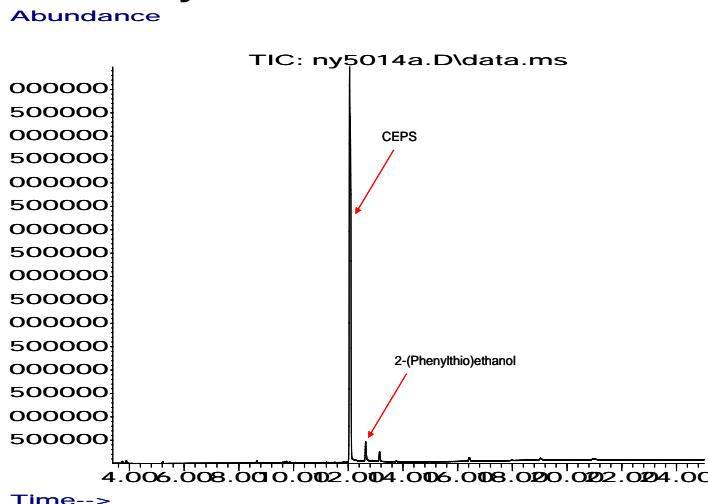
TD-GC/MS CEPS Data

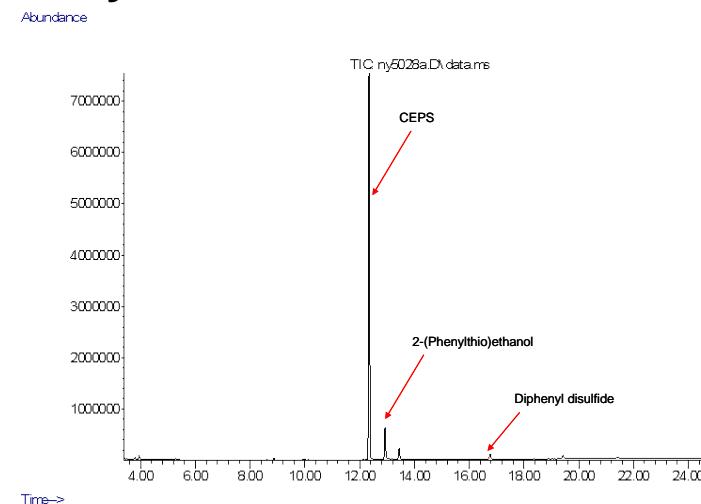
PARAFAC Factors


PCA/Varimax Factors


Neat “New” & “Old” CEPS library matches for MCR Model Factors

“New” Time(s) min	“New” match value	NIST Assigned Compound	Formula	CAS #	“Old” match value	“Old” Time(s) min
26.5	933	Benzo[b]thiophene *	C8H6S	95-15-8	939	26.5
31.0	926	Biphenyl	C ₁₂ H ₁₀	92-52-4	937	31.0
22.7	912	Benzene, (methylthio)-	C ₇ H ₈ S	100-68-5	910	22.7
23.3, 28.3	899	Benzene, (ethenylthio)-	C ₈ H ₈ S	1822-73-7	898	23.3, 28.3
30.6	891	Acetaldehyde, (phenylthio)-	C ₈ H ₈ OS	66303-55-7	922	30.6
30.9	876	2-Chloroethyl phenyl sulfide	C ₈ H ₉ ClS	5535-49-9		
8.6	874	Ethane, 1,2-dichloro-	C ₂ H ₄ Cl ₂	107-06-2	940	8.6
26.1	867	Decane, 1-chloro-	C ₁₀ H ₂₁ Cl	1002-69-3	937	26.1
20.3	853	Octane, 1-chloro-	C ₈ H ₁₇ Cl	111-85-3	959	20.3
24.6	805	Benzene, nitro-	C ₆ H ₅ NO ₂	98-95-3	864	24.6†
19.6	764	Octanal	C ₈ H ₁₆ O	124-13-0	940	19.6
N/A ⁺	748	Endrin	C ₁₂ H ₈ C ₁₆ O	72-20-8		
23.0†	720	p-hydroxyphenyl-Phosphonic acid	C ₆ H ₇ O ₄ P	33795-18-5		
26.8	678	1,2-Benzenedithiol, 4-methyl-	C ₇ H ₈ S ₂	496-74-2	695	26.8
		Phenol	C ₆ H ₆ O	108-95-2	851	23.0†
		Pentane, 3-methyl-	C ₆ H ₁₄	96-14-0	806	5.5†
		Benzenethiol	C ₆ H ₆ S	108-98-5	770	19.1
		Olean	C ₃₀ H ₅₀ O ₆	15399-43-6	713	N/A ⁺
		Ruthenium organometallic	C ₁₄ H ₂₁ BO ₃ RuSeSi	118772-38-6	687	N/A [‡]
		1-Decanol	C ₁₀ H ₂₂ O	112-30-1	681	28.2†


Aging of CEPS on Cotton, Nylon


Day 0, CEPS on Cotton

Day 2, CEPS on Cotton, 23% RH

Day 14, CEPS on Nylon, 56% RH

Day 28, CEPS on Nylon, 56% RH

Principal CEPS aging product observed was 2-(phenylthio) ethyl acetate, a reaction product of CEPS and acetic acid.

Major Accomplishments

- **Submitted manuscript to *Analytical Chemistry***
 - Van Benthem, M.H. , Borek III, T.T. Mowry, C.D. and Kotula, P. G.;
“Factor Analysis of GC/MS Data with Selected Ion Depletion”
- **Filed US Patent Application No. 12/754,041**
 - Van Benthem, M.H., Kotula, P.G., and Keenan, M.R.; “Method for Factor Analysis of GC/MS Data”
- **Preparing R&D 100 Award Application**
 - GC Interpreter (Gas Chromatography Interpreter), Van Benthem, Kotula, Borek, Mowry, and Keenan
- **Final report published as SAND2010-0981**
 - Van Benthem, M.H. , Borek III, T.T. Mowry, C.D. and Kotula, P. G.;
“Multicomponent Forensic Signature Development: Interactions with Common Textiles; Mustard Precursors and Simulants”

Next Steps

- **Pursue internal investigations of progressive TD-GD/MS analysis for materials analysis**
 - Have applied for internal funding to extend this technique to other areas
- **Explore commercial applications for GC-Interpreter software with GC/MS manufacturers**
 - Hope to replicate the commercial success of AXSIA software for GC/MS applications
- **Demonstrate algorithms on LC/MS data**
 - Applicable toward targets that cannot be analyzed by GC, *i.e.*, toxins
- **Continue mustard research using *live agents* in a collaboration with Lovelace Respiratory Research Institute (LRRI)**
 - MOU is already in place and the principals have agreed to pursue this line of research with DHS funding

Conclusions

- Successfully completed our project on mustard simulants
- Plans are in place to extend this research to other areas of national interest
- Working to make this technology available commercially
- We have arranged with a research partner to take the next logical and meaningful step for this study
- Looking forward to continuing our scientific relationship with DHS and conducting more interesting and important research!